
Statistical Computing 1, Stat 590

Fall 2015
Homework 5a Name:

Prof. Erik B. Erhardt

Part I. (140 points) Do all calculations in LATEX + R + knitr. Insert computer text output
and graphics to support what you are saying. For this assignment, all R code should well
commented and be visible (echo=TRUE) in the document where you have written it.

(70pts) 1. Multinomial sampling
Suppose X˜ = {X1, X2, . . . , Xk} is a discrete random variable. It is easy to see that
the joint distribution of X˜ = {X1, X2, . . . , Xk} can be obtained through a series of
conditional distributions:

Pr[X1 = x1, X2 = x2, . . . , Xk = xk] = Pr[Xk = xk|X1 = x1, X2 = x2, . . . , Xk−1 = xk−1]

×Pr[X1 = x1, X2 = x2, . . . , Xk−1 = xk−1]

Pr[X1 = x1, X2 = x2, . . . , Xk−1 = xk−1] = Pr[Xk−1 = xk−1|X1 = x1, X2 = x2, . . . , Xk−2 = xk−2]

×Pr[X1 = x1, X2 = x2, . . . , Xk−2 = xk−2]
...

That is,

Pr[X1 = x1, X2 = x2, . . . , Xk = xk] = Pr[X1 = x1]

×
k∏
i=2

Pr[Xi = xi|X1 = x1, X2 = x2, . . . , Xi−1 = xi−1].

When X˜ = {X1, X2, . . . , Xk} has a Multinomial(m, θ˜) distribution, with θ˜ = (θ1, . . . , θk),
it can be shown that

X1 ∼ Binomial(m, θ1)

X2|X1 = x1 ∼ Binomial(m− x1, θ∗2),
where θ∗2 = θ2/(1− θ1)

...

Xi = xi|X1 = x1, X2 = x2, . . . , Xi−1 = xi−1 ∼ Binomial(m− (x1 + · · ·+ xi−1), θ
∗
i ),

where θ∗i = θi/(1− θ1 − · · · − θi−1)
...

To be precise here, you need to recognize that:

� If x1 + · · ·+ xi−1 = m (the total sample size), then

Xi = xi|X1 = x1, X2 = x2, . . . , Xi−1 = xi−1 ∼ Binomial(m−m, θ∗i )

means Xi = 0 with probability 1. Similarly, Xi+1 = · · · = Xk = 0 conditional on
previous Xis.
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� For the last cell Xk, we are constrained so that x1 + · · ·+ xk = m with probability
1 and the conditional distribution

Xk = xk|X1 = x1, X2 = x2, . . . , Xk−1 = xk−1 ∼ Binomial(m− (x1 + · · ·+ xk−1), θ
∗
k),

where θ∗k = θk/(1− θ1 − · · · − θk−1)

= θk/θk = 1.

This implies that given X1, X2, . . . , Xk−1, that xk = m − (x1 + · · · + xk−1) with
probability 1, that is, all “successes” in this Binomial distribution!

This characterization of the multinomial distribution is commonly used to generate
random samples from a multinomial distribution, given a routine to generate binomial
random variables.

(a) (10 pts) For this problem, I want you to write a function that will generate a single
multinomial sample given an input sample size m and a probability vector θ˜ =
(θ1, . . . , θk). Some thoughts:

� You may assume the input arguments are “permissible”.

� The algorithm is naturally programmed using a for() loop or a while() loop.

� You need to be concerned if, for example, x1 + · · · + xk−1 = m (it can’t go
above it). If this condition holds, you need to break out of the loop and return,
assuming all xis are initialized to zero. With this in mind, I believe the while()

loop may be more transparent, because you can loop while this condition is not
satisfied, given you first generate x1.

� As an aside, a function f() that returns the k-by-1 vector x can have the fol-
lowing structure:

## This function demonstrates a particular structure.

## It is not intended to run as it is.

f <- function( inputs ) {
x <- rep(0, k)

...

x[1] <- s

...

for (i in 2:(k-1)) {
x[i] <- something

if ( condition ) {
some commands

return(x)

}
}
x[k] <- something

return(x)

}

The important point here is that whenever you have a return() statement in
a function, the execution of the function ceases, and the current value of x is
returned. If you choose to use a for() loop to generate a multinomial random
variable x then your code will likely mimic this structure.
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� You can generate a Binomial(m, p) random variable with rbinom(). Or, if you
prefer, you can write your own Binomial generator.

(b) (10 pts) Present some visual evidence that the function above “works correctly”.
What you might choose to do is generate 100 or so samples X˜ = {X1, X2, . . . , Xk}
for a given m and θ˜ = (θ1, . . . , θk). Noting that Xi ∼ Binomial(m, θi), you might
make a histogram of the generated counts Xi for the ith cell and compare the shape
to that of the binomial pdf (using pbinom()) for i = 1, . . . , k. You might think of how
to turn counts for the histogram into proportions and plot those with the binomial
probabilities (together).

(c) (20 pts) For each combination of

n = number of Multinomial samples = 500, 1000

m = Multinomial sample size = 25, 100, 500

k = number of cells = 3, 6, 9, 12, 15

compute n samples from a multinomial distribution with given m and θ1 = · · · =
θk = k−1 (equal cell probabilities). Keeping a record of the total clock time needed
to complete this task for a given n, m, and k. For each value of n, make a plot
of the time(m, k) values. For example, with time on the vertical axis and k on the
horizontal axis, plot the times where each m is grouped and connected a line of
different colors and line types (solid, dashed, etc.).
Discussed the results. You might also consider plotting time(m, k)/n in the same
manner (average time per sample).
Note that there are at least three ways to measure the clock time for a process:

� see the example at the bottom of help page for ?proc.time

� see package rbenchmark

� see package microbenchmark

(d) (10 pts) Consider the following pseudo-code, where θ˜ = (θ1, . . . , θk) is a vector of

probabilities with θi > 0 and
∑k

i θi = 1. Suppose I do the following, given θ˜ is
defined: First, define θ˜ as a 1-by-k vector and define scalar m, then define the
following function:

f.dmultigen <- function(m, theta) {
theta.c <- c(0, cumsum(theta))

u <- runif(m)

x <- hist(u, breaks = theta.c, plot = FALSE)$counts

return(x)

}

# or, (probably) faster, all n samples at once

f.dmultigen2 <- function(theta, m, n = 1) {
theta.c <- c(0, cumsum(theta))

x <- t(apply(matrix(.bincode(runif(m * n), breaks = theta.c), nrow = n), 1, tabulate))

return(x)

}

Explain what this code is doing step-by-step and argue why this algorithm generates
a single Multinomial(m, θ˜) sample.
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(e) (10 pts) Using the new code (or a modification of it) in part (d), repeat the analysis
done in part (c) and compare the results. Which method, if either, is faster for these
combinations of n, m, and k?

(f) (10 pts) Devise a good way of modifying the strategy in part (a) to generate n
Multinomial samples per call to the function. That is, pass n as input to the function
and return n samples.
Do the same for the strategy in part (d).
Does this modification impact time(m, k), the time needed to generate n samples
from Multinomial(m, θ˜)? If so, how (you don’t have to redo part (c), just consider
a few cases)?

(40pts) 2. Multinomial hypothesis testing
SupposeX˜ = {X1, X2, . . . , Xk} has a Multinomial(m, θ˜) distribution, where θ˜ = (θ1, . . . , θk)

such that θi > 0 and
∑k

i θi = 1. We wish to test H0 : θ1 = θ01, . . . , θk = θ0k, versus
H1 : not H0. Two standard test statistics are the Pearson statistic

P =
k∑
i=1

(xi −mθ0i)2

mθ0i

and the likelihood ratio statistic

G2 = 2
k∑
i=1

xi loge

(
xi
mθ0i

)
,

where 0 loge(0) ≡ 0. For large n, if H0 is true, then both P and G2 ·∼ χ2
k−1. A standard

large-sample test is to reject H0 based on the p-value

p-value(P ) = Pr(χ2
k−1 > Pobs) or

p-value(G2) = Pr(χ2
k−1 > G2

obs),

that is, the area under the χ2
k−1 curve to the right of observed values of P and G2.

(a) (10 pts) Write separate functions to compute P and G2 given vector inputs X˜ =
{X1, X2, . . . , Xk} and θ˜0 = (θ01, . . . , θ0k).

� assuming input vectors are “permissible”, that is, Xi ≥ 0 and θ0i > 0.

� calculations should be based on vector or matrix calculations, not for() loops

� for G2, since xi loge(xi) ≡ 0 when xi = 0, you might think of identifying the
elements of {X1, X2, . . . , Xk} that are positive and basing the statistic solely on
these elements. Alternatively, you might think of slightly changing the definition
to have components xi loge((xi + ε)/mθ0i) where ε is a very small number, say
ε = 10−10.

(b) (10 pts) Write a script where you can input the cell counts X˜ = {X1, X2, . . . , Xk}
and the null probabilities θ˜0 = (θ01, . . . , θ0k). Have your script check whether the
input values are “permissible”, that is, you need to input k non-negative counts
Xi ≥ 0 and k probabilities θ01 > 0 that sum to 1. Given permissible input, the
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script should call your functions to compute P and G2, then print out the observed
values of P and G2 with their p-values. The output should include labels with the
printing, that is, return summaries and a message to the screen/command window.
You can use the pchisq() function to compute the χ2

k−1 cdf.
(c) (10 pts) The Dean of Arts and Sciences at a certain university established grading

guidelines of 10% As and Fs, 20% Bs and Ds, and 40% Cs for his faculty. In a
statistics class consisting of 117 students, the number of individuals receiving the
five letter grades were as follows:

grade A B C D F
number 16 50 31 11 9

Does it appear that the professor is following the Dean’s recommendation, that is,
does it appear that the grades are a random sample from a population with the
recommended grade distribution? Use the code designed in the earlier part of the
problem to answer this question.

(d) (10 pts) Generalize your P and G2 functions so that they can compute each statistic
for multiple samples, given by rows of a matrix. Illustrate their use on the data in
this table.

grade A B C D F
Prof 1 16 50 31 11 9
Prof 2 10 23 22 20 7
Prof 3 21 10 42 3 1
Prof 4 3 12 31 16 0

(30pts) 3. Goodness-of-fit and upper-tail probability approximation
For the goodness-of-fit test, a standard approach is to reject H0 if

P ≥ χ2
k−1,1−α

where

Pr[χ2
k−1 ≥ χ2

k−1,1−α] = α,

that is, χ2
k−1,1−α is the upper α percentile of the χ2

k−1 distribution, and α is the desired
size of the test. A similar rule is used for G2. Because the χ2

k−1 is only an approximation,
neither

Pr(P ≥ χ2
k−1) nor Pr(G2 ≥ χ2

k−1)

may not be exactly equal to α in small samples. This problem seeks to answer “how
good is the approximation?” for a few settings. In practice, α = 0.01, 0.05, or 0.10,
so let’s restrict attention to these three cases. The qchisq() function can be used to
compute the quantile

t = χ2
k−1,1−α

for any choices of k and α.
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I would like you to write a script that uses the crude MC estimate (using the same
stream of random numbers) to calculate

Pr(P ≥ χ2
k−1) and Pr(G2 ≥ χ2

k−1)

for the specified values of t (based on α and k), using the same k, m, and θ˜ combinations
considered in Problem 2, and the number n of simulated samples so that the margin-of-
error (MOE) in the estimated probabilities does not exceed (approximately) 0.01.
Summarize the results in tabular form, giving values for α (nominal level), m, k, θ˜, plus
the two crude MC estimates plus their estimated standard error (that is, the square root
of the estimated variance). Also give the estimate for (Pr(P ≥ t)− Pr(G2 ≥ t)) and its
standard error. For these parameter combinations, does it appear that the upper-tail
approximation to either P or G2 is accurate? Discuss the results.




