
Advanced Data Analysis 2, Stat 428/528

Spring 2015
Homework 18 Name: Answer Key

Prof. Erik B. Erhardt

Part I. (90 points) Do all calculations in R. All R code for the assignment should be included with the part
of the problem it addresses (for code and output use a fixed-width font, such as Courier). Code is used to
calculate result. Text is used to report and interpret results. Do not report or interpret results in the code.

(20pts) 1. Type conversions
Type the following code in your R terminal.

v <- factor(c("2", "3", "5", "7", "11"))

(a) (5 pts) Describe the variable type/class of v.

Solution: The variable v is a factor variable with levels 1, 2, 3, 4, 5, mapped alphabetically to labels
“11”, “2”, “3”, “5”, and “7”, respectively.

v

[1] 2 3 5 7 11

Levels: 11 2 3 5 7

class(v)

[1] "factor"

str(v)

Factor w/ 5 levels "11","2","3","5",..: 2 3 4 5 1

(b) (5 pts) Convert v to character with as.character(). Explain what just happened.

Solution: The factor values were converted to their labels and returned in a character string.

as.character(v)

[1] "2" "3" "5" "7" "11"

(c) (5 pts) Convert v to numeric with as.numeric(). Explain what just happened.

Solution: The factor levels were returned in a numeric string.

as.numeric(v)

[1] 2 3 4 5 1

(d) (5 pts) How would you convert the values of v to integers? Do it.

Solution: First return the character labels, then coerce to integers.

as.integer(as.character(v))

[1] 2 3 5 7 11

(70pts) 2. From raw to technically correct data
In this exercise we’ll use readLines() to read in an irregular textfile: http://statacumen.com/teach/
ADA2/ADA2_HW_18_example.txt. The file looks like this.

// Survey data. Created : 22 April 2015

// Field 1: Gender

// Field 2: Age (in years)

// Field 3: Weight (in kg)

M;28;81.3

male;45;

Female; 17 ;57,2

fem.;64;62.8

ADA2/HW18 – Page 2 of 6 – Name: Answer Key

Ma.;16;55.3

m;;50,1

w;20.4;55

Fm;;

;55;55

First, we will read the data, work with the commented lines, then put the data lines into a matrix with
column labels. Then, we will coerce the columns of the data to a structured data set.

Imagine that these three fields and four data rows are the first of potentially dozens of fields and 10,000
rows of data, so your strategy should be general and handle unseen but reasonable data values (for the
columns in this dataset).

This is the type of coding that demands detailed comments for why you’re writing each line of code and
what your strategy is. Therefore, before each line of code, indicate the why and how of your code.

(a) (5 pts) Read the complete file using readLines.

Solution:

Read data with readLines() so each line is a character string in a vector

fn.data <- "http://statacumen.com/teach/ADA2/ADA2_HW_18_example.txt"

example.txt <- readLines(fn.data)

example.txt

[1] "// Survey data. Created : 22 April 2014"

[2] "// Field 1: Gender"

[3] "// Field 2: Age (in years)"

[4] "// Field 3: Weight (in kg)"

[5] "M;28;81.3"

[6] "male;45;"

[7] "Female; 17 ;57,2"

[8] "fem.;64;62.8"

[9] "Ma.;16;55.3"

[10] "m;;50,1"

[11] "w;20.4;55"

[12] "Fm;;"

[13] ";55;55"

(b) (10 pts) Separate the vector of lines into a vector containing comments and a vector containing the
data. Hint: use grepl().

Solution:

detect lines starting (^) with a double slash (//)

ind.header <- grepl("^//", example.txt)

ind.header

[1] TRUE TRUE TRUE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

[12] FALSE FALSE

create an object with only header

example.head <- example.txt[ind.header]

example.head

[1] "// Survey data. Created : 22 April 2014"

[2] "// Field 1: Gender"

[3] "// Field 2: Age (in years)"

[4] "// Field 3: Weight (in kg)"

create an object with only data

example.dat <- example.txt[!ind.header]

example.dat

[1] "M;28;81.3" "male;45;" "Female; 17 ;57,2"

[4] "fem.;64;62.8" "Ma.;16;55.3" "m;;50,1"

[7] "w;20.4;55" "Fm;;" ";55;55"

ADA2/HW18 – Page 3 of 6 – Name: Answer Key

(c) (5 pts) Extract the date from the first comment line and print to the console with the text “This
data was created YYYY-MM-DD.”, where the date is entirely numeric.

Solution:

read date from first line of the comments

library(lubridate)

##

Attaching package: ’lubridate’

##

The following object is masked from ’package:plyr’:

##

here

example.date <- dmy(example.head[1])

print comment about when data were created

format(example.date, format = "This data was created %Y-%m-%d.")

[1] "This data was created 2014-04-22."

(d) (15 pts) Read the data into a matrix as follows.
1. Split the character vectors in the vector containing data lines by semicolon (;) using strsplit().
2. Find the maximum number of fields retrieved by split(). Append rows that are shorter with

NA’s.
3. Use unlist() and matrix() to transform the data to row-column format.

Solution:

(1)

remove whitespace by substituting nothing where spaces appear

example.dat2 <- gsub(" ", "", example.dat)

split strings by semicolon

example.fieldList <- strsplit(example.dat2, split = ";")

example.fieldList

[[1]]

[1] "M" "28" "81.3"

##

[[2]]

[1] "male" "45"

##

[[3]]

[1] "Female" "17" "57,2"

##

[[4]]

[1] "fem." "64" "62.8"

##

[[5]]

[1] "Ma." "16" "55.3"

##

[[6]]

[1] "m" "" "50,1"

##

[[7]]

[1] "w" "20.4" "55"

##

[[8]]

[1] "Fm" ""

##

[[9]]

[1] "" "55" "55"

(2)

append short rows with NA

for each field list calculate the length

unlist these lengths into a single vector

determine the max length

assign the max length to num.fields

ADA2/HW18 – Page 4 of 6 – Name: Answer Key

num.fields <- max(unlist(lapply(example.fieldList, length)))

loop through each list element

for (i.dat in 1:length(example.dat)) {
if shorter than num.fields

if (length(example.fieldList[[i.dat]]) < num.fields) {
then append the necessary number of NAs to the vector

example.fieldList[[i.dat]] <-

c(example.fieldList[[i.dat]]

, rep(NA, num.fields - length(example.fieldList[[i.dat]]))

)

}
}
There are now \lst{NA}s completing the length of each data row.

#example.fieldList

(3)

Convert the data to a matrix

example.mat <- matrix(unlist(example.fieldList)

, nrow = length(example.fieldList)

, byrow = TRUE)

example.mat

[,1] [,2] [,3]

[1,] "M" "28" "81.3"

[2,] "male" "45" NA

[3,] "Female" "17" "57,2"

[4,] "fem." "64" "62.8"

[5,] "Ma." "16" "55.3"

[6,] "m" "" "50,1"

[7,] "w" "20.4" "55"

[8,] "Fm" "" NA

[9,] "" "55" "55"

(e) (5 pts) From comment lines 2-4, extract the names of the fields. Set these as colnames for the matrix

you just created.

Solution:

remove the first row with the date, the rest have the field names

example.head.names <- example.head[2:length(example.head)]

unlist into a matrix, then only keep the second column with the field names

example.colnames <- matrix(unlist(strsplit(example.head.names, split = ":"))

, nrow = length(example.head.names)

, byrow = TRUE)[,2]

example.colnames

[1] " Gender" " Age (in years)" " Weight (in kg)"

trim the white space from around the names

library(stringr)

example.colnames <- str_trim(example.colnames)

replace spaces with underscores

example.colnames <- gsub(" ", "_", example.colnames)

example.colnames

[1] "Gender" "Age_(in_years)" "Weight_(in_kg)"

assign column names to the data matrix

colnames(example.mat) <- example.colnames

example.mat

Gender Age_(in_years) Weight_(in_kg)

[1,] "M" "28" "81.3"

[2,] "male" "45" NA

[3,] "Female" "17" "57,2"

[4,] "fem." "64" "62.8"

[5,] "Ma." "16" "55.3"

[6,] "m" "" "50,1"

[7,] "w" "20.4" "55"

ADA2/HW18 – Page 5 of 6 – Name: Answer Key

[8,] "Fm" "" NA

[9,] "" "55" "55"

(f) (5 pts) Coerce the matrix to a data.frame, making sure all columns are character columns.

Solution:

coerce the matrix to a data.frame, keep values as character (by not converting to factors)

example.df <- as.data.frame(example.mat, stringsAsFactors = FALSE)

example.df

Gender Age_(in_years) Weight_(in_kg)

1 M 28 81.3

2 male 45 <NA>

3 Female 17 57,2

4 fem. 64 62.8

5 Ma. 16 55.3

6 m 50,1

7 w 20.4 55

8 Fm <NA>

9 55 55

str(example.df)

'data.frame': 9 obs. of 3 variables:

$ Gender : chr "M" "male" "Female" "fem." ...

$ Age_(in_years): chr "28" "45" "17" "64" ...

$ Weight_(in_kg): chr "81.3" NA "57,2" "62.8" ...

(g) (10 pts) Use a string distance technique to transform the Gender column into a factor variable with
labels man and woman.

Solution:

matching names

gender.match <- c("male", "female")

labels for Gender to assign later

gender.labels <- c("man", "woman")

first, make some obvious changes based on first characters

use substr to pull out the first character, and make capital

gender.first.char <- toupper(substr(example.df[,1], 1, 1))

library(stringr)

if the Gender string starts with "m" or "M", change to "Male"

gender.first.char <- str_replace(gender.first.char, "M", "Male")

if the Gender string starts with "f" or "F" or "w" or "W", change to "Female"

gender.first.char <- str_replace(gender.first.char, "F", "Female")

gender.first.char <- str_replace(gender.first.char, "W", "Female")

if the Gender is blank, change to NA

gender.first.char[(str_length(gender.first.char) == 0)] <- NA

example.df[,1] <- gender.first.char

use the stringdist function to find most closely matching label

library(stringdist)

gender.dist <- stringdistmatrix(example.df[,1], gender.match, method = "osa")

reassign Gender column with gender.labels most closely matching

max.col() chooses the column with the maximum distance

so I take the negative of the gender.dist so we find the minimum distance

then assign that label to the data.frame

example.df[,1] <- gender.labels[max.col(-gender.dist)]

set as factor variable

example.df[,1] <- factor(example.df[,1])

as.numeric(factor(example.df[,1]))

[1] 1 1 2 2 1 1 2 2 NA

example.df

ADA2/HW18 – Page 6 of 6 – SOLUTIONS

Gender Age_(in_years) Weight_(in_kg)

1 man 28 81.3

2 man 45 <NA>

3 woman 17 57,2

4 woman 64 62.8

5 man 16 55.3

6 man 50,1

7 woman 20.4 55

8 woman <NA>

9 <NA> 55 55

(h) (5 pts) Coerce the Age column to integer.

Solution:

determine which column number is Age

colnum.Age <- which.min(stringdist(substr(example.colnames, 1, 3), "Age", method = "lcs"))

replace commas with periods

example.df[, colnum.Age] <- gsub(",", ".", example.df[, colnum.Age], fixed = TRUE)

set type to integer

example.df[, colnum.Age] <- as.integer(example.df[, colnum.Age])

(i) (5 pts) Coerce the weight column to numeric. Hint: use gsub() to replace comma’s with a period.

Solution:

determine which column number is Weight

colnum.Weight <- which.min(stringdist(substr(example.colnames, 1, 6), "Weight", method = "lcs"))

replace commas with periods

example.df[, colnum.Weight] <- gsub(",", ".", example.df[, colnum.Weight], fixed = TRUE)

set type to numeric

example.df[, colnum.Weight] <- as.numeric(example.df[, colnum.Weight])

(j) (5 pts) Show off your beautiful dataset!

Solution: Looks great! Ready for analysis.

str(example.df)

'data.frame': 9 obs. of 3 variables:

$ Gender : Factor w/ 2 levels "man","woman": 1 1 2 2 1 1 2 2 NA

$ Age_(in_years): int 28 45 17 64 16 NA 20 NA 55

$ Weight_(in_kg): num 81.3 NA 57.2 62.8 55.3 50.1 55 NA 55

example.df

Gender Age_(in_years) Weight_(in_kg)

1 man 28 81.3

2 man 45 NA

3 woman 17 57.2

4 woman 64 62.8

5 man 16 55.3

6 man NA 50.1

7 woman 20 55.0

8 woman NA NA

9 <NA> 55 55.0

