Contents

I Review of ADA1

1 R statistical software and review
 1.1 R ... 3
 1.2 ADA1 Ch 0: R warm-up 4
 1.3 ADA1 Chapters 2, 4, 6: Estimation in one-sample problems ... 6
 1.4 ADA1 Chapters 3, 4, 6: Two-sample inferences ... 12
 1.5 ADA1 Chapters 5, 4, 6: One-way ANOVA ... 16
 1.6 ADA1 Chapter 7: Categorical data analysis ... 25
 1.7 ADA1 Chapter 8: Correlation and regression ... 29

II Introduction to multiple regression and model selection

2 Introduction to Multiple Linear Regression
 2.1 Indian systolic blood pressure example ... 39
 2.1.1 Taking Weight Into Consideration ... 42
 2.1.2 Important Points to Notice About the Regression Output ... 43
 2.1.3 Understanding the Model ... 45
 2.2 GCE exam score example ... 47
 2.2.1 Some Comments on GCE Analysis ... 55

3 A Taste of Model Selection for Multiple Regression
 3.1 Model ... 61
 3.2 Backward Elimination ... 61
 3.2.1 Maximum likelihood and AIC/BIC ... 62
 3.3 Example: Peru Indian blood pressure ... 63
 3.3.1 Analysis for Selected Model ... 71
 3.4 Example: Dennis Cook’s Rat Data ... 74

III Experimental design and observational studies

4 One Factor Designs and Extensions
CONTENTS

9.2.3 Using Factors and Predictors to Model Salaries 204
9.2.4 Discussion of the Salary Analysis .. 210

10 Automated Model Selection for Multiple Regression 213
 10.1 Forward Selection .. 214
 10.2 Backward Elimination ... 214
 10.3 Stepwise Regression .. 215
 10.3.1 Example: Indian systolic blood pressure 215
 10.4 Other Model Selection Procedures .. 223
 10.4.1 \(R^2 \) Criterion ... 223
 10.4.2 Adjusted-\(R^2 \) Criterion, maximize ... 223
 10.4.3 Mallows’ \(C_p \) Criterion, minimize .. 224
 10.5 Illustration with Peru Indian data .. 224
 10.5.1 \(R^2 \), \(\bar{R}^2 \), and \(C_p \) Summary for Peru Indian Data 228
 10.5.2 Peru Indian Data Summary .. 229
 10.6 Example: Oxygen Uptake .. 229
 10.6.1 Redo analysis excluding first and last observations 235

11 Logistic Regression ... 239
 11.1 Generalized linear model variance and link families 239
 11.2 Example: Age of Menarche in Warsaw ... 240
 11.3 Simple logistic regression model .. 242
 11.3.1 Estimating Regression Parameters via LS of empirical logits 243
 11.3.2 Maximum Likelihood Estimation for Logistic Regression Model 244
 11.3.3 Fitting the Logistic Model by Maximum Likelihood, Menarche 245
 11.4 Example: Leukemia white blood cell types ... 249
 11.5 Example: The UNM Trauma Data .. 256
 11.5.1 Selecting Predictors in the Trauma Data 258
 11.5.2 Checking Predictions for the Trauma Model 260
 11.6 Historical Example: O-Ring Data .. 262

V Multivariate Methods .. 269

12 An Introduction to Multivariate Methods .. 271
 12.1 Linear Combinations .. 272
 12.2 Vector and Matrix Notation ... 274
 12.3 Matrix Notation to Summarize Linear Combinations 277

13 Principal Component Analysis .. 279
 13.1 Example: Temperature Data ... 280
 13.2 PCA on Correlation Matrix .. 287
 13.3 Interpreting Principal Components .. 291
 13.4 Example: Painted turtle shells .. 291
 13.4.1 PCA on shells covariance matrix ... 293
 13.4.2 PCA on shells correlation matrix ... 294
13.5 Why is PCA a Sensible Variable Reduction Technique? .. 295
 13.5.1 A Warning on Using PCA as a Variable Reduction Technique 296
 13.5.2 PCA is Used for Multivariate Outlier Detection .. 298
13.6 Example: Sparrows, for Class Discussion .. 299
13.7 PCA for Variable Reduction in Regression ... 303

14 Cluster Analysis .. 311
 14.1 Introduction .. 311
 14.1.1 Illustration .. 311
 14.1.2 Distance measures .. 315
 14.2 Example: Mammal teeth .. 316
 14.3 Identifying the Number of Clusters ... 318
 14.4 Example: 1976 birth and death rates ... 323
 14.4.1 Complete linkage ... 324
 14.4.2 Single linkage .. 329

15 Multivariate Analysis of Variance ... 335

16 Discriminant Analysis ... 347
 16.1 Canonical Discriminant Analysis .. 347
 16.2 Example: Owners of riding mowers ... 348
 16.3 Discriminant Analysis on Fisher’s Iris Data ... 355

17 Classification .. 361
 17.1 Classification using Mahalanobis distance ... 362
 17.2 Evaluating the Accuracy of a Classification Rule ... 364
 17.3 Example: Carapace classification and error ... 364
 17.4 Example: Fisher’s Iris Data cross-validation .. 369
 17.4.1 Stepwise variable selection for classification ... 375
 17.5 Example: Analysis of Admissions Data .. 378
 17.5.1 Further Analysis of the Admissions Data ... 379
 17.5.2 Classification Using Unequal Prior Probabilities 383
 17.5.3 Classification With Unequal Covariance Matrices, QDA 386
Part I

Review of ADA1
Chapter 1

R statistical software and review

The purpose of this chapter is to discuss R in the context of a quick review of the topics we covered last semester in ADA1\(^1\).

1.1 R

R is a programming language for programming, data management, and statistical analysis. So many people have written “An Introduction to R”, that I refer you to the course website\(^2\) for links to tutorials. I encourage you to learn R by (1) running the commands in the tutorials, (2) looking at the help for the commands (e.g., \texttt{?mean}), and (3) trying things on your own as you become curious. Make mistakes, figure out why some things don’t work the way you expect, and keep trying. Persistence wins the day with programming (as does asking and searching for help).

R is more difficult to master (though, more rewarding) than some statistical packages (such as Minitab) for the following reasons: (1) R does not, in general, provide a point-and-click environment for statistical analysis. Rather, R uses syntax-based programs (i.e., code) to define, transform, and read data, and to define the procedures for analyzing data. (2) R does not really have a spreadsheet environment for data management. Rather, data are entered directly within an R program, read from a file, or imported from a spreadsheet. All manipulation, transformation, and selection of data is coded in the R program. Well done, this means that all the steps of the analysis are available to be repeatable and understood.

Take a minute to install the packages we’ll need this semester by executing the following commands in R.

\begin{verbatim}
ADA2.package.list <- c("BSDA", "aod", "ellipse", "leaps", "mvnormtest", "reshape", "vioplot",
 "Hmisc", "candisc", "ggplot2", "lsmeans", "nortest", "reshape2", "xtable")
install.packages(ADA2.package.list)
\end{verbatim}

\(^1\)http://statacumen.com/teaching/ada1/
\(^2\)http://statacumen.com/teaching/ada2/
1.2 ADA1 Ch 0: R warm-up

This example illustrates several strategies for data summarization and analysis. The data for this example are from 15 turkeys raised on farms in either Virginia or Wisconsin.

You should use help to get more information on the functions demonstrated here. Many of the lines in the program have comments, which helps anyone reading the program to more easily follow the logic. I strongly recommend commenting any line of code that isn’t absolutely obvious what is being done and why it is being done. I also recommend placing comments before blocks of code in order to describe what the code below is meant to do.

```r
# Read the data file from the website and learn some functions

# filename
fn.data <- "http://statacumen.com/teach/ADA2/ADA2_notes_Ch01_turkey.csv"
# read file and assign data to turkey variable
turkey <- read.csv(fn.data)
# examine the structure of the dataset, is it what you expected?
# a data.frame containing integers, numbers, and factors
str(turkey)
## 'data.frame': 15 obs. of 3 variables:
## $ age : int 28 20 32 25 23 22 29 27 28 26 ...
## $ weight: num 13.3 8.9 15.1 13.8 13.1 10.4 13.1 12.4 13.2 11.8 ...
## $ orig : Factor w/ 2 levels "va","wi": 1 1 1 2 2 1 1 1 1 1 ...

# print dataset to screen
turkey

# Note: to view the age variable (column), there's a few ways to do that

# name the variable
turkey$age

# give the column number
turkey[, 1]

# give the column name

turkey[, "age"]

# and the structure is a vector
str(turkey$age)
```

R statistical software and review
int [1:15] 28 20 32 25 23 22 29 27 28 26 ...

let's create an additional variable for later
gt25mo will be a variable indicating whether the age is greater than 25 months
turkey$gt25mo <- (turkey$age > 25)
now we also have a Boolean (logical) column
str(turkey)

'data.frame': 15 obs. of 4 variables:
$ age : int 28 20 32 25 23 22 29 27 28 26 ...
$ weight: num 13.3 8.9 15.1 13.8 13.1 10.4 13.1 12.4 13.2 11.8 ...
$ orig : Factor w/ 2 levels "va","wi": 1 1 1 2 1 1 1 1 1 1 ...
$ gt25mo: logi TRUE FALSE TRUE FALSE FALSE FALSE ...

there are a couple ways of subsetting the rows
turkey[turkey$gt25mo == TRUE],] # specify the rows

age weight orig gt25mo
1 28 13.3 va TRUE
3 32 15.1 va TRUE
7 29 13.1 va TRUE
8 27 12.4 va TRUE
9 28 13.2 va TRUE
10 26 11.8 va TRUE
12 31 16.6 wi TRUE
13 27 14.2 wi TRUE
14 29 15.4 wi TRUE
15 30 15.9 wi TRUE

subset(turkey, gt25mo == FALSE) # use subset() to select the data.frame records

age weight orig gt25mo
2 20 8.9 va FALSE
4 25 13.8 wi FALSE
5 23 13.1 wi FALSE
6 22 10.4 va FALSE
11 21 11.5 wi FALSE

Analyses can be then done on the entire dataset, or repeated for all subsets of a variable in the dataset.

summaries of each variable in the entire dataset,
summary(turkey)

age weight orig gt25mo
Min. :20.0 Min. : 8.9 va:8 Mode :logical
1st Qu.:24.0 1st Qu.:12.1 wi:7 FALSE:5
Median :27.0 Median :13.2 TRUE :10
Mean :26.5 Mean :13.2 NA's :0
3rd Qu.:29.0 3rd Qu.:14.6
Max. :32.0 Max. :16.6

or summarize by a variable in the dataset.
by(turkey, turkey$orig, summary)

turkey$orig: va

age weight orig gt25mo
Min. :20.0 Min. : 8.9 va:8 Mode :logical
1st Qu.:25.0 1st Qu.:11.4 wi:0 FALSE:2
Median :27.5 Median :12.8 TRUE :6
Mean :26.5 Mean :12.3 NA's :0
1.3 ADA1 Chapters 2, 4, 6: Estimation in one-sample problems

Plot the weights by origin.

```r
# subset the data for convenience
turkeyva <- subset(turkey, orig == "va")
turkeywi <- subset(turkey, orig == "wi")

library(ggplot2)
# Histogram overlaid with kernel density curve
p11 <- ggplot(turkeyva, aes(x = weight))
# Histogram with density instead of count on y-axis
p11 <- p11 + geom_histogram(aes(y = ..density..),
   binwidth = 2,
   colour = "black", fill = "white")
# Overlay with transparent density plot
p11 <- p11 + geom_density(alpha = 0.1, fill = "#FF6666")
p11 <- p11 + geom_point(aes(y = -0.01),
   position = position_jitter(height = 0.005),
   alpha = 1/5)
# violin plot
p12 <- ggplot(turkeyva, aes(x = weight))
p12 <- p12 + geom_violin(stat = "density")
p13 <- ggplot(turkeyva, aes(x = weight))
p13 <- p13 + geom_boxplot() p13 <- p13 + coord_flip()

library(gridExtra)
ggrid.arrange(p11, p12, p13, ncol=1, main="Turkey weights for origin va")

# boxplot
p13 <- ggplot(turkeywi, aes(x = weight))
p13 <- p13 + geom_boxplot()

library(gridExtra)
ggrid.arrange(p21, p22, p23, ncol=1, main="Turkey weights for origin wi")
```
Check normality of each sample graphically with bootstrap sampling distribution and formal quantile plot.

```r
# a function to compare the bootstrap sampling distribution with
# a normal distribution with mean and SEM estimated from the data
bs.one.samp.dist <- function(dat, N = 1e4) {
  n <- length(dat);
  # resample from data
  sam <- matrix(sample(dat, size = N * n, replace = TRUE), ncol=N);
  # draw a histogram of the means
  sam.mean <- colMeans(sam);
  # save par() settings
  old.par <- par(no.readonly = TRUE)
  # make smaller margins
  par(mfrow=c(2,1), mar=c(3,2,2,1), oma=c(1,1,1,1))
  # Histogram overlaid with kernel density curve
  hist(dat, freq = FALSE, breaks = 6
       , main = "Plot of data with smoothed density curve")
  points(density(dat), type = "l")
  rug(dat)
  hist(sam.mean, freq = FALSE, breaks = 25
       , main = "Bootstrap sampling distribution of the mean"
       , xlab = "mean = ", signif(mean(dat), digits = 5)
       , ylab = "sd = ", signif(sd(dat)/sqrt(n)), digits = 5))
  # overlay a density curve for the sample means
  points(density(sam.mean), type = "l")
  # overlay a normal distribution, bold and red
  x <- seq(min(sam.mean), max(sam.mean), length = 1000)
  points(x, dnorm(x, mean = mean(dat), sd = sd(dat)/sqrt(n))
         , type = "l", lwd = 2, col = "red")
  # place a rug of points under the plot
  rug(sam.mean)
  # restore par() settings
  par(old.par)
}

# Bootstrap sampling distribution
bs.one.samp.dist(turkeyva$weight)
bs.one.samp.dist(turkeywi$weight)
```
Normal quantile-quantile (QQ) plot of each orig sample
library(car)

qq plot
las = 1 : turns labels on y-axis to read horizontally
id.n = n : labels n most extreme observations, and outputs to console
id.cex = 1 : is the size of those labels
lwd = 1 : line width
qqPlot(turkeyva$weight, las = 1, id.n = 0, id.cex = 1, lwd = 1, main="QQ Plot, turkey origin va")
qqPlot(turkeywi$weight, las = 1, id.n = 0, id.cex = 1, lwd = 1, main="QQ Plot, turkey origin wi")
Because we do not have any serious departures from normality (the data are consistent with being normal, as well as the sampling distribution of the mean) the t-test is appropriate. We will also look at a couple nonparametric methods.

```r
# VA
shapiro.test(turkeyva$weight)
##
## Shapiro-Wilk normality test
## data:  turkeyva$weight
## W = 0.9541, p-value = 0.7528
library(nortest)
ad.test(turkeyva$weight)
##
## Anderson-Darling normality test
## data:  turkeyva$weight
## A = 0.283, p-value = 0.5339
#
lillie.test(turkeyva$weight)
cvm.test(turkeyva$weight)
##
## Cramer-von Mises normality test
## data:  turkeyva$weight
## W = 0.0501, p-value = 0.4642

# WI
shapiro.test(turkeywi$weight)
##
## Shapiro-Wilk normality test
## data:  turkeywi$weight
## W = 0.9733, p-value = 0.9209
library(nortest)
ad.test(turkeywi$weight)
## Error:  sample size must be greater than 7
#
lillie.test(turkeywi$weight)
cvm.test(turkeywi$weight)
## Error:  sample size must be greater than 7
```

```r
# Is the average turkey weight 12 lbs?

# t-tests of the mean

# VA
t.summary <- t.test(turkeyva$weight, mu = 12)
t.summary
##
## One Sample t-test
##
## data:  turkeyva$weight
## t = 0.4058, df = 7, p-value = 0.697
```
```r
## alternative hypothesis: true mean is not equal to 12
## 95 percent confidence interval:
##  10.67 13.88
## sample estimates:
## mean of x
## 12.28

# WI
t.summary <- t.test(turkeywi$weight, mu = 12)
t.summary

##
## One Sample t-test
##
## data: turkeywi$weight
## t = 3.544, df = 6, p-value = 0.01216
## alternative hypothesis: true mean is not equal to 12
## 95 percent confidence interval:
##  12.73 15.98
## sample estimates:
## mean of x
## 14.36

# Sign test for the median

# VA
library(BSDA)
SIGN.test(turkeyva$weight, md=12)

##
## One-sample Sign-Test
##
## data: turkeyva$weight
## s = 5, p-value = 0.7266
## alternative hypothesis: true median is not equal to 12
## 95 percent confidence interval:
##  9.913 13.885
## sample estimates:
## median of x
## 12.75
## Conf.Level L.E.pt U.E.pt
## Lower Achieved CI  0.9297  10.400  13.30
## Interpolated CI    0.9500  9.912  13.88
## Upper Achieved CI  0.9922  8.900  15.10

# WI
SIGN.test(turkeywi$weight, md=12)

##
## One-sample Sign-Test
##
## data: turkeywi$weight
## s = 6, p-value = 0.125
## alternative hypothesis: true median is not equal to 12
## 95 percent confidence interval:
##  12.00 16.38
## sample estimates:
```
median of x
14.2
Conf.Level L.E.pt U.E.pt
Lower Achieved CI 0.8750 13.1 15.90
Interpolated CI 0.9500 12.0 16.38
Upper Achieved CI 0.9844 11.5 16.60

Wilcoxon sign-rank test for the median (or mean, since symmetric assumption)

VA
with continuity correction in the normal approximation for the p-value
wilcox.test(turkeyva$weight, mu=12, conf.int=TRUE)
Warning: cannot compute exact p-value with ties
Warning: cannot compute exact confidence interval with ties
Wilcoxon signed rank test with continuity correction
##
data: turkeyva$weight
V = 21.5, p-value = 0.674
alternative hypothesis: true location is not equal to 12
95 percent confidence interval:
10.4 14.1
sample estimates:
(pseudo)median
12.47

without continuity correction
wilcox.test(turkeyva$weight, mu=12, conf.int=TRUE, correct=FALSE)
Warning: cannot compute exact p-value with ties
Warning: cannot compute exact confidence interval with ties
Wilcoxon signed rank test
##
data: turkeyva$weight
V = 21.5, p-value = 0.6236
alternative hypothesis: true location is not equal to 12
95 percent confidence interval:
10.65 13.75
sample estimates:
(pseudo)median
12.47

WI
with continuity correction in the normal approximation for the p-value
wilcox.test(turkeywi$weight, mu=12, conf.int=TRUE)
##
Wilcoxon signed rank test
##
data: turkeywi$weight
V = 27, p-value = 0.03125
alternative hypothesis: true location is not equal to 12
95 percent confidence interval:
12.65 16.00
sample estimates:
(pseudo)median
14.38

without continuity correction
wilcox.test(turkeywi$weight, mu=12, conf.int=TRUE, correct=FALSE)
##
Wilcoxon signed rank test
##
data: turkeywi$weight
V = 27, p-value = 0.03125
alternative hypothesis: true location is not equal to 12
95 percent confidence interval:
12.65 16.00
sample estimates:
(pseudo)median
14.38

1.4 ADA1 Chapters 3, 4, 6: Two-sample inferences

Presume it is of interest to compare the center of the weight distributions between the origins. There are many ways to plot the data for visual comparisons.

stripchart (dotplot) using ggplot
library(ggplot2)
p1 <- ggplot(turkey, aes(x = weight, y = orig))
p1 <- p1 + geom_point(position = position_jitter(h=0.1))
p1 <- p1 + labs(title = "Dotplot with position jitter")

boxplot
p2 <- ggplot(turkey, aes(x = orig, y = weight))
p2 <- p2 + geom_boxplot()
add a "+" at the mean
p2 <- p2 + stat_summary(fun.y = mean, geom = "point", shape = 3, size = 2)
p2 <- p2 + geom_point()
p2 <- p2 + coord_flip()
p2 <- p2 + labs(title = "Boxplot with mean (+) and points")

histogram using ggplot
p3 <- ggplot(turkey, aes(x = weight))
p3 <- p3 + geom_histogram(binwidth = 2)
p3 <- p3 + facet_grid(orig ~ .)
p3 <- p3 + labs(title = "Histogram with facets")

p4 <- ggplot(turkey, aes(x = weight, fill=orig))
p4 <- p4 + geom_histogram(binwidth = 2, alpha = 0.5, position="identity")
p4 <- p4 + labs(title = "Histogram with opacity (alpha)")

p5 <- ggplot(turkey, aes(x = weight, fill=orig))
p5 <- p5 + geom_histogram(binwidth = 2, alpha = 1, position="dodge")
p5 <- p5 + labs(title = "Histogram with dodge")

library(gridExtra)
grid.arrange(p1, p2, p3, p4, p5, ncol=2, nrow=3, main="Turkey weights compared by origin")
Using the two-sample t-test, first check the normality assumptions of the sampling distribution of the mean difference between the populations.

```r
# a function to compare the bootstrap sampling distribution
# of the difference of means from two samples with
# a normal distribution with mean and SEM estimated from the data
bs.two.samp.diff.dist <- function(dat1, dat2, N = 1e4) {
  n1 <- length(dat1);
  n2 <- length(dat2);
  # resample from data
  sam1 <- matrix(sample(dat1, size = N * n1, replace = TRUE), ncol=N);
  sam2 <- matrix(sample(dat2, size = N * n2, replace = TRUE), ncol=N);
  # calculate the means and take difference between populations
  sam1.mean <- colMeans(sam1);
  sam2.mean <- colMeans(sam2);
  diff.mean <- sam1.mean - sam2.mean;
  # save par() settings
  old.par <- par(no.readonly = TRUE)
  # make smaller margins
  par(mfrow=c(3,1), mar=c(3,2,2,1), oma=c(1,1,1,1))
  # Histogram overlaid with kernel density curve
  # Dotplot with position jitter
  # Boxplot with mean (+) and points
  # Histogram with facets
  # Histogram with opacity (alpha)
  # Histogram with dodge
}
```

Turkey weights compared by origin

Dotplot with position jitter

Boxplot with mean (+) and points

Histogram with facets

Histogram with opacity (alpha)

Histogram with dodge
Two-sample t-test is appropriate since the bootstrap sampling distribution of the difference in means is approximately normal. This is the most powerful test and detects a difference at a 0.05 significance level.

```r
bs.two.samp.diff.dist(turkeyva$weight, turkeywi$weight)
```
data: turkeyva$weight and turkeywi$weight
t = -2.18, df = 13, p-value = 0.04827
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
 -4.14596 -0.01833
sample estimates:
mean of x mean of y
12.28 14.36

two-sample t-test with unequal variances (Welch = Satterthwaite)
specified using data.frame and a formula, HeadBreadth by Group
t.summary.uneqvar <- t.test(weight ~ orig, data = turkey, var.equal = FALSE)
t.summary.uneqvar

Welch Two Sample t-test
data: weight by orig
t = -2.193, df = 12.96, p-value = 0.04717
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
 -4.13408 -0.03021
sample estimates:
mean in group va mean in group wi
12.28 14.36

(Wilcoxon-)Mann-Whitney two-sample test is appropriate because the shapes of the two distributions are similar, though their locations are different. This is a less powerful test, but doesn’t require normality, and fails to detect a difference at a 0.05 significance level.

with continuity correction in the normal approximation for the p-value
wilcox.test(turkeyva$weight, turkeywi$weight, conf.int=TRUE)

Warning: cannot compute exact p-value with ties
Warning: cannot compute exact confidence intervals with ties

Wilcoxon rank sum test with continuity correction

data: turkeyva$weight and turkeywi$weight
W = 11.5, p-value = 0.06384
alternative hypothesis: true location shift is not equal to 0
95 percent confidence interval:
 -4.19994 0.09994
sample estimates:
difference in location
-2.153

without continuity correction
wilcox.test(turkeyva$weight, turkeywi$weight, conf.int=TRUE, correct=FALSE)

Warning: cannot compute exact p-value with ties
Warning: cannot compute exact confidence intervals with ties

Wilcoxon rank sum test

data: turkeyva$weight and turkeywi$weight
W = 11.5, p-value = 0.05598
alternative hypothesis: true location shift is not equal to 0
1.5 ADA1 Chapters 5, 4, 6: One-way ANOVA

The Waste Run-up data\(^3\) refer to five suppliers of the Levi-Strauss clothing manufacturing plant in Albuquerque. The firm’s quality control department collects weekly data on percent-age waste (run-up) relative to what can be achieved by computer layouts of patterns on cloth. It is possible to have negative values, which indicate that the plant employees beat the computer in controlling waste. Under question are differences among the five supplier plants (PT1, \ldots, PT5).

library(reshape2)
waste.long <- melt(waste,
 # id.vars: ID variables
 # all variables to keep but not split apart on
 # id.vars=NULL,
 # measure.vars: The source columns
 # (if unspecified then all other variables are measure.vars)
 # measure.vars = c("PT1","PT2","PT3","PT4","PT5"),
 # variable.name: Name of the destination column identifying each
 # original column that the measurement came from
 # variable.name = "plant",
 # value.name: column name for values in table
 value.name = "runup",
 # remove the NA values
 na.rm = TRUE
)
Using as id variables
str(waste.long)
'data.frame': 95 obs. of 2 variables:
$ plant: Factor w/ 5 levels "PT1","PT2","PT3","PT4","PT5": 1 1 1 1 1 1 1 1 1 1
$ runup: num 1.2 10.1 -2 1.5 -3 -0.7 3.2 2.7 -3.2 -1.7 ...
head(waste.long)
plant runup
1 PT1 1.2
2 PT1 10.1
3 PT1 -2.0
4 PT1 1.5
5 PT1 -3.0
6 PT1 -0.7
tail(waste.long)
plant runup
96 PT5 22.3
97 PT5 3.1
98 PT5 16.8
99 PT5 11.3
Calculate the mean, sd, n, and se for the plants

The plyr package is an advanced way to apply a function to subsets of data
"Tools for splitting, applying and combining data"

```r
library(plyr)

# ddply "dd" means the input and output are both data.frames
waste.summary <- ddply(waste.long,
  "plant",
  function(X) {
    data.frame( m = mean(X$runup),
                s = sd(X$runup),
                n = length(X$runup))
  })

# standard errors
waste.summary$se <- waste.summary$s/sqrt(waste.summary$n)

# individual confidence limits
waste.summary$ci.l <- waste.summary$m - qt(1-.05/2, df=waste.summary$n-1) * waste.summary$se
waste.summary$ci.u <- waste.summary$m + qt(1-.05/2, df=waste.summary$n-1) * waste.summary$se

# Plot the data using ggplot

library(ggplot2)

p <- ggplot(waste.long, aes(x = plant, y = runup))

# plot a reference line for the global mean (assuming no groups)
p <- p + geom_hline(aes(yintercept = mean(runup)),
  colour = "black", linetype = "solid", size = 0.2, alpha = 0.3)

# boxplot, size=.75 to stand out behind CI
p <- p + geom_boxplot(size = 0.75, alpha = 0.5)

# points for observed data
p <- p + geom_point(position = position_jitter(w = 0.05, h = 0), alpha = 0.5)

# diamond at mean for each group
p <- p + stat_summary(fun.y = mean, geom = "point", shape = 18, size = 6,
  aes(colour = plant), alpha = 0.8)

# confidence limits based on normal distribution
p <- p + stat_summary(fun.data = "mean_cl_normal", geom = "errorbar",
  width = .2, aes(colour=plant), alpha = 0.8)

p <- p + labs(title = "Plant Run-up waste relative to computer layout")
p <- p + ylab("Run-up waste")

print(p)
```
The outliers here suggest the ANOVA is not an appropriate model. The normality tests below suggest the distributions for the first two plants are not normal.

```r
by(waste.long$runup, waste.long$plant, ad.test)
## waste.long$plant: PT1
##
## Anderson-Darling normality test
##
## data:  dd[x, ]
## A = 2.869, p-value = 1.761e-07
##
## waste.long$plant: PT2
```
For review purposes, I'll fit the ANOVA, but we would count on the following nonparametric method for inference.

```r
fit.w <- aov(runup ~ plant, data = waste.long)
summary(fit.w)
```

```
## Df Sum Sq Mean Sq F value Pr(>F)
## plant  4  451  112.7  1.16  0.33
## Residuals 90  8749  97.2
```

```
# all pairwise comparisons among plants
# Fisher's LSD (FSD) uses "none"
pairwise.t.test(waste.long$runup, waste.long$plant, 
    pool.sd = TRUE, p.adjust.method = "none")
```
The residuals show many outliers

QQ plot
par(mfrow=c(1,1))
library(car)
qqPlot(fit.w$residuals, las = 1, id.n = 10, id.cex = 1, lwd = 1
, main="QQ Plot of residuals")
41 18 25 93 15 24 90 89 96 38
95 94 1 2 93 3 4 92 91 90

Kruskal-Wallis ANOVA is a non-parametric method for testing the hypothesis of equal population medians against the alternative that not all population medians are equal. It’s still not perfect here because the distributional shapes are not all the same, but it is a better alternative than the ANOVA.

KW ANOVA
fit.wk <- kruskal.test(runup ~ plant, data = waste.long)
fit.wk
##

Kruskal-Wallis rank sum test
data: runup by plant
Kruskal-Wallis chi-squared = 15.32, df = 4, p-value = 0.004084

Bonferroni 95% pairwise comparisions with continuity correction
in the normal approximation for the p-value
for (i1.pt in 1:4) {
 for (i2.pt in (i1.pt+1):5) {
 wt <- wilcox.test(waste[,names(waste)[i1.pt]], waste[,names(waste)[i2.pt]]
 , conf.int=TRUE, conf.level = 1 - 0.05/choose(5,2))
 cat(names(waste)[i1.pt], names(waste)[i2.pt])
 print(wt)
 }
}

Warning: cannot compute exact p-value with ties
Warning: cannot compute exact confidence intervals with ties
PT1 PT2
Wilcoxon rank sum test with continuity correction
1.5 ADA1 Chapters 5, 4, 6: One-way ANOVA

```r
## data: waste[, names(waste)[i1.pt]] and waste[, names(waste)[i2.pt]]
## W = 131.5, p-value = 0.009813
## alternative hypothesis: true location shift is not equal to 0
## 99.5 percent confidence interval:
## -8.3  1.6
## sample estimates:
## difference in location
## -4.4
## Warning: cannot compute exact p-value with ties
## Warning: cannot compute exact confidence intervals with ties
## PT1 PT3
## Wilcoxon rank sum test with continuity correction
##
## data: waste[, names(waste)[i1.pt]] and waste[, names(waste)[i2.pt]]
## W = 141.5, p-value = 0.07978
## alternative hypothesis: true location shift is not equal to 0
## 99.5 percent confidence interval:
## -6.9  2.7
## sample estimates:
## difference in location
## -2.5
## Warning: cannot compute exact p-value with ties
## Warning: cannot compute exact confidence intervals with ties
## PT1 PT4
## Wilcoxon rank sum test with continuity correction
##
## data: waste[, names(waste)[i1.pt]] and waste[, names(waste)[i2.pt]]
## W = 85, p-value = 0.001241
## alternative hypothesis: true location shift is not equal to 0
## 99.5 percent confidence interval:
## -8.9 -1.1
## sample estimates:
## difference in location
## -5.3
## Warning: cannot compute exact p-value with ties
## Warning: cannot compute exact confidence intervals with ties
## PT1 PT5
## Wilcoxon rank sum test with continuity correction
##
## data: waste[, names(waste)[i1.pt]] and waste[, names(waste)[i2.pt]]
## W = 76, p-value = 0.02318
## alternative hypothesis: true location shift is not equal to 0
## 99.5 percent confidence interval:
## -15.5  3.6
## sample estimates:
## difference in location
## -8.704
## Warning: cannot compute exact p-value with ties
## Warning: cannot compute exact confidence intervals with ties
## PT2 PT3
## Wilcoxon rank sum test with continuity correction
##
## data: waste[, names(waste)[i1.pt]] and waste[, names(waste)[i2.pt]]
```
```r
## W = 238, p-value = 0.4562
## alternative hypothesis: true location shift is not equal to 0
## 99.5 percent confidence interval:
##  -3.5 7.2
## sample estimates:
## difference in location
## 1.353
## Warning: cannot compute exact p-value with ties
## Warning: cannot compute exact confidence intervals with ties
## PT2 PT4
## Wilcoxon rank sum test with continuity correction
##
## data: waste[, names(waste)[i1.pt]] and waste[, names(waste)[i2.pt]]
## W = 186, p-value = 0.5563
## alternative hypothesis: true location shift is not equal to 0
## 99.5 percent confidence interval:
##  -5.9 3.8
## sample estimates:
## difference in location
## -1.1
## Warning: cannot compute exact p-value with ties
## Warning: cannot compute exact confidence intervals with ties
## PT2 PT5
## Wilcoxon rank sum test with continuity correction
##
## data: waste[, names(waste)[i1.pt]] and waste[, names(waste)[i2.pt]]
## W = 99, p-value = 0.1375
## alternative hypothesis: true location shift is not equal to 0
## 99.5 percent confidence interval:
##  -13.1 7.4
## sample estimates:
## difference in location
## -4.631
## Warning: cannot compute exact p-value with ties
## Warning: cannot compute exact confidence intervals with ties
## PT3 PT4
## Wilcoxon rank sum test with continuity correction
##
## data: waste[, names(waste)[i1.pt]] and waste[, names(waste)[i2.pt]]
## W = 117, p-value = 0.06583
## alternative hypothesis: true location shift is not equal to 0
## 99.5 percent confidence interval:
##  -6.8 1.7
## sample estimates:
## difference in location
## -2.4
##
## PT3 PT5
## Wilcoxon rank sum test
##
## data: waste[, names(waste)[i1.pt]] and waste[, names(waste)[i2.pt]]
## W = 67, p-value = 0.03018
## alternative hypothesis: true location shift is not equal to 0
## 99.5 percent confidence interval:
```
1.6 ADA1 Chapter 7: Categorical data analysis

Returning to the turkey dataset, below is the cross-classification of `orig` by `gt25mo`.

```r
# create a frequency table from two columns of categorical data
xt <- xtabs(~ orig + gt25mo, data = turkey)
# display the table
xt
## gt25mo
## orig FALSE TRUE
## va 2 6
## wi 3 4
# summary from xtabs() is the same as chisq.test() without continuity correction
summary(xt)
## Call: xtabs(formula = ~orig + gt25mo, data = turkey)
## Number of cases in table: 15
## Number of factors: 2
## Test for independence of all factors:
##  Chi-sq = 0.5, df = 1, p-value = 0.5
## Chi-squared approximation may be incorrect
# same as xtabs()
x.summary <- chisq.test(xt, correct=FALSE)
# Warning: Chi-squared approximation may be incorrect
x.summary
## 
## Pearson's Chi-squared test
## 
## data: xt
## X-squared = 0.5357, df = 1, p-value = 0.4642
## the default is to perform Yates' continuity correction
chisq.test(xt)
## Warning: Chi-squared approximation may be incorrect
```
A mosaic plot is for categorical data. Area represents frequency. The default shading is a good
start, since colors only appear when there’s evidence of association related to those cell values.
In our example, there’s insufficient evidence for association, so the default shading is all gray.

library(vcd) # for mosaic()
shading based on significance relative to appropriate chi-square distribution
mosaic(xt, shade=TRUE)
you can define your own interpolated shading
mosaic(xt, shade=TRUE, gp_args = list(interpolate = seq(.1,.2,.05)))

From the chisq.test() above, we make a table to summarize important values from that analysis
and compare the observed and expected frequencies in plots.

use output in x.summary and create table
x.table <- data.frame(obs = x.summary$observed
```r
# Define the expected frequencies
exp <- x.summary$expected
res <- x.summary$residuals
chisq <- x.summary$residuals^2
stdres <- x.summary$stdres

## Warning: row names were found from a short variable and have been discarded
# There are duplicate row and col identifiers in this x.table
# because we're creating vectors from a two-way table
# and columns identifying row and col names are automatically added.
# Can you figure out the naming scheme?

x.table

## obs.orig obs.gt25mo obs.Freq exp.FALSE exp.TRUE res.orig res.gt25mo
## 1 va FALSE 2 2.667 5.333 va FALSE
## 2 wi FALSE 3 2.333 4.667 wi FALSE
## 3 va TRUE 6 2.667 5.333 va TRUE
## 4 wi TRUE 4 2.333 4.667 wi TRUE

## res.Freq chisq.orig chisq.gt25mo chisq.Freq stdres.orig
## 1 -0.4082 va FALSE 0.16667 va
## 2 0.4364 wi FALSE 0.19048 wi
## 3 0.2887 va TRUE 0.08333 va
## 4 -0.3086 wi TRUE 0.09524 wi

## stdres.gt25mo stdres.Freq
## 1 FALSE -0.7319
## 2 FALSE 0.7319
## 3 TRUE 0.7319
## 4 TRUE -0.7319

# create a single column with a joint cell name
x.table$cellname <- paste(as.character(x.table$obs.orig),
                          as.character(x.table$obs.gt25mo),
                          sep="_")

# expected frequencies in a single column
x.table$exp <- c(x.table$exp.FALSE[1:2], x.table$exp.TRUE[3:4])

# create a simpler name for the obs, res, chisq, stdres
x.table$obs <- x.table$obs.Freq
x.table$res <- x.table$res.Freq
x.table$chisq <- x.table$chisq.Freq
x.table$stdres <- x.table$stdres.Freq

# include only the "cleaned" columns
x.table <- subset(x.table, select = c(cellname, obs, exp, res, chisq, stdres))

# reshape the data for plotting
library(reshape2)
x.table.obsexp <- melt(x.table,
                       # id.vars: ID variables
                       # all variables to keep but not split apart on
                       id.vars=c("cellname"),
                   )
```

1.6 ADA1 Chapter 7: Categorical data analysis

```r
, exp = x.summary$expected
, res = x.summary$residuals
, chisq = x.summary$residuals^2
, stdres = x.summary$stdres)

## Warning: row names were found from a short variable and have been discarded
# There are duplicate row and col identifiers in this x.table
# because we're creating vectors from a two-way table
# and columns identifying row and col names are automatically added.
# Can you figure out the naming scheme?

x.table

## obs.orig obs.gt25mo obs.Freq exp.FALSE exp.TRUE res.orig res.gt25mo
## 1 va FALSE 2 2.667 5.333 va FALSE
## 2 wi FALSE 3 2.333 4.667 wi FALSE
## 3 va TRUE 6 2.667 5.333 va TRUE
## 4 wi TRUE 4 2.333 4.667 wi TRUE

## res.Freq chisq.orig chisq.gt25mo chisq.Freq stdres.orig
## 1 -0.4082 va FALSE 0.16667 va
## 2 0.4364 wi FALSE 0.19048 wi
## 3 0.2887 va TRUE 0.08333 va
## 4 -0.3086 wi TRUE 0.09524 wi

## stdres.gt25mo stdres.Freq
## 1 FALSE -0.7319
## 2 FALSE 0.7319
## 3 TRUE 0.7319
## 4 TRUE -0.7319

# create a single column with a joint cell name
x.table$cellname <- paste(as.character(x.table$obs.orig),
                          as.character(x.table$obs.gt25mo),
                          sep="_")

# expected frequencies in a single column
x.table$exp <- c(x.table$exp.FALSE[1:2], x.table$exp.TRUE[3:4])

# create a simpler name for the obs, res, chisq, stdres
x.table$obs <- x.table$obs.Freq
x.table$res <- x.table$res.Freq
x.table$chisq <- x.table$chisq.Freq
x.table$stdres <- x.table$stdres.Freq

# include only the "cleaned" columns
x.table <- subset(x.table, select = c(cellname, obs, exp, res, chisq, stdres))

# reshape the data for plotting
library(reshape2)
x.table.obsexp <- melt(x.table,
                       # id.vars: ID variables
                       # all variables to keep but not split apart on
                       id.vars=c("cellname"),
                   )
```
Plot observed vs expected frequencies, and the contribution to chi-square statistic sorted descending.

```r
# Observed vs Expected counts
library(ggplot2)
p <- ggplot(x.table.obsexp, aes(x = cellname, fill = stat, weight=value))
p <- p + geom_bar(position="dodge")
p <- p + labs(title = "Observed and Expected frequencies")
p <- p + xlab("Age category (years)")
print(p)

# Contribution to chi-sq
# pull out only the cellname and chisq columns
x.table.chisq <- x.table[, c("cellname","chisq")]
# reorder the cellname categories to be descending relative to the chisq statistic
x.table.chisq$cellname <- with(x.table, reorder(cellname, -chisq))
p <- ggplot(x.table.chisq, aes(x = cellname, weight = chisq))
p <- p + geom_bar()
p <- p + labs(title = "Contribution to Chi-sq statistic")
p <- p + xlab("Sorted cellname category (years)")
p <- p + ylab("Contribution")
print(p)
```
Rocket Propellant Data A rocket motor is manufactured by bonding an igniter propellant and a sustainer propellant together inside a metal housing. The shear strength of the bond between the two types of propellant is an important quality characteristic. It is suspected that shear strength is related to the age in weeks of the batch of sustainer propellant. Twenty observations on these two characteristics are given below. The first column is shear strength in psi, the second is age of propellant in weeks.

```r
fn.data <- "http://statacumen.com/teach/ADA2/ADA2_notes_Ch01_rocket.dat"
# this file uses spaces as delimiters, so use read.table()
rocket <- read.table(fn.data, header = TRUE)
rocket$id <- 1:nrow(rocket) # add an id variable to identify observations
str(rocket)
## 'data.frame': 20 obs. of 3 variables:
## $ shearpsi: num 2159 1678 2316 2061 2208 ...
## $ agewks : num 15.5 23.8 8 17 5.5 ...
## $ id : int 1 2 3 4 5 6 7 8 9 10 ...
head(rocket)
## shearpsi agewks id
## 1 2159 15.50 1
## 2 1678 23.75 2
## 3 2316 8.00 3
## 4 2061 17.00 4
## 5 2208 5.50 5
## 6 1708 19.00 6
```

ggplot: Plot the data with linear regression fit and confidence bands
library(ggplot2)

```r
p <- ggplot(rocket, aes(x = agewks, y = shearpsi, label = id))
```
The data are reasonably linear, so fit the regression.

```r
# fit the simple linear regression model
lm.shearpsi.agewks <- lm(shearpsi ~ agewks, data = rocket)
# use summary() to get t-tests of parameters (slope, intercept)
summary(lm.shearpsi.agewks)
```

```r
## Call:
## lm(formula = shearpsi ~ agewks, data = rocket)
##
## Residuals:
##     Min      1Q  Median      3Q     Max
## -216.00  -50.68   28.72   66.62  106.80
##
## Coefficients:
##             Estimate Std. Error   t value     Pr(>|t|)
## (Intercept) 2627.825   44.178    59.502 < 2e-16 ***
## agewks      -37.151    2.886   -12.905  1.64e-10 ***
## ---
## Signif. codes:  < 0.001 ***  0.001 **  0.01 *  0.05 .  0.1   1
##
## Residual standard error: 96.09 on 18 degrees of freedom
```
The relationship between shear strength and age is fairly linear with predicted shear strength decreasing as the age of the propellant increases. The fitted LS line is

\[
\text{Predicted shear strength} = 2627.8 - 37.2 \cdot \text{Age}.
\]

The test for \(H_0 : \beta_1 = 0 \) (zero slope for the population regression line) is highly significant: \(p - \)
value < 0.0001. Also note that $R^2 = 0.9018$ so the linear relationship between shear strength and age explains about 90% of the variation in shear strength.

The data plot and residual information identify observations 5 and 6 as potential outliers ($r_5 = -2.38$, $r_6 = -2.32$). The predicted values for these observations are much greater than the observed shear strengths. These same observations appear as potential outliers in the normal scores plot and the plot of r_i against \hat{Y}_i. Observations 5 and 6 also have the largest influence on the analysis; see the Cook’s distance values.

A sensible next step would be to repeat the analysis holding out the most influential case, observation 5. It should be somewhat clear that the influence of case 6 would increase dramatically once case 5 is omitted from the analysis. Since both cases have essentially the same effect on the positioning of the LS line, I will assess the impact of omitting both simultaneously.

Before we hold out these cases, how do you think the LS line will change? My guess is these cases are pulling the LS line down, so the intercept of the LS line should increase once these cases are omitted. Holding out either case 5 or 6 would probably also affect the slope, but my guess is that when they are both omitted the slope will change little. (Is this my experience speaking, or have I already seen the output? Both.) What will happen to R^2 when we delete these points?

Exclude observations 5 and 6 and redo the analysis.

```r
# exclude observations 5 and 6
rocket56 <- rocket[-c(5,6), ]
head(rocket56)
## shearpsi agewks id
## 1 2159 15.50 1
## 2 1678 23.75 2
## 3 2316 8.00 3
## 4 2061 17.00 4
## 7 1785 24.00 7
## 8 2575 2.50 8

# ggplot: Plot the data with linear regression fit and confidence bands
library(ggplot2)
p <- ggplot(rocket56, aes(x = agewks, y = shearpsi, label = id))
p <- p + geom_point()
# plot labels next to points
p <- p + geom_text(hjust = 0.5, vjust = -0.5)
# plot regression line and confidence band
p <- p + geom_smooth(method = lm)
print(p)
```
The data are reasonably linear, so fit the regression.

```r
# fit the simple linear regression model
lm.shearpsi.agewks <- lm(shearpsi ~ agewks, data = rocket56)
# use summary() to get t-tests of parameters (slope, intercept)
summary(lm.shearpsi.agewks)
```

```
## Call:
## lm(formula = shearpsi ~ agewks, data = rocket56)
##
## Residuals:
##    Min     1Q    Median     3Q    Max
## -118.1  -35.7     11.3   44.8  84.0
##
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2658.97    30.53  87.13  <2e-16 ***
## agewks      -37.69     1.98  -19.10  2e-12 ***
## ---
## Signif. codes:  < 0.001 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 63 on 16 degrees of freedom
## Multiple R-squared: 0.958, Adjusted R-squared: 0.955
## F-statistic: 363 on 1 and 16 DF, p-value: 2.02e-12
```

Plot diagnostics.

```r
# plot diagnostics
par(mfrow=c(2,3))
plot(lm.shearpsi.agewks, which = c(1,4,6))
```
Some summaries for the complete analysis, and when cases 5 and 6 are held out, are given below. The summaries lead to the following conclusions:

1. Holding out cases 5 and 6 has little effect on the estimated LS line. Predictions of shear strength are slightly larger after holding out these two cases (recall that intercept increased, but slope was roughly the same!)

2. Holding out these two cases decreases \(\hat{\sigma} \) considerably, and leads to a modest increase in \(R^2 \). The complete data set will give wider CI and prediction intervals than the analysis which deletes case 5 and 6 because \(\hat{\sigma} \) decreases when these points are omitted.
3. Once these cases are held out, the normal scores plot and plot of the studentized residuals against fitted values shows no significant problems. One observation has a large Cook’s D but does not appear to be extremely influential.

Without any substantive reason to explain the low shear strengths for cases 5 and 6, I am hesitant to delete either case from the analysis. I feel relatively confident that including these cases will not seriously limit the use of the model.

<table>
<thead>
<tr>
<th>Feature</th>
<th>Full data</th>
<th>Omit 5 and 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>b_0</td>
<td>2627.82</td>
<td>2658.97</td>
</tr>
<tr>
<td>b_1</td>
<td>-37.15</td>
<td>-37.69</td>
</tr>
<tr>
<td>R^2</td>
<td>0.9018</td>
<td>0.9578</td>
</tr>
<tr>
<td>$\hat{\sigma}$</td>
<td>96.10</td>
<td>62.96</td>
</tr>
<tr>
<td>p-val for $H_0 : \beta_1 = 0$</td>
<td>0.0001</td>
<td>0.0001</td>
</tr>
</tbody>
</table>

Here is a comparison of the predicted or fitted values for selected observations in the data set, based on the two fits.

<table>
<thead>
<tr>
<th>Observation</th>
<th>Actual Shear Strength</th>
<th>Pred, full</th>
<th>Pred, omit 5,6</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2159</td>
<td>2052</td>
<td>2075</td>
</tr>
<tr>
<td>2</td>
<td>1678</td>
<td>1745</td>
<td>1764</td>
</tr>
<tr>
<td>4</td>
<td>2061</td>
<td>1996</td>
<td>2018</td>
</tr>
<tr>
<td>8</td>
<td>2575</td>
<td>2535</td>
<td>2565</td>
</tr>
<tr>
<td>10</td>
<td>2257</td>
<td>2219</td>
<td>2244</td>
</tr>
<tr>
<td>15</td>
<td>1765</td>
<td>1810</td>
<td>1830</td>
</tr>
<tr>
<td>18</td>
<td>2201</td>
<td>2163</td>
<td>2188</td>
</tr>
<tr>
<td>20</td>
<td>1754</td>
<td>1829</td>
<td>1849</td>
</tr>
</tbody>
</table>

Review complete

Now that we’re warmed up, let’s dive into new material!
Part II

Introduction to multiple regression and model selection
In **multiple linear regression**, a linear combination of two or more predictor variables (xs) is used to explain the variation in a response. In essence, the additional predictors are used to explain the variation in the response not explained by a simple linear regression fit.

2.1 Indian systolic blood pressure example

Anthropologists conducted a study\(^1\) to determine the long-term effects of an environmental change on systolic blood pressure. They measured the blood pressure and several other characteristics of 39 Indians who migrated from a very primitive environment high in the Andes into the mainstream of Peruvian society at a lower altitude. All of the Indians were males at least 21 years of age, and were born at a high altitude.

```r
# filename
fn.data <- "http://statacumen.com/teach/ADA2/ADA2_notes_Ch02_indian.dat"
indian <- read.table(fn.data, header=TRUE)
# examine the structure of the dataset, is it what you expected?
# a data.frame containing integers, numbers, and factors
str(indian)
```

Description of variables

\(^1\) This problem is from the Minitab handbook.
A question we consider concerns the long term effects of an environmental change on the systolic blood pressure. In particular, is there a relationship between the systolic blood pressure and how long the Indians lived in their new environment as measured by the fraction of their life spent in the new environment.

```r
# Create the "fraction of their life" variable
# yrage = years since migration divided by age
indian$yrage <- indian$yrmig / indian$age

# continuous color for wt
# ggplot: Plot the data with linear regression fit and confidence bands
library(ggplot2)
p <- ggplot(indian, aes(x = yrage, y = sysbp, label = id))
```

Fit the simple linear regression model reporting the ANOVA table (“Terms”) and parameter estimate table (“Coefficients”).

```r
# fit the simple linear regression model
lm.sysbp.yrage <- lm(sysbp ~ yrage, data = indian)
# use Anova() from library(car) to get ANOVA table (Type 3 SS, df)
library(car)
Anova(lm.sysbp.yrage, type=3)

## Anova Table (Type III tests)
##
## Response: sysbp
##            Sum Sq Df  F value Pr(>F)
## (Intercept) 178221  1 1092.95 <2e-16 ***
```
A plot above of systolic blood pressure against \textit{yrage} fraction suggests a weak linear relationship. Nonetheless, consider fitting the regression model

$$\text{sysbp} = \beta_0 + \beta_1 \text{yrage} + \epsilon.$$

The least squares line (already in the plot) is given by

$$\hat{\text{sysbp}} = 133.5 + -15.75 \text{yrage},$$

and suggests that average systolic blood pressure decreases as the fraction of life spent in modern society increases. However, the \textit{t}-test of \(H_0 : \beta_1 = 0\) is not significant at the 5\% level (p-value=0.0888). That is, the weak linear relationship observed in the data is not atypical of a population where there is no linear relationship between systolic blood pressure and the fraction of life spent in a modern society.

Even if this test were significant, the small value of \(R^2 = 0.0763\) suggests that \textit{yrage} fraction does not explain a \textit{substantial} amount of the variation in the systolic blood pressures. If we omit the individual with the highest blood pressure then the relationship would be weaker.

2.1.1 Taking Weight Into Consideration

At best, there is a weak relationship between systolic blood pressure and the \textit{yrage} fraction. However, it is usually accepted that systolic blood pressure and weight are related. A natural way to take weight into consideration is to include \textit{wt} (weight) and \textit{yrage} fraction as predictors of systolic blood pressure in the multiple regression model:

$$\text{sysbp} = \beta_0 + \beta_1 \text{yrage} + \beta_2 \text{wt} + \epsilon.$$
As in simple linear regression, the model is written in the form:

\[\text{Response} = \text{Mean of Response} + \text{Residual}, \]

so the model implies that that average systolic blood pressure is a linear combination of \(\text{yrage} \) fraction and weight. As in simple linear regression, the standard multiple regression analysis assumes that the responses are normally distributed with a constant variance \(\sigma^2 \). The parameters of the regression model \(\beta_0, \beta_1, \beta_2, \) and \(\sigma^2 \) are estimated by least squares (LS).

Here is the multiple regression model with \(\text{yrage} \) and \(\text{wt} \) (weight) as predictors. Add \(\text{wt} \) to the right hand side of the previous formula statement.

```r
# fit the multiple linear regression model, (" + wt" added)
lm.sysbp.yrage.wt <- lm(sysbp ~ yrage + wt, data = indian)
library(car)
Anova(lm.sysbp.yrage.wt, type=3)
## Anova Table (Type III tests)
##
## Response: sysbp
##            Sum Sq Df F value Pr(>F)
## (Intercept) 1738  1 18.2 0.00014 ***
## yrage       1315  1 13.8 0.00070 ***
## wt          2592  1 27.1 8e-06   ***
## Residuals   3441 36
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
summary(lm.sysbp.yrage.wt)
##
## Call:
## lm(formula = sysbp ~ yrage + wt, data = indian)
##
## Residuals:
##    Min     1Q Median     3Q    Max
## -18.433 -7.307  0.896  5.728 23.982
##
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)
## (Intercept)   60.896    14.281   4.26   0.00014 ***
## yrage         -26.767     7.218  -3.71  0.00070 ***
## wt             1.217     0.234   5.21   8e-06   ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 9.78 on 36 degrees of freedom
## Multiple R-squared:  0.473, Adjusted R-squared:  0.444
## F-statistic: 16.2 on 2 and 36 DF,  p-value: 9.79e-06
```

2.1.2 Important Points to Notice About the Regression Output

1. The LS estimates of the intercept and the regression coefficient for \(\text{yrage} \) fraction, and their standard errors, change from the simple linear model to the multiple regression model. For the simple linear regression:

\[\text{sysbp} = 133.50 - 15.75 \text{yrage}. \]
For the multiple regression model:

\[\hat{\text{sysbp}} = 60.89 - 26.76 \text{ yrage} + 1.21 \text{ wt}. \]

2. Looking at the ANOVA tables for the simple linear and the multiple regression models we see that the Regression (model) \(df \) has increased from 1 to 2 (2 = number of predictor variables) and the Residual (error) \(df \) has decreased from 37 to 36 (= \(n - 1 \) - number of predictors). Adding a predictor increases the Regression \(df \) by 1 and decreases the Residual \(df \) by 1.

3. The Residual SS decreases by 6033.37 - 3441.36 = 2592.01 upon adding the weight term. The Regression SS increased by 2592.01 upon adding the weight term term to the model. The Total SS does not depend on the number of predictors so it stays the same. The Residual SS, or the part of the variation in the response unexplained by the regression model, never increases when new predictors are added. (You can’t add a predictor and explain less variation.)

4. The proportion of variation in the response explained by the regression model:

\[R^2 = \frac{\text{Regression SS}}{\text{Total SS}} \]

never decreases when new predictors are added to a model. The \(R^2 \) for the simple linear regression was 0.076, whereas \(R^2 = 3090.08/6531.44 = 0.473 \) for the multiple regression model. Adding the weight variable to the model increases \(R^2 \) by 40%. That is, weight explains 40% of the variation in systolic blood pressure not already explained by fraction.

5. The estimated variability about the regression line

\[\text{Residual MS} = \hat{\sigma}^2 \]

decreased dramatically after adding the weight effect. For the simple linear regression model \(\hat{\sigma}^2 = 163.06 \), whereas \(\hat{\sigma}^2 = 95.59 \) for the multiple regression model. This suggests that an important predictor has been added to model.

6. The \(F \)-statistic for the multiple regression model

\[F_{\text{obs}} = \frac{\text{Regression MS}}{\text{Residual MS}} = 1545.04/95.59 = 16.163 \]

(which is compared to a \(F \)-table with 2 and 36 \(df \)) tests \(H_0 : \beta_1 = \beta_2 = 0 \) against \(H_A : \text{not } H_0 \). This is a test of no relationship between the average systolic blood pressure and fraction and weight, assuming the relationship is linear. If this test is significant, then either fraction or weight, or both, are important for explaining the variation in systolic blood pressure.

7. Given the model

\[\text{sysbp} = \beta_0 + \beta_1 \text{ yrage} + \beta_2 \text{ wt} + \varepsilon, \]

we are interested in testing \(H_0 : \beta_2 = 0 \) against \(H_A : \beta_2 \neq 0 \). The \(t \)-statistic for this test

\[t_{\text{obs}} = \frac{b_2 - 0}{\text{SE}(b_2)} = \frac{1.217}{0.234} = 5.207 \]

is compared to a \(t \)-critical value with Residual \(df = 36 \). SAS gives a \(p \)-value of < 0.0001, which suggests \(\beta_2 \neq 0 \). The \(t \)-test of \(H_0 : \beta_2 = 0 \) in the multiple regression model tests
whether adding weight to the simple linear regression model explains a significant part of the variation in systolic blood pressure not explained by \textit{yrage} fraction. In some sense, the t-test of $H_0 : \beta_1 = 0$ will be significant if the increase in R^2 (or decrease in Residual SS) obtained by adding weight to this simple linear regression model is substantial. We saw a big increase in R^2, which is deemed significant by the t-test. A similar interpretation is given to the t-test for $H_0 : \beta_1 = 0$.

8. The t-tests for $\beta_0 = 0$ and $\beta_1 = 0$ are conducted, assessed, and interpreted in the same manner. The p-value for testing $H_0 : \beta_0 = 0$ is 0.0001, whereas the p-value for testing $H_0 : \beta_1 = 0$ is 0.0007. This implies that fraction is important in explaining the variation in systolic blood pressure after weight is taken into consideration (by including weight in the model as a predictor).

9. We compute CIs for the regression parameters in the usual way: \(b_i + t_{crit}SE(b_i) \), where t_{crit} is the t-critical value for the corresponding CI level with $df =$ Residual df.

2.1.3 Understanding the Model

The t-test for $H_0 : \beta_1 = 0$ is highly significant (p-value=0.0007), which implies that fraction is important in explaining the variation in systolic blood pressure after weight is taken into consideration (by including weight in the model as a predictor). Weight is called a suppressor variable. Ignoring weight suppresses the relationship between systolic blood pressure and \textit{yrage} fraction.

The implications of this analysis are enormous! Essentially, the correlation between a predictor and a response says very little about the importance of the predictor in a regression model with one or more additional predictors. This conclusion also holds in situations where the correlation is high, in the sense that a predictor that is highly correlated with the response may be unimportant in a multiple regression model once other predictors are included in the model. In multiple regression “everything depends on everything else.”

I will try to convince you that this was expected, given the plot of systolic blood pressure against fraction. This plot used a weight category variable \textit{wtcat} L, M, or H as a plotting symbol. The relationship between systolic blood pressure and fraction is fairly linear within each weight category, and stronger than when we ignore weight. The slopes in the three groups are negative and roughly constant.

To see why \textit{yrage} fraction is an important predictor after taking weight into consideration, let us return to the multiple regression model. The model implies that the average systolic blood pressure is a linear combination of \textit{yrage} fraction and weight:

\[
\hat{\text{sysbp}} = \beta_0 + \beta_1 \text{yrage} + \beta_2 \text{wt}.
\]

For each fixed weight, the average systolic blood pressure is linearly related to \textit{yrage} fraction with a constant slope β_1, independent of weight. A similar interpretation holds if we switch the roles of \textit{yrage} fraction and weight. That is, if we fix the value of fraction, then the average systolic blood pressure is linearly related to weight with a constant slope β_2, independent of \textit{yrage} fraction.

To see this point, suppose that the LS estimates of the regression parameters are the true values

\[
\hat{\text{sysbp}} = 60.89 - 26.76 \text{yrage} + 1.21 \text{wt}.
\]
If we restrict our attention to 50kg Indians, the average systolic blood pressure as a function of fraction is

\[
\hat{\text{sysbp}} = 60.89 - 26.76 \text{yrage} + 1.21(50) = 121.39 - 26.76 \text{yrage}.
\]

For 60kg Indians,

\[
\hat{\text{sysbp}} = 60.89 - 26.76 \text{yrage} + 1.21(60) = 133.49 - 26.76 \text{yrage}.
\]

Hopefully the pattern is clear: the average systolic blood pressure decreases by 26.76 for each increase of 1 on fraction, regardless of one’s weight. If we vary weight over its range of values, we get a set of parallel lines (i.e., equal slopes) when we plot average systolic blood pressure as a function of \text{yrage} fraction. The intercept increases by 1.21 for each increase of 1kg in weight.

Similarly, if we plot the average systolic blood pressure as a function of weight, for several fixed values of fraction, we see a set of parallel lines with slope 1.21, and intercepts decreasing by 26.76 for each increase of 1 in fraction.

```r
# ggplot: Plot the data with linear regression fit and confidence bands
library(ggplot2)
p <- ggplot(indian, aes(x = wt, y = sysbp, label = id))
p <- p + geom_point(aes(colour=yrage, size=2))
# plot labels next to points
p <- p + geom_text(hjust = 0.5, vjust = -0.5, alpha = 0.25, colour = 2)
# plot regression line and confidence band
p <- p + geom_smooth(method = lm)
p <- p + labs(title="Indian sysbp by wt with continuous yrage")
print(p)
```
If we had more data we could check the model by plotting systolic blood pressure against fraction, broken down by individual weights. The plot should show a fairly linear relationship between systolic blood pressure and fraction, with a constant slope across weights. I grouped the weights into categories because of the limited number of observations. The same phenomenon should approximately hold, and it does. If the slopes for the different weight groups changed drastically with weight, but the relationships were linear, we would need to include an interaction or product variable \(wt \times yrage \) in the model, in addition to weight and \(yrage \) fraction. This is probably not warranted here.

A final issue that I wish to address concerns the interpretation of the estimates of the regression coefficients in a multiple regression model. For the fitted model

\[
sysbp = 60.89 - 26.76 yrage + 1.21 wt
\]

our interpretation is consistent with the explanation of the regression model given above. For example, focus on the \(yrage \) fraction coefficient. The negative coefficient indicates that the predicted systolic blood pressure decreases as \(yrage \) fraction increases holding weight constant. In particular, the predicted systolic blood pressure decreases by 26.76 for each unit increase in fraction, holding weight constant at any value. Similarly, the predicted systolic blood pressure increases by 1.21 for each unit increase in weight, holding \(yrage \) fraction constant at any level.

This example was meant to illustrate multiple regression. A more complete analysis of the data, including diagnostics, will be given later.

2.2 GCE exam score example

The data below are selected from a larger collection of data referring to candidates for the General Certificate of Education (GCE) who were being considered for a special award. Here, \(Y \) denotes the candidate’s total mark, out of 1000, in the GCE exam, while \(X_1 \) is the candidate’s score in the compulsory part of the exam, which has a maximum score of 200 of the 1000 points on the exam. \(X_2 \) denotes the candidates’ score, out of 100, in a School Certificate English Language paper taken on a previous occasion.

```r
fn.data <- "http://statacumen.com/teach/ADA2/ADA2_notes_Ch02_gce.dat"
gce <- read.table(fn.data, header=TRUE)
```
A goal here is to compute a multiple regression of Y on X_1 and X_2, and make the necessary tests to enable you to comment intelligently on the extent to which current performance in the compulsory test (X_1) may be used to predict aggregate performance on the GCE exam (Y), and on whether previous performance in the School Certificate English Language (X_2) has any predictive value independently of what has already emerged from the current performance in the compulsory papers.

I will lead you through a number of steps to help you answer this question. Let us answer the following straightforward questions.

1. Plot Y against X_1 and X_2 individually, and comment on the form (i.e., linear, non-linear, logarithmic, etc.), strength, and direction of the relationships.

2. Plot X_1 against X_2 and comment on the form, strength, and direction of the relationship.

3. Compute the correlation between all pairs of variables. Do the correlations appear sensible, given the plots?

```r
library(ggplot2)
suppressMessages(suppressWarnings(library(GGally)))
#p <- ggpairs(gce)
# put scatterplots on top so y axis is vertical
p <- ggpairs(gce, upper = list(continuous = "points"), lower = list(continuous = "cor")
)
print(p)

# detach GGally package after use so reshape2 works (old reshape for GGally conflicts)
detach("package:GGally", unload=TRUE)
detach("package:reshape", unload=TRUE)
```
In parts 4 through 9, ignore the possibility that Y, X_1 or X_2 might ideally need to be transformed.

4. Which of X_1 and X_2 explains a larger proportion of the variation in Y? Which would appear to be a better predictor of Y? (Explain).

Model $Y = \beta_0 + \beta_1 X_1 + \varepsilon$:

```r
# y ~ x1
lm.y.x1 <- lm(y ~ x1, data = gce)
library(car)
Anova(lm.y.x1, type=3)
```

```
# correlation matrix and associated p-values testing "H0: rho == 0"
library(Hmisc)
rcorr(as.matrix(gce))
```

```
## y x1 x2
## y 1.00 0.73 0.55
## x1 0.73 1.00 0.51
## x2 0.55 0.51 1.00
##
## n= 15
##
## P
## y x1 x2
## y 0.0020 0.0346
## x1 0.0020 0.0527
## x2 0.0346 0.0527
```
Response: y

<table>
<thead>
<tr>
<th></th>
<th>Sum Sq</th>
<th>Df</th>
<th>F value</th>
<th>Pr(>F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Intercept)</td>
<td>4515</td>
<td>1</td>
<td>1.25</td>
<td>0.285</td>
</tr>
<tr>
<td>x1</td>
<td>53970</td>
<td>1</td>
<td>14.90</td>
<td>0.002 **</td>
</tr>
<tr>
<td>Residuals</td>
<td>47103</td>
<td>13</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

summary(lm.y.x1)

Call:
lm(formula = y ~ x1, data = gce)

Residuals:
Min 1Q Median 3Q Max
-97.86 -33.64 -0.03 48.51 111.33

Coefficients:

| | Estimate | Std. Error | t value | Pr(>|t|) |
|------------|----------|------------|---------|---------|
| (Intercept)| 128.55 | 115.16 | 1.12 | 0.285 |
| x1 | 3.95 | 1.02 | 3.86 | 0.002 **|

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 60.2 on 13 degrees of freedom
Multiple R-squared: 0.534, Adjusted R-squared: 0.498
F-statistic: 14.9 on 1 and 13 DF, p-value: 0.00197

Plot diagnostics.

```r
# plot diagnostics
par(mfrow=c(2,3))
plot(lm.y.x1, which = c(1,4,6))
plot(gce$x1, lm.y.x1$residuals, main="Residuals vs x1")
# horizontal line at zero
abline(h = 0, col = "gray75")

# Normality of Residuals
library(car)
qqPlot(lm.y.x1$residuals, las = 1, id.n = 3, main="QQ Plot")

# 10 13 1
# 15 1 2

# residuals vs order of data
plot(lm.y.x1$residuals, main="Residuals vs Order of data")
# horizontal line at zero
abline(h = 0, col = "gray75")
```
Model $Y = \beta_0 + \beta_1 X_2 + \varepsilon$:

```r
# y ~ x2
lm.y.x2 <- lm(y ~ x2, data = gce)
library(car)
Anova(lm.y.x2, type=3)
```

```
## Anova Table (Type III tests)
#
## Response: y
## Sum Sq Df F value Pr(>F)
## (Intercept) 32656 1 6.00 0.029 *
## x2 30321 1 5.57 0.035 *
## Residuals 70752 13
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

summary(lm.y.x2)
```

```
## Call:
## lm(formula = y ~ x2, data = gce)
##
## Residuals:
## Min 1Q Median 3Q Max
## -143.8 -37.7 7.1 54.7 99.3
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 291.59 119.04 2.45 0.029 *
## x2 4.83 2.04 2.36 0.035 *
```
Answer: R^2 is 0.53 for the model with X_1 and 0.30 with X_2. Equivallently, the Model SS is larger for X_1 (53970) than for X_2 (30321). Thus, X_1 appears to be a better predictor of Y than X_2.

5. Consider 2 simple linear regression models for predicting Y, one with X_1 as a predictor, and the other with X_2 as the predictor. Do X_1 and X_2 individually appear to be important for explaining the variation in Y? (i.e., test that the slopes of the regression lines are zero). Which, if any, of the output, support, or contradicts, your answer to the previous question?
Answer: The model with X_1 has a t-statistic of 3.86 with an associated p-value of 0.0020, while X_2 has a t-statistic of 2.36 with an associated p-value of 0.0346. Both predictors explain a significant amount of variability in Y. This is consistent with part (4).

6. Fit the multiple regression model

$$ Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \varepsilon. $$

Test $H_0: \beta_1 = \beta_2 = 0$ at the 5% level. Describe in words what this test is doing, and what the results mean here.

Model $Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \varepsilon$:

```r
# y ~ x1 + x2
lm.y.x1.x2 <- lm(y ~ x1 + x2, data = gce)
library(car)
Anova(lm.y.x1.x2, type=3)

## Anova Table (Type III tests)
##
## Response: y
## Sum Sq Df F value Pr(>F)
## (Intercept) 1571 1 0.44 0.520
## x1 27867 1 7.80 0.016 *
## x2 4218 1 1.18 0.299
## Residuals 42885 12
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

summary(lm.y.x1.x2)

##
## Call:
## lm(formula = y ~ x1 + x2, data = gce)
##
## Residuals:
## Min 1Q Median 3Q Max
## -113.2 -29.6 -6.2 56.2 66.3
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 81.16 122.41 0.66 0.520
## x1 3.30 1.18 2.79 0.016 *
## x2 2.09 1.92 1.09 0.299
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 59.8 on 12 degrees of freedom
## Multiple R-squared: 0.576, Adjusted R-squared: 0.505
## F-statistic: 8.14 on 2 and 12 DF, p-value: 0.00584
```

Diagnostic plots suggest the residuals are roughly normal with no substantial outliers, though the Cook’s distance is substantially larger for observation 10. We may wish to fit the model without observation 10 to see whether conclusions change.
Answer: The ANOVA table reports an F-statistic of 8.14 with associated p-value of 0.0058 indicating that the regression model with both X_1 and X_2 explains significantly more variability in Y than a model with the intercept, alone. That is, X_1 and X_2 explain variability in Y together. This does not tell us which of or whether X_1 or X_2 are individually important (recall the results of the Indian systolic blood pressure example).

7. In the multiple regression model, test $H_0 : \beta_1 = 0$ and $H_0 : \beta_2 = 0$ individually. Describe in words what these tests are doing, and what the results mean here.

Answer: Each hypothesis is testing, conditional on all other predictors being in the model, whether the addition of the predictor being tested explains significantly more variability in Y than without it.
For $H_0 : \beta_1 = 0$, the t-statistic is 2.79 with an associated p-value of 0.0163. Thus, we reject H_0 in favor of the alternative that the slope is statistically significantly different from 0 conditional on X_2 being in the model. That is, X_1 explains significantly more variability in Y given that X_2 is already in the model.

For $H_0 : \beta_2 = 0$, the t-statistic is 1.09 with an associated p-value of 0.2987. Thus, we fail to reject H_0, concluding that there is insufficient evidence that the slope is different from 0 conditional on X_1 being in the model. That is, X_2 does not explain significantly more variability in Y given that X_1 is already in the model.

8. How does the R^2 from the multiple regression model compare to the R^2 from the individual simple linear regressions? Is what you are seeing here appear reasonable, given the tests on the individual coefficients?

Answer: The R^2 for the model with only X_1 is 0.5340, only X_2 is 0.3000, and both X_1 and X_2 is 0.5757. There is only a very small increase in R^2 from the model with only X_1 when X_2 is added, which is consistent with X_2 not being important given that X_1 is already in the model.

9. Do your best to answer the question posed above, in the paragraph after the data “A goal . . . ”. Provide an equation (LS) for predicting Y.

Answer: Yes, we’ve seen that X_1 may be used to predict Y, and that X_2 does not explain significantly more variability in the model with X_1. Thus, the preferred model has only X_1:

$$\hat{y} = 128.55 + 3.95X_1.$$

2.2.1 Some Comments on GCE Analysis

I will give you my thoughts on these data, and how I would attack this problem, keeping the ultimate goal in mind. I will examine whether transformations of the data are appropriate, and whether any important conclusions are dramatically influenced by individual observations. I will use some new tools to attack this problem, and will outline how they are used.

The plot of GCE (Y) against COMP (X_1) is fairly linear, but the trend in the plot of GCE (Y) against SCEL (X_2) is less clear. You might see a non-linear trend here, but the relationship is not very strong. When I assess plots I try to not allow a few observations affect my perception of trend, and with this in mind, I do not see any strong evidence at this point to transform any of the variables.

One difficulty that we must face when building a multiple regression model is that these two-dimensional (2D) plots of a response against individual predictors may have little information about the appropriate scales for a multiple regression analysis. In particular, the 2D plots only tell us whether we need to transform the data in a simple linear regression analysis. If a 2D plot shows a strong non-linear trend, I would do an analysis using the suggested transformations, including any other effects that are important. However, it might be that no variables need to be transformed in the multiple regression model.

The **partial regression residual plot**, or added variable plot, is a graphical tool that provides information about the need for transformations in a multiple regression model. The following `reg` procedure generates diagnostics and the partial residual plots for each predictor in the multiple regression model that has COMP and SCEL as predictors of GCE.
library(car)
avPlots(lm.y.x1.x2, id.n=3)

Added-Variable Plots

The partial regression residual plot compares the residuals from two model fits. First, we “adjust” Y for all the other predictors in the model except the selected one. Then, we “adjust” the selected variable X_{sel} for all the other predictors in the model. Lastly, plot the residuals from these two models against each other to see what relationship still exists between Y and X_{sel} after accounting for their relationships with the other predictors.

```r
# function to create partial regression plot
partial.regression.plot <- function (y, x, sel, ...) {
  m <- as.matrix(x[, -sel])
  # residuals of y regressed on all x's except "sel"
  y1 <- lm(y ~ m)$res
  # residuals of x regressed on all other x's
  x1 <- lm(x[, sel] ~ m)$res
  # plot residuals of y vs residuals of x
  plot( y1 ~ x1, main="Partial regression plot", ylab="y | others", ...)
  # add red regression line
  abline(lm(y1 ~ x1), col = "red", lwd = 2)
  # add grid
  grid(lty = "solid")
}

par(mfrow=c(1, 2))
partial.regression.plot(gce$y, cbind(gce$x1, gce$x2), 1, xlab="x1 | others")
partial.regression.plot(gce$y, cbind(gce$x1, gce$x2), 2, xlab="x2 | others")
```
2.2 GCE exam score example

The first partial regression residual plot for COMP, given below, “adjusts” GCE (Y) and COMP (X₁) for their common dependence on all the other predictors in the model (only SCEL (X₂) here). This plot tells us whether we need to transform COMP in the multiple regression model, and whether any observations are influencing the significance of COMP in the fitted model. A roughly linear trend suggests that no transformation of COMP is warranted. The positive relationship seen here is consistent with the coefficient of COMP being positive in the multiple regression model. The partial residual plot for COMP shows little evidence of curvilinearity, and much less so than the original 2D plot of GCE against COMP. This indicates that there is no strong evidence for transforming COMP in a multiple regression model that includes SCEL.

Although SCEL appears to somewhat useful as a predictor of GCE on it’s own, the multiple regression output indicates that SCEL does not explain a significant amount of the variation in GCE, once the effect of COMP has been taken into account. Put another way, previous performance in the School Certificate English Language (X₂) has little predictive value independently of what has already emerged from the current performance in the compulsory papers (X₁ or COMP). This conclusion is consistent with the fairly weak linear relationship between GCE against SCEL seen in the second partial residual plot.

Do diagnostics suggest any deficiencies associated with this conclusion? The partial residual plot of SCEL highlights observation 10, which has the largest value of Cook’s distance in the multiple regression model. If we visually hold observation 10 out from this partial residual plot, it would appear that the relationship observed in this plot would weaken. This suggests that observation 10 is actually enhancing the significance of SCEL in the multiple regression model. That is, the p-value for testing the importance of SCEL in the multiple regression model would be inflated by holding out observation 10. The following output confirms this conjecture. The studentized residuals, Cook’s distances and partial residual plots show no serious deficiencies.

Model \(Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \varepsilon \), excluding observation 10:

```r
gce10 <- gce[-10,]
# y ~ x1 + x2
lm.y10.x1.x2 <- lm(y ~ x1 + x2, data = gce10)
```
library(car)

Anova(lm.y10.x1.x2, type=3)

Anova Table (Type III tests)

Response: y
(Intercept) 5280 1 1.76 0.2118
x1 37421 1 12.45 0.0047 **
x2 747 1 0.25 0.6279
Residuals 33052 11

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

summary(lm.y10.x1.x2)

Call:
lm(formula = y ~ x1 + x2, data = gce10)
Residuals:
Min 1Q Median 3Q Max
157.12 20.26 3.42 27.52 60.60
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 159.46 120.29 1.33 0.211801
x1 4.24 1.20 3.53 0.004762 **
x2 -1.28 2.57 -0.50 0.627938
Residual standard error: 54.8 on 11 degrees of freedom
Multiple R-squared: 0.613, Adjusted R-squared: 0.542
F-statistic: 8.71 on 2 and 11 DF, p-value: 0.00541

plot diagnostics
par(mfrow=c(2,3))
plot(lm.y10.x1.x2, which = c(1,4,6))

plot(gce10$x1, lm.y10.x1.x2$residuals, main="Residuals vs x1")
horizontal line at zero
abline(h = 0, col = "gray75")

plot(gce10$x2, lm.y10.x1.x2$residuals, main="Residuals vs x2")
horizontal line at zero
abline(h = 0, col = "gray75")

Normality of Residuals
library(car)
qqPlot(lm.y10.x1.x2$residuals, las = 1, id.n = 3, main="QQ Plot")
i3 1 9
1 2 14

residuals vs order of data
plot(lm.y10.x1.x2$residuals, main="Residuals vs Order of data")
horizontal line at zero
abline(h = 0, col = "gray75")
library(car)
avPlots(lm.y10.x1.x2, id.n=3)

What are my conclusions? It would appear that SCEL (X_2) is not a useful predictor in the multiple regression model. For simplicity, I would likely use a simple linear regression model to predict GCE (Y) from COMP (X_1) only. The diagnostic analysis of the model showed no serious deficiencies.
Chapter 3

A Taste of Model Selection for Multiple Regression

3.1 Model

Given data on a response variable Y and k predictor variables X_1, X_2, \ldots, X_k, we wish to develop a regression model to predict Y. Assuming that the collection of variables is measured on the correct scale, and that the candidate list of predictors includes all the important predictors, the most general model is

$$Y = \beta_0 + \beta_1 X_1 + \cdots + \beta_k X_k + \varepsilon.$$

In most problems one or more of the predictors can be eliminated from this general or full model without (much) loss of information. We want to identify the important predictors, or equivalently, eliminate the predictors that are not very useful for explaining the variation in Y (conditional on the other predictors in the model).

We will study several automated methods for model selection, which, given a specific criterion for selecting a model, gives the best predictors. Before applying any of the methods, you should plot Y against each predictor X_1, X_2, \ldots, X_k to see whether transformations are needed. If a transformation of X_i is suggested, include the transformation along with the original X_i in the candidate list. Note that you can transform the predictors differently, for example, $\log(X_1)$ and $\sqrt{X_2}$. However, if several transformations are suggested for the response, then you should consider doing one analysis for each suggested response scale before deciding on the final scale.

At this point, I will only consider the backward elimination method. Other approaches will be addressed later this semester.

3.2 Backward Elimination

The backward elimination procedure deletes unimportant variables, one at a time, starting from the full model. The steps is the procedure are:

1. Fit the full model

$$Y = \beta_0 + \beta_1 X_1 + \cdots + \beta_k X_k + \varepsilon.$$
2. Find the variable which when omitted from the full model (1) reduces R^2 the least, or equivalently, increases the Residual SS the least. This is the variable that gives the largest p-value for testing an individual regression coefficient $H_0 : \beta_i = 0$ for $i > 0$. Suppose this variable is X_k. If you reject H_0, stop and conclude that the full model is best. If you do not reject H_0, delete X_k from the full model, giving the new full model

$$Y = \beta_0 + \beta_1 X_1 + \cdots + \beta_{k-1} X_{k-1} + \varepsilon.$$

Repeat steps 1 and 2 sequentially until no further predictors can be deleted.

In backward elimination we isolate the least important predictor left in the model, and check whether it is important. If not, delete it and repeat the process. Otherwise, stop. A 0.10 significance level is common to use for this strategy.

Epidemiologists use a slightly different approach to building models. They argue strongly for the need to always include confounding variables in a model, regardless of their statistical significance. I will briefly discuss this issue, but you should recognize that there is no universally accepted best approach to building models. A related issue is that several sets of predictors might give nearly identical fits and predictions to those obtained using any model selection method. This should not be too surprising because predictors are often correlated with each other. However, this should make us question whether one could ever completely unravel which variables are important (and which are not) for predicting a response.

3.2.1 Maximum likelihood and AIC/BIC

The Akaike information criterion (AIC) and Bayesian information criterion (BIC) are related penalized-likelihood criteria of the relative goodness-of-fit of a statistical model to the observed data. For model selection, a parsimonious model minimizes (one of) these quantities, where the penalty term is larger in BIC ($k \ln(n)$) than in AIC ($2k$). They are defined as

$$\text{AIC} = -2 \ln(L) + 2k \quad \text{and} \quad \text{BIC} = -2 \ln(L) + k \ln(n)$$

where n is the number of observations, k is the number of model parameters, and L is the maximized value of the likelihood function for the estimated model.

Maximum-likelihood estimation (MLE) applied to a data set and given a statistical model, estimates the model’s parameters (βs and σ^2 in regression). MLE finds the particular parametric values that make the observed data the most probable given the model. That is, it selects the set of values of the model parameters that maximizes the likelihood function.

In practice, start with a set of candidate models, and then find the models’ corresponding AIC/BIC values. There will almost always be information lost due to using one of the candidate models to represent the “true” (unknown) model. We choose the model that minimizes the (estimated) information loss (the Kullback-Leibler divergence of the “true” unknown model represented with a candidate model).

The penalty discourages overfitting. Increasing the number of free parameters in the model will always improve the goodness-of-fit, regardless of the number of free parameters in the data-generating process. In the spirit of Occam’s razor, the principle of parsimony, economy, or succinctness,
the penalty helps balance the complexity of the model (low) with its ability to describe the data (high).

There are many methods for model selection. AIC or BIC are good tools for helping to choose among candidate models. A model selected by BIC will tend to have fewer parameters than one selected by AIC. Ultimately, you have to choose a model. I think of automated model selection as a starting point among the models I ultimately consider, and I may decide upon a different model than AIC, BIC, or another method.

3.3 Example: Peru Indian blood pressure

I will illustrate backward elimination on the Peru Indian data, using systolic blood pressure (\textit{sysbp}) as the response, and seven candidate predictors: \textit{wt} = weight in kilos; \textit{ht} = height in mm; \textit{chin} = chin skin fold in mm; \textit{fore} = forearm skin fold in mm; \textit{calf} = calf skin fold in mm; \textit{pulse} = pulse rate-beats/min, and \textit{yrage} = fraction.

The program given below generates simple summary statistics and plots. The plots do not suggest any apparent transformations of the response or the predictors, so we will analyze the data using the given scales. The correlations between the response and each potential predictor indicate that predictors are generally not highly correlated with each other (a few are).

```r
# filename
fn.data <- "http://statacumen.com/teach/ADA2/ADA2_notes_Ch02_indian.dat"
inian <- read.table(fn.data, header=TRUE)

# Create the "fraction of their life" variable
# yrage = years since migration divided by age
inian$yrage <- inian$yrmig / inian$age

# subset of variables we want in our model
inian2 <- subset(inian, select=c("sysbp", "wt", "ht", "chin", "fore", "calf", "pulse", "yrage")

str(inian2)

# Description of variables
# id = individual id
# age = age in years \hspace{1cm} yrmig = years since migration
# wt = weight in kilos \hspace{1cm} ht = height in mm
# chin = chin skin fold in mm \hspace{1cm} fore = forearm skin fold in mm
# calf = calf skin fold in mm \hspace{1cm} pulse = pulse rate-beats/min
# sysbp = systolic bp \hspace{1cm} diabp = diastolic bp
```
```r
# print dataset to screen
# indian2

library(ggplot2)
suppressMessages(suppressWarnings(library(GGally)))

# p <- ggpairs(indian2)
# put scatterplots on top so y axis is vertical
p <- ggpairs(indian2, upper = list(continuous = "points"),
             lower = list(continuous = "cor"))

print(p)

# detach GGally package after use so reshape2 works (old reshape for GGally conflicts)
detach("package:GGally", unload=TRUE)
detach("package:reshape", unload=TRUE)
```
3.3 Example: Peru Indian blood pressure

```r
# correlation matrix and associated p-values testing "H0: rho == 0"
library(Hmisc)
rcorr(as.matrix(indian2))
```

```r
## sysbp   wt    ht    chin    fore    calf    pulse    yrage
## sysbp  1.00  0.52  0.22  0.17  0.27  0.25  0.13  -0.28
## wt     0.52  1.00  0.45  0.56  0.54  0.39  0.31  0.29
## ht     0.22  0.45  1.00 -0.01 -0.07  0.00  0.00  0.05
## chin   0.17  0.56 -0.01  1.00  0.64  0.52  0.22  0.12
## fore   0.27  0.54 -0.07  0.64  1.00  0.74  0.42  0.03
## calf   0.25  0.39  0.00  0.52  0.74  1.00  0.21 -0.11
## pulse  0.13  0.31  0.00  0.22  0.42  0.21  1.00  0.21
## yrage  -0.28  0.29  0.05  0.12  0.03 -0.11  0.21  1.00
```
Below I fit the linear model with all the selected main effects.

```r
# fit full model
lm.indian2.full <- lm(sysbp ~ wt + ht + chin + fore + calf + pulse + yrage, data = indian2)

library(car)
Anova(lm.indian2.full, type=3)
```

```
## Anova Table (Type III tests)

## Response: sysbp
## Sum Sq Df F value Pr(>F)
## (Intercept) 389 1 3.90 0.05728 .
## wt 1956 1 19.59 0.00011 ***
## ht 132 1 1.32 0.25933
## chin 187 1 1.87 0.18124
## fore 27 1 0.27 0.60681
## calf 3 1 0.03 0.86664
## pulse 15 1 0.15 0.70470
## yrage 1387 1 13.88 0.00078 ***
## Residuals 3096 31

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

```
summary(lm.indian2.full)
```

```
## Call:
## lm(formula = sysbp ~ wt + ht + chin + fore + calf + pulse + yrage, 
##     data = indian2)
##
## Residuals:
##    Min     1Q    Median     3Q    Max
## -14.399  -5.792   -0.691   6.945  23.577
##
## Coefficients:
##                Estimate Std. Error  t value Pr(>|t|)
## (Intercept) 106.4577    53.9130   1.97  0.05728 .
## wt          1.7109     0.3866   4.43  0.00011 ***
## ht         -0.0453     0.0395  -1.15   0.25933
## chin       -1.1572     0.8461  -1.37   0.18124
## fore       -0.7018     1.3499  -0.52   0.60681
```
Example: Peru Indian blood pressure

| Variable | Estimate | Std. Error | t value | Pr(>|t|) |
|----------|----------|------------|---------|----------|
| wt | 1.7090 | 0.3805 | 4.49 | 8.7e-05 *** |
| ht | -0.0448 | 0.0387 | -1.16 | 0.25601 |
| chin | -1.1417 | 0.8282 | -1.38 | 0.17764 |
| fore | -0.5673 | 1.0746 | -0.53 | 0.60120 |
| pulse | 0.0710 | 0.1914 | 0.37 | 0.71302 |
| yrage | -29.5400 | 7.6398 | -3.87 | 0.00051 *** |

Remarks on Step 0: The full model has 7 predictors so REG df = 7. The F-test in the full model ANOVA table ($F = 4.91$ with p-value = 0.0008) tests the hypothesis that the regression coefficient for each predictor variable is zero. This test is highly significant, indicating that one or more of the predictors is important in the model.

In the ANOVA table, the F-value column gives the square of the t-statistic (from the parameter [Coefficients] estimate table) for testing the significance of the individual predictors in the full model (conditional on all other predictors being in the model). The p-value is the same whether the t-statistic or F-value is shown.

The least important variable in the full model, as judged by the p-value, is calf skin fold. This variable, upon omission, reduces R^2 the least, or equivalently, increases the Residual SS the least. The p-value of 0.87 exceeds the default 0.10 cut-off, so calf will be the first to be omitted from the model.

Below, we will continue in this way. After deleting calf, the six predictor model can be fitted. Manually, you can find that at least one of the predictors left is important, as judged by the overall F-test p-value. The least important predictor left is pulse. This variable is omitted from the model because the p-value for including it exceeds the 0.10 threshold.

This is repeated until all predictors remain significant at a 0.10 significance level.
remove pulse
lm.indian2.red <- update(lm.indian2.red, ~ . - pulse); summary(lm.indian2.red);
#
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 9.84 on 32 degrees of freedom
Multiple R-squared: 0.525, Adjusted R-squared: 0.437
F-statistic: 5.91 on 6 and 32 DF, p-value: 0.00031

remove fore
lm.indian2.red <- update(lm.indian2.red, ~ . - fore); summary(lm.indian2.red);
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 9.6 on 34 degrees of freedom
Multiple R-squared: 0.523, Adjusted R-squared: 0.451
F-statistic: 7.25 on 5 and 33 DF, p-value: 0.000112
Multiple R-squared: 0.521, Adjusted R-squared: 0.464
F-statistic: 9.23 on 4 and 34 DF, p-value: 3.66e-05

remove ht
lm.indian2.red <- update(lm.indian2.red, ~ . - ht); summary(lm.indian2.red);
##
Call:
lm(formula = sysbp ~ wt + chin + yrage, data = indian2)
##
Residuals:
Min 1Q Median 3Q Max
-16.638 -6.632 0.452 6.359 24.209
##
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 52.909 15.090 3.51 0.00127 **
wt 1.441 0.277 5.21 8.5e-06 ***
chin -1.014 0.695 -1.46 0.15341
yrage -27.352 7.118 -3.84 0.00049 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
Residual standard error: 9.63 on 35 degrees of freedom
Multiple R-squared: 0.503, Adjusted R-squared: 0.461
F-statistic: 11.8 on 3 and 35 DF, p-value: 1.68e-05

remove chin
lm.indian2.red <- update(lm.indian2.red, ~ . - chin); summary(lm.indian2.red);
##
Call:
lm(formula = sysbp ~ wt + yrage, data = indian2)
##
Residuals:
Min 1Q Median 3Q Max
-18.433 -7.307 0.896 5.728 23.982
##
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 60.896 14.281 4.26 0.00014 ***
wt 1.217 0.234 5.21 8e-06 ***
yrage -26.767 7.218 -3.71 0.00070 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
Residual standard error: 9.78 on 36 degrees of freedom
Multiple R-squared: 0.473, Adjusted R-squared: 0.444
F-statistic: 16.2 on 2 and 36 DF, p-value: 9.79e-06

all are significant, stop.
final model: sysbp ~ wt + yrage
lm.indian2.final <- lm.indian2.red
AIC/BIC automated model selection The AIC/BIC strategy is more commonly used for model selection, though resulting models are usually the same as the method described above. I use the `step()` function to perform backward selection using the AIC criterion (and give code for the BIC) then make some last-step decisions. Note that because the BIC has a larger penalty, it arrives at my chosen model directly.

At each step, the predictors are ranked (least significant to most significant) and then a decision of whether to keep the top predictor is made. `<none>` represents the current model.

```r
## AIC
# option: test="F" includes additional information
# for parameter estimate tests that we're familiar with
# option: for BIC, include k=log(nrow( data.frame name )))

lm.indian2.red.AIC <- step(lm.indian2.full, direction="backward", test="F")

## Start: AIC=186.6
## sysbp ~ wt + ht + chin + fore + calf + pulse + yrage
##
## Df Sum of Sq RSS AIC F value Pr(>F)
## - calf 1 3 3099 185 0.03 0.86664
## - pulse 1 15 3111 185 0.15 0.70470
## - fore 1 27 3123 185 0.27 0.60681
## - ht 1 132 3228 186 1.32 0.25933
## <none> 3096 187
## - chin 1 187 3283 187 1.87 0.18124
## - yrage 1 1387 4483 199 13.88 0.00078 ***
## - wt 1 1956 5053 204 19.59 0.00011 ***
##
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Step: AIC=184.6
## sysbp ~ wt + ht + chin + fore + pulse + yrage
##
## Df Sum of Sq RSS AIC F value Pr(>F)
## - pulse 1 13 3113 183 0.14 0.71302
## - fore 1 27 3126 183 0.28 0.60120
## - ht 1 130 3229 184 1.34 0.25601
## <none> 3113 183
## - chin 1 198 3311 183 2.10 0.15651
## - yrage 1 1448 4547 198 14.95 0.00051 ***
## - wt 1 1984 5096 202 20.17 8.7e-05 ***
##
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Step: AIC=182.8
## sysbp ~ wt + ht + chin + fore + yrage
##
## Df Sum of Sq RSS AIC F value Pr(>F)
## - fore 1 18 3130 181 0.19 0.66701
## - ht 1 131 3244 182 1.39 0.24681
## <none> 3113 183
## - chin 1 198 3311 183 2.10 0.15651
## - yrage 1 1450 4563 196 15.37 0.00042 ***
## - wt 1 1984 5096 200 21.03 6.2e-05 ***
##
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```
3.3 Example: Peru Indian blood pressure

Step: AIC=181

<table>
<thead>
<tr>
<th>Model</th>
<th>Df</th>
<th>Sum of Sq</th>
<th>RSS</th>
<th>AIC</th>
<th>F value</th>
<th>Pr(>F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>- ht</td>
<td>1</td>
<td>114</td>
<td>3244</td>
<td>180</td>
<td>1.23</td>
<td>0.27453</td>
</tr>
<tr>
<td><none></td>
<td>3130</td>
<td></td>
<td>181</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- chin</td>
<td>1</td>
<td>287</td>
<td>3418</td>
<td>182</td>
<td>3.12</td>
<td>0.08635</td>
</tr>
<tr>
<td>- yrage</td>
<td>1</td>
<td>1446</td>
<td>4576</td>
<td>194</td>
<td>15.70</td>
<td>0.00036***</td>
</tr>
<tr>
<td>- wt</td>
<td>1</td>
<td>2264</td>
<td>5394</td>
<td>200</td>
<td>24.59</td>
<td>1.9e-05***</td>
</tr>
</tbody>
</table>

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Step: AIC=180.4

<table>
<thead>
<tr>
<th>Model</th>
<th>Df</th>
<th>Sum of Sq</th>
<th>RSS</th>
<th>AIC</th>
<th>F value</th>
<th>Pr(>F)</th>
</tr>
</thead>
<tbody>
<tr>
<td><none></td>
<td>3244</td>
<td></td>
<td>180</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- chin</td>
<td>1</td>
<td>197</td>
<td>3441</td>
<td>181</td>
<td>2.13</td>
<td>0.15341</td>
</tr>
<tr>
<td>- yrage</td>
<td>1</td>
<td>1368</td>
<td>4612</td>
<td>192</td>
<td>14.76</td>
<td>0.00049***</td>
</tr>
<tr>
<td>- wt</td>
<td>1</td>
<td>2515</td>
<td>5759</td>
<td>201</td>
<td>27.14</td>
<td>8.5e-06***</td>
</tr>
</tbody>
</table>

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Remark on Summary Table: The partial R^2 is the reduction in R^2 achieved by omitting variables sequentially.

The backward elimination procedure eliminates five variables from the full model, in the following order: calf skin fold `calf`, pulse rate `pulse`, forearm skin fold `fore`, height `ht`, and chin skin fold `chin`. The model selected by backward elimination includes two predictors: weight `wt` and fraction `yrage`. As we progress from the full model to the selected model, R^2 decreases as follows: 0.53, 0.53, 0.52, 0.52, 0.50, and 0.47. The decrease is slight across this spectrum of models.

Using a mechanical approach, we are led to a model with weight and years by age fraction as predictors of systolic blood pressure. At this point we should closely examine this model.

3.3.1 Analysis for Selected Model

The summaries and diagnostics for the selected model follow.

Model $\text{sysbp} = \beta_0 + \beta_1 \text{wt} + \beta_2 \text{yrage} + \varepsilon$:

```r
library(car)
Anova(lm.indian2.final, type=3)
```

Anova Table (Type III tests)

<table>
<thead>
<tr>
<th>Model</th>
<th>Df</th>
<th>Sum Sq</th>
<th>F value</th>
<th>Pr(>F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Intercept)</td>
<td>1</td>
<td>1738</td>
<td>18.2</td>
<td>0.00014***</td>
</tr>
<tr>
<td>wt</td>
<td>1</td>
<td>2592</td>
<td>27.1</td>
<td>8e-06***</td>
</tr>
<tr>
<td>yrange</td>
<td>1</td>
<td>1315</td>
<td>13.8</td>
<td>0.00070***</td>
</tr>
</tbody>
</table>

BIC (not shown)
step(lm.indian2.full, direction="backward", test="F", k=log(nrow(indian2)))
A Taste of Model Selection for Multiple Regression

```
## Residuals 3441 36
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
summary(lm.indian2.final)
```

```
## Call:
## lm(formula = sysbp ~ wt + yrage, data = indian2)
## Residuals:
## Min 1Q Median 3Q Max
## -18.433 -7.307 0.896 5.728 23.982
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 60.896 14.281 4.26 0.00014 ***
## wt 1.217 0.234 5.21 8e-06 ***
## yrage -26.767 7.218 -3.71 0.00070 ***
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 9.78 on 36 degrees of freedom
## Multiple R-squared: 0.473, Adjusted R-squared: 0.444
## F-statistic: 16.2 on 2 and 36 DF, p-value: 9.79e-06
```

Comments on the diagnostic plots below.

1. The individual with the highest systolic blood pressure (case 1) has a large studentized residual r_i and the largest Cook’s D_i.

2. Except for case 1, the rankit plot and the plot of the studentized residuals against the fitted values show no gross abnormalities.

3. The plots of studentized residuals against the individual predictors show no patterns. The partial residual plots show roughly linear trends. These plots collectively do not suggest the need to transform either of the predictors. Although case 1 is prominent in the partial residual plots, it does not appear to be influencing the significance of these predictors.

```r
# plot diagnistics
par(mfrow=c(2,3))
plot(lm.indian2.final, which = c(1,4,6))

plot(indian2$wt, lm.indian2.final$residuals, main="Residuals vs wt")
# horizontal line at zero
abline(h = 0, col = "gray75")

plot(indian2$yrage, lm.indian2.final$residuals, main="Residuals vs yrage")
# horizontal line at zero
abline(h = 0, col = "gray75")

# Normality of Residuals
library(car)
qqPlot(lm.indian2.final$residuals, las = 1, id.n = 3, main="QQ Plot")
## 1 0 11
## 0 39 1 2

# plot residuals vs order of data
plot(lm.indian2.final$residuals, main="Residuals vs Order of data")
# horizontal line at zero
# abline(h = 0, col = "gray75")
```
Recall that the partial regression residual plot for weight, given below, adjusts systolic blood pressure and weight for their common dependence on all the other predictors in the model (only years by age fraction here). This plot tells us whether we need to transform weight in the multiple regression model, and whether any observations are influencing the significance of weight in the fitted model. A roughly linear trend, as seen here, suggests that no transformation of weight is warranted. The positive relationship seen here is consistent with the coefficient of weight being positive in the multiple regression model.

The partial residual plot for fraction exhibits a stronger relationship than is seen in the earlier 2D plot of systolic blood pressure against year by age fraction. This means that fraction is more useful as a predictor after taking an individual’s weight into consideration.

library(car)
avPlots(lm.indian2.final, id.n=3)
Model selection methods can be highly influenced by outliers and influential cases. We should hold out case 1, and rerun the backward procedure to see whether case 1 unduly influenced the selection of the two predictor model. If we hold out case 1, we find that the model with weight and fraction as predictors is suggested again. After holding out case 1, there are no large residuals, no extremely influential points, or any gross abnormalities in plots. The R^2 for the selected model is now $R^2 = 0.408$. This decrease in R^2 should have been anticipated. Why?\(^1\)

The two analyses suggest that the “best model” for predicting systolic blood pressure is

$$
sysbp = \beta_0 + \beta_1 \text{wt} + \beta_2 \text{yrage} + \varepsilon.
$$

Should case 1 be deleted? I have not fully explored this issue, but I will note that eliminating this case does have a significant impact on the estimates of the regression coefficients, and on predicted values. What do you think?

3.4 Example: Dennis Cook’s Rat Data

This example illustrates the importance of a careful diagnostic analysis.

An experiment was conducted to investigate the amount of a particular drug present in the liver of a rat. Nineteen (19) rats were randomly selected, weighed, placed under light ether anesthesia and given an oral dose of the drug. Because it was felt that large livers would absorb more of a given dose than small livers, the actual dose an animal received was approximately determined as 40mg of the drug per kilogram of body weight. (Liver weight is known to be strongly related to body weight.) After a fixed length of time, each rat was sacrificed, the liver weighed, and the percent of the dose in the liver determined.

\(^1\)Obs 1 increases the SST, but greatly increases model relationship so greatly increases SSR.
3.4 Example: Dennis Cook’s Rat Data

The experimental hypothesis was that, for the method of determining the dose, there is no relationship between the percentage of dose in the liver \((Y) \) and the body weight, liver weight, and relative dose.

```r
fn.data <- "http://statacumen.com/teach/ADA2/ADA2_notes_Ch03_ratliver.csv"
ratliver <- read.csv(fn.data)
ratliver <- ratliver[,c(4,1,2,3)] # reorder columns so response is the first
str(ratliver)
## 'data.frame': 19 obs. of 4 variables:
## $ y : num 0.42 0.25 0.56 0.23 0.23 0.32 0.37 0.41 0.33 0.38 ...
## $ bodywt : int 176 176 190 176 200 167 188 195 176 165 ...
## $ liverwt: num 6.5 9.5 9 8.9 7.2 8.9 8 10 8 7.9 ...
## $ dose : num 0.88 0.88 1 0.88 1 0.83 0.94 0.98 0.88 0.84 ...

library(ggplot2)
suppressMessages(suppressWarnings(library(GGally)))
#p <- ggpairs(ratliver)
# put scatterplots on top so y axis is vertical
p <- ggpairs(ratliver, upper = list(continuous = "points")
, lower = list(continuous = "cor")
)
print(p)
```

detach GGally package after use so reshape2 works (old reshape for GGally conflicts)
detach("package:GGally", unload=TRUE)
detach("package:reshape", unload=TRUE)
The correlation between Y and each predictor is small, as expected.

```r
# correlation matrix and associated p-values testing "H0: rho == 0"
library(Hmisc)
rcorr(as.matrix(ratliver))
```

```
#   y bodywt liverwt dose
# y 1.00  0.15  0.20  0.23
# bodywt  0.15 1.00  0.50  0.99
# liverwt  0.20  0.50 1.00  0.49
# dose  0.23  0.99  0.49 1.00
```

```
# n= 19
```
The backward elimination procedure selects weight and dose as predictors. The p-values for testing the importance of these variables, when added last to this two predictor model, are small, 0.019 and 0.015.
This cursory analysis leads to a conclusion that a combination of dose and body weight is associated with Y, but that neither of these predictors is important of its own (low correlations with Y). Although this commonly happens in regression problems, it is somewhat paradoxical here because dose was approximately a multiple of body weight, so to a first approximation, these predictors are linearly related and so only one of them should be needed in a linear regression model. Note that the correlation between dose and body weight is 0.99.

The apparent paradox can be resolved only with a careful diagnostic analysis! For the model with dose and body weight as predictors, there are no cases with large $|r_i|$ values, but case 3 has a relatively large Cook’s D value.
Further, the partial residual plot for \texttt{bodywt} clearly highlights case 3. Without this case we would see roughly a random scatter of points, suggesting that body weight is unimportant after taking dose into consideration. The importance of body weight as a predictor in the multiple regression model is due solely to the placement of case 3. The partial residual plot for \texttt{dose} gives the same message.

\begin{verbatim}
library(car)
avPlots(lm.ratliver.final, id.n=3)
\end{verbatim}
Removing case 3 If we delete this case and redo the analysis we find, as expected, no important predictors of Y. The output below shows that the backward elimination removes each predictor from the model. Thus, the apparent relationship between Y and body weight and dose in the initial analysis can be ascribed to Case 3 alone. Can you see this case in the plots?

```r
# remove case 3
ratliver3 <- ratliver[-3,]

# fit full model
lm.ratliver3.full <- lm(y ~ bodywt + liverwt + dose, data = ratliver3)

lm.ratliver3.red.AIC <- step(lm.ratliver3.full, direction="backward", test="F")
```

```
## Start: AIC=-88.25
## y ~ bodywt + liverwt + dose
##
## Df Sum of Sq RSS AIC F value Pr(>F)
## - dose 1 0.000979 0.0867 -90.0 0.16 0.70
## - bodywt 1 0.001059 0.0868 -90.0 0.17 0.68
## - liverwt 1 0.001421 0.0871 -90.0 0.23 0.64
## <none> 0.0857 -88.2

## Step: AIC=-90.04
## y ~ bodywt + liverwt
##
## Df Sum of Sq RSS AIC F value Pr(>F)
## - bodywt 1 0.000356 0.0871 -92.0 0.06 0.81
## - liverwt 1 0.000827 0.0875 -91.9 0.14 0.71
## <none> 0.0867 -90.0

## Step: AIC=-91.97
## y ~ liverwt
##
## Df Sum of Sq RSS AIC F value Pr(>F)
## - liverwt 1 0.000000 0.0867 -91.9 0.00 1.00
## <none> 0.0867 -91.9
```
3.4 Example: Dennis Cook’s Rat Data

Df Sum of Sq RSS AIC F value Pr(>F)
- liverwt 1 0.000509 0.0876 -93.9 0.09 0.76
<none> 0.0871 -92.0

Step: AIC=-93.86
y ~ 1

All variables are omitted!

In his text\(^2\), Weisberg writes: The careful analyst must now try to understand exactly why the third case is so influential. Inspection of the data indicates that this rat with weight 190g, was reported to have received a full dose of 1.000, which was a larger dose than it should have received according to the rule for assigning doses, see scatterplot below (e.g., rat 8 with a weight of 195g got a lower dose of 0.98).

```r
# ggplot: Plot the data with linear regression fit and confidence bands
library(ggplot2)
p <- ggplot(ratliver, aes(x = bodywt, y = dose, label = 1:nrow(ratliver)))
# plot regression line and confidence band
p <- p + geom_smooth(method = lm)
p <- p + geom_point(aes(alpha=1/3))
# plot labels next to points
p <- p + geom_text(hjust = 0.5, vjust = -0.5, alpha = 0.25, colour = 2)
p <- p + labs(title="Rat liver dose by bodywt: rat 3 overdosed")
print(p)
```

A number of causes for the result found in the first analysis are possible: (1) the dose or weight recorded for case 3 was in error, so the case should probably be deleted from the analysis, or (2) the regression fit in the second analysis is not appropriate except in the region defined by the 18 points excluding case 3. It is possible that the combination of dose and rat weight chosen was fortuitous, and that the lack of relationship found would not persist for any other combinations of them, since inclusion of a data point apparently taken under different conditions leads to a different conclusion. This suggests the need for collection of additional data, with dose determined by some rule other than a constant proportion of weight.

I hope the point of this analysis is clear! What have we learned from this analysis?

Part III

Experimental design and observational studies
Chapter 4

One Factor Designs and Extensions

This section describes an experimental design to compare the effectiveness of four insecticides to eradicate beetles. The primary interest is determining which treatment is most effective, in the sense of providing the lowest typical survival time.

In a completely randomized design (CRD), the scientist might select a sample of genetically identical beetles for the experiment, and then randomly assign a predetermined number of beetles to the treatment groups (insecticides). The sample sizes for the groups need not be equal. A power analysis is often conducted to determine sample sizes for the treatments. For simplicity, assume that 48 beetles will be used in the experiment, with 12 beetles assigned to each group.

After assigning the beetles to the four groups, the insecticide is applied (uniformly to all experimental units or beetles), and the individual survival times recorded. A natural analysis of the data collected from this one factor design would be to compare the survival times using a one-way ANOVA.

There are several important controls that should be built into this experiment. The same strain of beetles should be used to ensure that the four treatment groups are alike as possible, so that differences in survival times are attributable to the insecticides, and not due to genetic differences among beetles. Other factors that may influence the survival time, say the concentration of the insecticide or the age of the beetles, would be held constant, or fixed by the experimenter, if possible. Thus, the same concentration would be used with the four insecticides.

In complex experiments, there are always potential influences that are not realized or are thought to be unimportant that you do not or can not control. The randomization of beetles to groups ensures that there is no systematic dependence of the observed treatment differences on the uncontrolled influences. This is extremely important in studies where genetic and environmental influences can not be easily controlled (as in humans, more so than in bugs or mice). The randomization of beetles to insecticides tends to diffuse or greatly reduce the effect of the uncontrolled influences on the comparison of insecticides, in the sense that these effects become part of the uncontrolled or error variation of the experiment.

In summary, an experiment is to impose a treatment on experimental units to observe a response. Randomization and carefully controlling factors are important considerations.

Suppose \(y_{ij} \) is the response for the \(j^{th} \) experimental unit in the \(i^{th} \) treatment group, where \(i = 1, 2, \ldots, I \). The statistical model for a completely randomized one-factor design that leads to a one-way ANOVA is given by:

\[
y_{ij} = \mu_i + e_{ij},
\]
where μ_i is the (unknown) population mean for all potential responses to the i^{th} treatment, and e_{ij} is the residual or deviation of the response from the population mean. The responses within and across treatments are assumed to be independent, normal random variables with constant variance.

For the insecticide experiment, y_{ij} is the survival time for the j^{th} beetle given the i^{th} insecticide, where $i = 1, 2, 3, 4$ and $j = 1, 2, \ldots, 12$. The random selection of beetles coupled with the randomization of beetles to groups ensures the independence assumptions. The assumed population distributions of responses for the $I = 4$ insecticides can be represented as follows:

Let

$$\mu = \frac{1}{I} \sum_{i} \mu_i$$

be the grand mean, or average of the population means. Let

$$\alpha_i = \mu_i - \mu$$

be the i^{th} group treatment effect. The treatment effects are constrained to add to zero, $\alpha_1 + \alpha_2 + \cdots + \alpha_I = 0$, and measure the difference between the treatment population means and the grand mean. Given this notation, the one-way ANOVA model is

$$y_{ij} = \mu + \alpha_i + e_{ij}.$$

The model specifies that the

Response = Grand Mean + Treatment Effect + Residual.

An hypothesis of interest is whether the population means are equal: $H_0 : \mu_1 = \cdots = \mu_I$, which is equivalent to the hypothesis of no treatment effects: $H_0 : \alpha_1 = \cdots = \alpha_I = 0$. If H_0 is true, then the one-way model is

$$y_{ij} = \mu + e_{ij},$$
where μ is the common population mean. You know how to test H_0 and do multiple comparisons of the treatments, so I will not review this material.

Most texts use treatment effects to specify ANOVA models, a convention that I will also follow. A difficulty with this approach is that the treatment effects must be constrained to be uniquely estimable from the data (because the I population means μ_i are modeled in terms of $I+1$ parameters: $\mu_i = \mu + \alpha_i$). An infinite number of constraints can be considered each of which gives the same structure on the population means. The standard constraint where the treatment effects sum to zero was used above, but many statistical packages, impose the constraint $\alpha_I = 0$ (or sometimes $\alpha_1 = 0$). Although estimates of treatment effects depend on which constraint is chosen, the null and alternative models used with the ANOVA F-test, and pairwise comparisons of treatment effects, do not. I will downplay the discussion of estimating treatment effects to minimize problems.
Chapter 5

Paired Experiments and Randomized Block Experiments

A randomized block design is often used instead of a completely randomized design in studies where there is extraneous variation among the experimental units that may influence the response. A significant amount of the extraneous variation may be removed from the comparison of treatments by partitioning the experimental units into fairly homogeneous subgroups or blocks.

For example, suppose you are interested in comparing the effectiveness of four antibiotics for a bacterial infection. The recovery time after administering an antibiotic may be influenced by a patient’s general health, the extent of their infection, or their age. Randomly allocating experimental subjects to the treatments (and then comparing them using a one-way ANOVA) may produce one treatment having a “favorable” sample of patients with features that naturally lead to a speedy recovery. Alternatively, if the characteristics that affect the recovery time are spread across treatments, then the variation within samples due to these uncontrolled features can dominate the effects of the treatment, leading to an inconclusive result.

A better way to design this experiment would be to block the subjects into groups of four patients who are alike as possible on factors other than the treatment that influence the recovery time. The four treatments are then randomly assigned to the patients (one per patient) within a block, and the recovery time measured. The blocking of patients usually produces a more sensitive comparison of treatments than does a completely randomized design because the variation in recovery times due to the blocks is eliminated from the comparison of treatments.

A randomized block design is a paired experiment when two treatments are compared. The usual analysis for a paired experiment is a parametric or non-parametric paired comparison.

Randomized block (RB) designs were developed to account for soil fertility gradients in agricultural experiments. The experimental field would be separated into strips (blocks) of fairly constant fertility. Each strip is partitioned into equal size plots. The treatments, say varieties of corn, are randomly assigned to the plots, with each treatment occurring the same number of times (usually once) per block. All other factors that are known to influence the response would be controlled or fixed by the experimenter. For example, when comparing the mean yields, each plot would receive the same type and amount of fertilizer and the same irrigation plan.

The discussion will be limited to randomized block experiments with one factor. Two or more factors can be used with a randomized block design. For example, the agricultural experiment could be modified to compare four combinations of two corn varieties and two levels of fertilizer in each
block instead of the original four varieties. In certain experiments, each experimental unit receives each treatment. The experimental units are “natural” blocks for the analysis.

Example: Comparison of Treatments for Itching Ten\(^1\) male volunteers between 20 and 30 years old were used as a study group to compare seven treatments (5 drugs, a placebo, and no drug) to relieve itching. Each subject was given a different treatment on seven study days. The time ordering of the treatments was randomized across days. Except on the no-drug day, the subjects were given the treatment intravenously, and then itching was induced on their forearms using an effective itch stimulus called cowage. The subjects recorded the duration of itching, in seconds. The data are given in the table below. From left to right the drugs are: papaverine, morphine, aminophylline, pentobarbitol, triphenlenamine.

The volunteers in the study were treated as blocks in the analysis. At best, the volunteers might be considered a representative sample of males between the ages of 20 and 30. This limits the extent of inferences from the experiment. The scientists can not, without sound medical justification, extrapolate the results to children or to senior citizens.

\begin{verbatim}
itch <- read.csv("http://statacumen.com/teach/ADA2/ADA2_notes_Ch05_itch.csv")
\end{verbatim}

\begin{table}[h]
\centering
\begin{tabular}{cccccccc}
\hline
Patient & Nodrug & Placebo & Papy & Morp & Amino & Pento & Tripel \\
\hline
1 & 1 & 174 & 263 & 105 & 199 & 141 & 108 \\
2 & 2 & 224 & 213 & 103 & 143 & 168 & 341 \\
3 & 3 & 260 & 231 & 145 & 113 & 78 & 159 \\
4 & 4 & 255 & 291 & 103 & 225 & 164 & 135 \\
5 & 5 & 165 & 168 & 144 & 176 & 127 & 239 \\
6 & 6 & 237 & 121 & 94 & 144 & 114 & 136 \\
7 & 7 & 191 & 137 & 35 & 87 & 96 & 140 \\
8 & 8 & 100 & 102 & 133 & 120 & 222 & 134 \\
9 & 9 & 115 & 89 & 83 & 100 & 165 & 185 \\
10 & 10 & 189 & 433 & 237 & 173 & 168 & 188 \\
\hline
\end{tabular}
\end{table}

5.1 Analysis of a Randomized Block Design

Assume that you designed a randomized block experiment with \(I\) blocks and \(J\) treatments, where each treatment occurs once in each block. Let \(y_{ij}\) be the response for the \(j^{th}\) treatment within the \(i^{th}\) block. The model for the experiment is

\[y_{ij} = \mu_{ij} + e_{ij}, \]

where \(\mu_{ij}\) is the population mean response for the \(j^{th}\) treatment in the \(i^{th}\) block and \(e_{ij}\) is the deviation of the response from the mean. The population means are assumed to satisfy the additive model

\[\mu_{ij} = \mu + \alpha_i + \beta_j \]

where \(\mu\) is a grand mean, \(\alpha_i\) is the effect for the \(i^{th}\) block, and \(\beta_j\) is the effect for the \(j^{th}\) treatment. The responses are assumed to be independent across blocks, normally distributed and with constant

\(^{1}\)Beecher, 1959
5.1 Analysis of a Randomized Block Design

The randomized block model does not require the observations within a block to be independent, but does assume that the correlation between responses within a block is identical for each pair of treatments.

The model is sometimes written as

\[\text{Response} = \text{Grand Mean} + \text{Treatment Effect} + \text{Block Effect} + \text{Residual}. \]

Given the data, let \(\bar{y}_i \) be the \(i^{th} \) block sample mean (the average of the responses in the \(i^{th} \) block), \(\bar{y}_j \) be the \(j^{th} \) treatment sample mean (the average of the responses on the \(j^{th} \) treatment), and \(\bar{y}_\cdot \) be the average response of all \(IJ \) observations in the experiment.

An ANOVA table for the randomized block experiment partitions the Model SS into SS for Blocks and Treatments.

<table>
<thead>
<tr>
<th>Source</th>
<th>df</th>
<th>SS</th>
<th>MS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blocks</td>
<td>(I - 1)</td>
<td>(J \sum_i (\bar{y}i - \bar{y}\cdot)^2)</td>
<td></td>
</tr>
<tr>
<td>Treats</td>
<td>(J - 1)</td>
<td>(I \sum_j (\bar{y}j - \bar{y}\cdot)^2)</td>
<td></td>
</tr>
<tr>
<td>Error</td>
<td>((I - 1)(J - 1))</td>
<td>(\sum_{ij} (y_{ij} - \bar{y}_i - \bar{y}j + \bar{y}\cdot)^2)</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>(IJ - 1)</td>
<td>(\sum_{ij} (y_{ij} - \bar{y}_\cdot)^2)</td>
<td></td>
</tr>
</tbody>
</table>

A primary interest is testing whether the treatment effects are zero: \(H_0 : \beta_1 = \cdots = \beta_J = 0 \).

The treatment effects are zero if in each block the population mean responses are identical for each treatment. A formal test of no treatment effects is based on the p-value from the F-statistic \(F_{obs} = \text{MS Treat}/\text{MS Error} \). The p-value is evaluated in the usual way (i.e., as an upper tail area from an F-distribution with \(J - 1 \) and \((I - 1)(J - 1)\) df.) This \(H_0 \) is rejected when the treatment averages \(\bar{y}_j \) vary significantly relative to the error variation.

A test for no block effects (\(H_0 : \alpha_1 = \cdots = \alpha_I = 0 \)) is often a secondary interest, because, if the experiment is designed well, the blocks will be, by construction, noticeably different. There are no block effects if the population mean response for an arbitrary treatment is identical across blocks. A formal test of no block effects is based on the p-value from the the F-statistic \(F_{obs} = \text{MS Blocks}/\text{MS Error} \). This \(H_0 \) is rejected when the block averages \(\bar{y}_i \) vary significantly relative to the error variation.

The randomized block model is easily fitted in the \texttt{lm()} function. Before illustrating the analysis on the itching data, let me mention five important points about randomized block analyses:

1. The F-test p-value for comparing \(J = 2 \) treatments is identical to the p-value for comparing the two treatments using a paired t-test.

2. The Block SS plus the Error SS is the Error SS from a one-way ANOVA comparing the \(J \) treatments. If the Block SS is large relative to the Error SS from the two-factor model, then the experimenter has eliminated a substantial portion of the variation that is used to assess the differences among the treatments. This leads to a more sensitive comparison of treatments than would have been obtained using a one-way ANOVA.

3. The RB model is equivalent to an additive or no interaction model for a two-factor experiment, where the blocks are levels of one of the factors. The analysis of a randomized block experiment under this model is the same analysis used for a two-factor experiment with no replication (one observation per cell). We will discuss the two-factor design soon.

4. Under the sum constraint on the parameters (i.e., \(\sum_i \alpha_i = \sum_j \beta_j = 0 \)), the estimates of the grand mean, block effects, and treatment effects are \(\hat{\mu} = \bar{y}_\cdot, \hat{\alpha}_i = \bar{y}_i - \bar{y}_\cdot, \) and \(\hat{\beta}_j = \bar{y}_j - \bar{y}_\cdot \), respectively. The estimated mean response for the \((i, j)^{th} \) cell is \(\hat{\mu}_{ij} = \hat{\mu} + \hat{\alpha}_i + \hat{\beta}_j = \bar{y}_i + \bar{y}_j - \bar{y}_\cdot \).
5. The F-test for comparing treatments is appropriate when the responses within a block have the same correlation. This is a reasonable working assumption in many analyses. A multivariate repeated measures model can be used to compare treatments when the constant correlation assumption is unrealistic, for example when the same treatment is given to an individual over time.

RB Analysis of the Itching Data

First we reshape the data to long format so each observation is its own row in the `data.frame` and indexed by the `Patient` and `Treatment` variables.

```r
library(reshape2)
itch.long <- melt(itch,
                  id.vars = "Patient",
                  variable.name = "Treatment",
                  value.name = "Seconds")
str(itch.long)
## 'data.frame': 70 obs. of 3 variables:
## $ Patient : int 1 2 3 4 5 6 7 8 9 10 ... 
## $ Treatment: Factor w/ 7 levels "Nodrug","Placebo",...: 1 1 1 1 1 1 1 1 1 1 1 ... 
## $ Seconds : int 174 224 260 255 165 237 191 100 115 189 ...
head(itch.long, 3)
## Patient Treatment Seconds 
## 1 1 Nodrug 174 
## 2 2 Nodrug 224 
## 3 3 Nodrug 260 
tail(itch.long, 3)
## Patient Treatment Seconds 
## 68 8 Tripel 129 
## 69 9 Tripel 79 
## 70 10 Tripel 317

# make Patient a factor variable
itch.long$Patient <- factor(itch.long$Patient)
str(itch.long)
## 'data.frame': 70 obs. of 3 variables:
## $ Patient : Factor w/ 10 levels "1","2","3","4",...: 1 2 3 4 5 6 7 8 9 10 ... 
## $ Treatment: Factor w/ 7 levels "Nodrug","Placebo",...: 1 1 1 1 1 1 1 1 1 1 1 1 ... 
## $ Seconds : int 174 224 260 255 165 237 191 100 115 189 ... 
```

As a first step, I made side-by-side boxplots of the itching durations across treatments. The boxplots are helpful for informally comparing treatments and visualizing the data. The differences in the level of the boxplots will usually be magnified by the F-test for comparing treatments because the variability within the boxplots includes block differences which are moved from the Error SS to the Block SS. The plot also includes the 10 Patients with lines connecting their measurements to see how common the treatment differences were over patients. I admit, this plot is a little too busy.

Each of the five drugs appears to have an effect, compared to the placebo and to no drug. Papaverine appears to be the most effective drug. The placebo and no drug have similar medians. The relatively large spread in the placebo group suggests that some patients responded adversely to the placebo compared to no drug, whereas others responded positively.

Plot the data using ggplot
library(ggplot2)

To fit the RB model in \texttt{lm()}, you need to specify blocks (\texttt{Patient}) and treatments (\texttt{Treatment}) as \texttt{factor} variables, and include each to the right of the tilde symbol in the \texttt{formula} statement. The response variable \texttt{Seconds} appears to the left of the tilde.
Paired Experiments and Randomized Block Experiments

```r
lm.s.t.p <- lm(Seconds ~ Treatment + Patient, data = itch.long)
library(car)
Anova(lm.s.t.p, type=3)
## Anova Table (Type III tests)
##
## Response: Seconds
## Sum Sq Df F value Pr(>F)
## (Intercept) 155100 1 50.11 3.1e-09 ***
## Treatment 53013 6 2.85 0.0173 *
## Patient 103280 9 3.71 0.0011 **
## Residuals 167130 54
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
summary(lm.s.t.p)
##
## Call:
## lm(formula = Seconds ~ Treatment + Patient, data = itch.long)
##
## Residuals:
## Min 1Q Median 3Q Max
## -81.29 -34.80 -8.39 30.90 148.91
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 188.29 26.60 7.08 3.1e-09 ***
## TreatmentPlacebo 13.80 24.88 0.55 0.5814
## TreatmentPapv -72.80 24.88 -2.93 0.0050 **
## TreatmentMorp -43.00 24.88 -1.73 0.0896 .
## TreatmentAmino -46.70 24.88 -1.88 0.0659 .
## TreatmentPento -14.50 24.88 -0.58 0.5625
## TreatmentTripel -23.80 24.88 -0.96 0.3430
## Patient2 35.00 29.74 1.18 0.2444
## Patient3 -2.86 29.74 -0.10 0.9238
## Patient4 38.43 29.74 1.29 0.2018
## Patient5 11.71 29.74 0.39 0.6952
## Patient6 -18.57 29.74 -0.62 0.5349
## Patient7 -46.29 29.74 -1.56 0.1254
## Patient8 -27.29 29.74 -0.92 0.3629
## Patient9 -45.00 29.74 -1.51 0.1360
## Patient10 82.00 29.74 2.76 0.0079 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 55.6 on 54 degrees of freedom
## Multiple R-squared: 0.483, Adjusted R-squared: 0.34
## F-statistic: 3.37 on 15 and 54 DF, p-value: 0.00052
```

The order to look at output follows the hierarchy of multi-parameter tests down to single-parameter tests.

1. The F-test at the bottom of the `summary()` tests for both no block effects and no treatment effects. If there are no block effects and no treatment effects then the mean itching time is independent of treatment and patients. The p-value of 0.0005 strongly suggests that the
5.1 Analysis of a Randomized Block Design

population mean itching times are not all equal.

2. The ANOVA table at top from `Anova()` partitions the Model SS into the SS for Blocks (Patients) and Treatments. The Mean Squares, F-statistics, and p-values for testing these effects are given. For a RB design with the same number of responses per block (i.e., no missing data), the Type I and Type III SS are identical, and correspond to the formulas given earlier. The distinction between Type I and Type III SS is important for unbalanced problems, an issue we discuss later. The F-tests show significant differences among the treatments (p-value=0.017) and among patients (p-value=0.001).

3. The individual parameter (coefficient) estimates in the `summary()` are likely of less interest since they test differences from the baseline group, only. The multiple comparisons in the next section will indicate which factor levels are different from others.

Multiple comparisons Multiple comparison and contrasts are not typically straightforward in R, though some newer packages are helping make them easier. Below I show one way that I think is relatively easy.

The package `multcomp` is used to specify which factor to perform multiple comparisons over and which p-value adjustment method to use. Below I use Tukey adjustments, first.

```r
# multcomp has functions for multiple comparisons
library(multcomp)
# Use the ANOVA object and run a "General Linear Hypothesis Test"
# specifying a linfct (linear function) to be tested.
# The mpc (multiple comparison) specifies the factor and method.
# Here: correcting over Treatment using Tukey contrast corrections.
glht.itch.t <- glht(aov(lm.s.t.p), linfct = mcp(Treatment = "Tukey"))
summary(glht.itch.t)
```

```
## Simultaneous Tests for General Linear Hypotheses
## Multiple Comparisons of Means: Tukey Contrasts
## Fit: aov(formula = lm.s.t.p)
## Linear Hypotheses:
##         Estimate Std. Error t value Pr(>|t|)
## Placebo - Nodrug == 0 13.8 24.9 0.55 0.998
## Papv - Nodrug == 0 -72.8 24.9 -2.93 0.070 .
## Morp - Nodrug == 0 -43.0 24.9 -1.73 0.600
## Amino - Nodrug == 0 -46.7 24.9 -1.88 0.504
## Pento - Nodrug == 0 -14.5 24.9 -0.58 0.997
## Tripel - Nodrug == 0 -23.8 24.9 -0.96 0.961
## Papv - Placebo == 0 -86.6 24.9 -3.48 0.016 *
## Morp - Placebo == 0 -56.8 24.9 -2.28 0.271
## Amino - Placebo == 0 -60.5 24.9 -2.43 0.205
## Pento - Placebo == 0 -28.3 24.9 -1.14 0.913
## Tripel - Placebo == 0 -37.6 24.9 -1.51 0.737
## Morp - Papv == 0 29.8 24.9 1.20 0.892
## Amino - Papv == 0 26.1 24.9 1.05 0.940
## Pento - Papv == 0 58.3 24.9 2.34 0.243
```
With `summary()`, the p-value adjustment can be coerced into one of several popular methods, such as Bonferroni. Notice that the significance is lower (larger p-value) for Bonferroni below than Tukey above. Note comment at bottom of output that “(Adjusted p values reported -- bonferroni method)”. Passing the summary to `plot()` will create a plot of the pairwise intervals for difference between factor levels.

Recall how the Bonferroni correction works. A comparison of \(c\) pairs of levels from one factor having a family error rate of 0.05 or less is attained by comparing pairs of treatments at the 0.05/\(c\) level. Using this criteria, the population mean response for factor levels (averaged over the other factor) are significantly different if the p-value for the test is 0.05/\(c\) or less. The output actually adjusts the p-values by reporting p-value \(\times c\), so that the reported adjusted p-value can be compared to the 0.05 significance level.

```r
summary(glht.itch.t, test = adjusted("bonferroni"))
```

Simultaneous Tests for General Linear Hypotheses

Multiple Comparisons of Means: Tukey Contrasts

Fit: aov(formula = lm.s.t.p)

Linear Hypotheses:

| Estimate | Std. Error | t value | Pr(>|t|) |
|----------|------------|---------|----------|
| Placebo - Nodrug == 0 | 13.8 | 24.9 | 0.55 | 1.000 |
| Papv - Nodrug == 0 | -72.8 | 24.9 | -2.93 | 0.015 |
| Morp - Nodrug == 0 | -43.0 | 24.9 | -1.73 | 1.000 |
| Amino - Nodrug == 0 | -46.7 | 24.9 | -1.88 | 1.000 |
| Pento - Nodrug == 0 | -14.5 | 24.9 | -0.58 | 1.000 |
| Tripel - Nodrug == 0 | -23.8 | 24.9 | -0.96 | 1.000 |
| Papv - Placebo == 0 | -86.6 | 24.9 | -3.48 | 0.021 * |
| Morp - Placebo == 0 | -56.8 | 24.9 | -2.28 | 0.054 |
| Amino - Placebo == 0 | -60.5 | 24.9 | -2.43 | 0.386 |
| Pento - Placebo == 0 | -28.3 | 24.9 | -1.14 | 1.000 |
| Tripel - Placebo == 0 | -37.6 | 24.9 | -1.51 | 1.000 |
| Morp - Papv == 0 | 29.8 | 24.9 | 1.20 | 1.000 |
| Amino - Papv == 0 | 26.1 | 24.9 | 1.05 | 1.000 |
| Pento - Papv == 0 | 58.3 | 24.9 | 2.34 | 0.479 |
| Tripel - Papv == 0 | 49.0 | 24.9 | 1.97 | 1.000 |
| Amino - Morp == 0 | -3.7 | 24.9 | -0.15 | 1.000 |
| Pento - Morp == 0 | 28.5 | 24.9 | 1.15 | 1.000 |
| Tripel - Morp == 0 | 19.2 | 24.9 | 0.77 | 1.000 |
| Pento - Amino == 0 | 32.2 | 24.9 | 1.29 | 1.000 |

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Adjusted p values reported -- single-step method
The Bonferroni comparisons for Treatment suggest that papaverine induces a lower mean itching time than placebo. All the other comparisons of treatments are insignificant. The comparison of Patient blocks is of less interest.
Diagnostic Analysis for the RB Analysis A diagnostic analysis of ANOVA-type models, including the RB model, is easily performed using the `lm()` output. The normal quantile (or QQ-plot) shows the residual distribution is slightly skewed to the right, in part, due to three cases that are not fitted well by the model (the outliers in the boxplots). Except for these cases, which are also the most influential cases (Cook’s distance), the plot of the studentized residuals against fitted values shows no gross abnormalities.

```r
# plot diagnostics
par(mfrow = c(2,3))
plot(lm.s.t.p, which = c(1,4,6))
plot(itch.long$Treatment, lm.s.t.p$residuals, main = "Residuals vs Treatment")
  abline(h = 0, col = "gray75")
plot(itch.long$Patient, lm.s.t.p$residuals, main = "Residuals vs Patient")
  abline(h = 0, col = "gray75")

# Normality of Residuals
library(car)
qqPlot(lm.s.t.p$residuals, main = "QQ Plot")
## 20 52 48
## 70 69 68

# residuals vs order of data
plot(lm.s.t.p$residuals, main = "Residuals vs Order of data")
  abline(h = 0, col = "gray75")
```
Although the F-test for comparing treatments is not overly sensitive to modest deviations from normality, I will present a non-parametric analysis as a backup, to see whether similar conclusions are reached about the treatments.

Non-parametric Analysis of a RB Experiment Milton Friedman developed a non-parametric test for comparing treatments in an unreplicated randomized block design where the normality assumption may be violated. An unreplicated complete block design has exactly one observation in y for each combination of levels of groups and blocks. The null hypothesis is that apart from an effect of blocks, the location parameter of y is the same in each of the groups.

The output suggests significant differences among treatments, which supports the earlier conclusion.

```r
# Friedman test for differences between groups conditional on blocks.
# The formula is of the form a ~ b | c,
# where a, b and c give the data values (a) and corresponding groups (b) and blocks (c), respectively.
friedman.test(Seconds ~ Treatment | Patient, data = itch.long)
##
## Friedman rank sum test
##
## data: Seconds and Treatment and Patient
## Friedman chi-squared = 14.89, df = 6, p-value = 0.02115

# Quade test is very similar to the Friedman test (compare the help pages).
quade.test(Seconds ~ Treatment | Patient, data = itch.long)
##
## Quade test
##
## 0.228571428571428
```
5.2 Extending the One-Factor Design to Multiple Factors

The CRD (completely randomized design) for comparing insecticides below varies the levels of one factor (insecticide), while controlling other factors that influence survival time. The inferences from the one-way ANOVA apply to beetles with a given age from the selected strain that might be given the selected concentration of the insecticides. Any generalization of the conclusions to other situations must be justified scientifically, typically through further experimentation.

There are several ways to broaden the scope of the study. For example, several strains of beetles or several concentrations of the insecticide might be used. For simplicity, consider a simple two-factor experiment where three concentrations (Low, Medium, and High) are applied with each of the four insecticides. This is a completely crossed two-factor experiment where each of the $4 \times 3 = 12$ combinations of the two factors (insecticide and dose) are included in the comparison of survival times. With this experiment, the scientist can compare insecticides, compare concentrations, and check for an interaction between dose and insecticide.

Assuming that 48 beetles are available, the scientist would randomly assign them to the 12 experimental groups, giving prespecified numbers of beetles to the 12 groups. For simplicity, assume that the experiment is balanced, that is, the same number of beetles (4) is assigned to each group ($12 \times 4 = 48$). This is a CRD with two factors.

5.2.1 Example: Beetle insecticide two-factor design

The data below were collected using the experimental design just described. The table gives survival times of groups of four beetles randomly allocated to twelve treatment groups obtained by crossing the levels of four insecticides (A, B, C, D) at each of three concentrations of the insecticides (1=Low, 2=Medium, 3=High). This is a balanced 4-by-3 factorial design (two-factor design) that is replicated four times. The unit of measure for the survival times is 10 hours, that is, 0.3 is a survival time of 3 hours.

```r
beetles <- read.table("http://statacumen.com/teach/ADA2/ADA2_notes_Ch05_beetles.dat", header = TRUE)
# make dose a factor variable and label the levels
beetles$dose <- factor(beetles$dose, labels = c("low","medium","high"))
```
First we reshape the data to long format so each observation is its own row in the `data.frame` and indexed by the `dose` and `insecticide` variables.

```r
library(reshape2)
beetles.long <- melt(beetles,
  , id.vars = c("dose", "insecticide")
  , variable.name = "number"
  , value.name = "hours10"
)
str(beetles.long)
# 'data.frame': 48 obs. of 4 variables:
# $ dose : Factor w/ 3 levels "low","medium",..: 1 1 1 1 1 1 2 2 2 2 3 3 ...
# $ insecticide: Factor w/ 4 levels "A","B","C","D": 1 2 3 4 1 2 3 4 1 2 ...
# $ number : Factor w/ 4 levels "t1","t2","t3",..: 1 1 1 1 1 1 1 1 1 1 1 1 ...
# $ hours10 : num 0.31 0.82 0.43 0.45 0.36 0.92 0.44 0.56 0.22 0.3 ...
head(beetles.long)
##   dose insecticide number hours10
## 1    low        A   t1   0.31
## 2    low        B   t1   0.82
## 3    low        C   t1   0.43
## 4    low        D   t1   0.45
## 5  medium       A   t1   0.36
## 6  medium       B   t1   0.92
```

The basic unit of analysis is the cell means, which are the averages of the 4 observations in each of the 12 treatment combinations. For example, in the table below, the sample mean survival for the 4 beetles given a low dose (dose=1) of insecticide A is 0.413. From the cell means we obtain the dose and insecticide marginal means by averaging over the levels of the other factor. For example, the marginal mean for insecticide A is the average of the cell means for the 3 treatment combinations involving insecticide A: 0.314 = (0.413 + 0.320 + 0.210)/3.

<table>
<thead>
<tr>
<th>dose</th>
<th>insecticide</th>
<th>t1</th>
<th>t2</th>
<th>t3</th>
<th>t4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 low</td>
<td>A</td>
<td>0.31</td>
<td>0.45</td>
<td>0.46</td>
<td>0.43</td>
</tr>
<tr>
<td>2 low</td>
<td>B</td>
<td>0.82</td>
<td>1.10</td>
<td>0.88</td>
<td>0.72</td>
</tr>
<tr>
<td>3 low</td>
<td>C</td>
<td>0.43</td>
<td>0.45</td>
<td>0.63</td>
<td>0.76</td>
</tr>
<tr>
<td>4 low</td>
<td>D</td>
<td>0.45</td>
<td>0.71</td>
<td>0.66</td>
<td>0.62</td>
</tr>
<tr>
<td>5 medium</td>
<td>A</td>
<td>0.36</td>
<td>0.29</td>
<td>0.40</td>
<td>0.23</td>
</tr>
<tr>
<td>6 medium</td>
<td>B</td>
<td>0.92</td>
<td>0.61</td>
<td>0.49</td>
<td>1.24</td>
</tr>
<tr>
<td>7 medium</td>
<td>C</td>
<td>0.44</td>
<td>0.35</td>
<td>0.31</td>
<td>0.40</td>
</tr>
<tr>
<td>8 medium</td>
<td>D</td>
<td>0.56</td>
<td>1.02</td>
<td>0.71</td>
<td>0.38</td>
</tr>
<tr>
<td>9 high</td>
<td>A</td>
<td>0.22</td>
<td>0.21</td>
<td>0.18</td>
<td>0.23</td>
</tr>
<tr>
<td>10 high</td>
<td>B</td>
<td>0.30</td>
<td>0.37</td>
<td>0.38</td>
<td>0.29</td>
</tr>
<tr>
<td>11 high</td>
<td>C</td>
<td>0.23</td>
<td>0.25</td>
<td>0.24</td>
<td>0.22</td>
</tr>
<tr>
<td>12 high</td>
<td>D</td>
<td>0.30</td>
<td>0.36</td>
<td>0.31</td>
<td>0.33</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Insecticide</th>
<th>Dose</th>
<th>Insect marg</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0.413</td>
<td>0.302</td>
</tr>
<tr>
<td>B</td>
<td>0.880</td>
<td>0.335</td>
</tr>
<tr>
<td>C</td>
<td>0.568</td>
<td>0.235</td>
</tr>
<tr>
<td>D</td>
<td>0.610</td>
<td>0.325</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dose marg</th>
<th>0.618</th>
<th>0.544</th>
<th>0.277</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.480</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Because the experiment is balanced, a marginal mean is the average of all observations that receive a given treatment. For example, the marginal mean for insecticide A is the average survival time for the 16 beetles given insecticide A.

Looking at the table of means, the insecticides have noticeably different mean survival times averaged over doses, with insecticide A having the lowest mean survival time averaged over doses. Similarly, higher doses tend to produce lower survival times. A more formal approach to analyzing the table of means is given in the next section.

5.2.2 The Interaction Model for a Two-Factor Experiment

Assume that you designed a balanced two-factor experiment with K responses at each combination of the I levels of factor 1 (F1) with the J levels of factor 2 (F2). The total number of responses is KIJ, or K times the IJ treatment combinations.

Let y_{ijk} be the k^{th} response at the i^{th} level of F1 and the j^{th} level of F2. A generic model for the experiment expresses y_{ijk} as a mean response plus a residual:

$$y_{ijk} = \mu_{ij} + e_{ijk},$$

where μ_{ij} is the population mean response for the treatment defined by the i^{th} level of F1 combined with the j^{th} level of F2. As in a one-way ANOVA, the responses within and across treatment groups are assumed to be independent, normally distributed, and have constant variance.

The interaction model expresses the population means as

$$\mu_{ij} = \mu + \alpha_i + \beta_j + (\alpha \beta)_{ij},$$

where μ is a grand mean, α_i is the effect for the i^{th} level of F1, β_j is the effect for the j^{th} level of F2, and $(\alpha \beta)_{ij}$ is the interaction between the i^{th} level of F1 and the j^{th} level of F2. (Note that $(\alpha \beta)$ is an individual term distinct from α and β, $(\alpha \beta)$ is not their product.) The model is often written

$$y_{ijk} = \mu + \alpha_i + \beta_j + (\alpha \beta)_{ij} + e_{ijk},$$

meaning

Response = Grand Mean + F1 effect + F2 effect + F1-by-F2 interaction + Residual.

The additive model having only main effects, no interaction terms, is $y_{ijk} = \mu + \alpha_i + \beta_j + e_{ijk}$, meaning

Response = Grand Mean + F1 effect + F2 effect + Residual.

The effects of F1 and F2 on the mean are additive.

Defining effects from cell means

The effects that define the population means and the usual hypotheses of interest can be formulated from the table of population means, given here.

<table>
<thead>
<tr>
<th>Level of F1</th>
<th>1</th>
<th>2</th>
<th>...</th>
<th>J</th>
<th>F1 marg</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>μ_{11}</td>
<td>μ_{12}</td>
<td>...</td>
<td>μ_{1J}</td>
<td>$\bar{\mu}_1$.</td>
</tr>
<tr>
<td>2</td>
<td>μ_{21}</td>
<td>μ_{22}</td>
<td>...</td>
<td>μ_{2J}</td>
<td>$\bar{\mu}_2$.</td>
</tr>
<tr>
<td>:</td>
<td>:</td>
<td>:</td>
<td>:</td>
<td>:</td>
<td>:</td>
</tr>
<tr>
<td>I</td>
<td>μ_{I1}</td>
<td>μ_{I2}</td>
<td>...</td>
<td>μ_{IJ}</td>
<td>$\bar{\mu}_I$.</td>
</tr>
<tr>
<td>F2 marg</td>
<td>$\bar{\mu}_1$</td>
<td>$\bar{\mu}_2$</td>
<td>...</td>
<td>$\bar{\mu}_J$</td>
<td>$\bar{\mu}$.</td>
</tr>
</tbody>
</table>
The F1 **marginal population means** are averages within rows (over columns) of the table:

\[\bar{\mu}_i = \frac{1}{J} \sum_c \mu_{ic}. \]

The F2 marginal population means are averages within columns (over rows):

\[\bar{\mu}_j = \frac{1}{I} \sum_r \mu_{rj}. \]

The overall or **grand population mean** is the average of the cell means

\[\bar{\mu}_{..} = \frac{1}{IJ} \sum_{rc} \mu_{rc} = \frac{1}{I} \sum_i \bar{\mu}_i = \frac{1}{J} \sum_j \bar{\mu}_j. \]

Using this notation, the effects in the interaction model are \(\mu = \bar{\mu}_{..}, \ \alpha_i = \bar{\mu}_i - \bar{\mu}_{..}, \ \beta_j = \bar{\mu}_j - \bar{\mu}_{..}, \) and \((\alpha\beta)_{ij} = \mu_{ij} - \bar{\mu}_i - \bar{\mu}_j + \bar{\mu}_{..}\). The effects sum to zero:

\[\sum_i \alpha_i = \sum_j \beta_j = \sum_{ij} (\alpha\beta)_{ij} = 0, \]

and satisfy \(\mu_{ij} = \mu + \alpha_i + \beta_j + (\alpha\beta)_{ij}\) (i.e., cell mean is sum of effects) required under the model.

The F1 and F2 effects are analogous to treatment effects in a one-factor experiment, except that here the treatment means are averaged over the levels of the other factor. The interaction effect will be interpreted later.

Estimating effects from the data

Let

\[\bar{y}_{ij} = \frac{1}{K} \sum_k y_{ijk} \quad \text{and} \quad s^2_{ij} \]

be the sample mean and variance, respectively, for the \(K\) responses at the \(i^{th}\) level of F1 and the \(j^{th}\) level of F2. Inferences about the population means are based on the table of sample means:

<table>
<thead>
<tr>
<th>Level of F2</th>
<th>Level of F1 (1)</th>
<th>(2)</th>
<th>(\cdots)</th>
<th>(J)</th>
<th>F1 marg</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>(\bar{y}_{11})</td>
<td>(\bar{y}_{12})</td>
<td>(\cdots)</td>
<td>(\bar{y}_{1j})</td>
<td>(\bar{y}_1)</td>
</tr>
<tr>
<td>(2)</td>
<td>(\bar{y}_{21})</td>
<td>(\bar{y}_{22})</td>
<td>(\cdots)</td>
<td>(\bar{y}_{2j})</td>
<td>(\bar{y}_2)</td>
</tr>
<tr>
<td>(\vdots)</td>
<td>(\vdots)</td>
<td>(\vdots)</td>
<td>(\vdots)</td>
<td>(\vdots)</td>
<td>(\vdots)</td>
</tr>
<tr>
<td>(I)</td>
<td>(\bar{y}_{I1})</td>
<td>(\bar{y}_{I2})</td>
<td>(\cdots)</td>
<td>(\bar{y}_{IJ})</td>
<td>(\bar{y}_I)</td>
</tr>
</tbody>
</table>

The F1 **marginal sample means** are averages within rows of the table:

\[\bar{y}_i = \frac{1}{J} \sum_c \bar{y}_{ic}. \]

The F2 marginal sample means are averages within columns:

\[\bar{y}_j = \frac{1}{I} \sum_r \bar{y}_{rj}. \]
Finally, \bar{y}_i is the average of the cell sample means:

$$\bar{y}_i = \frac{1}{I} \sum_{j} \bar{y}_{ij} = \frac{1}{I} \sum_{i} \bar{y}_i = \frac{1}{J} \sum_{j} \bar{y}_j.$$

The sample sizes in each of the IJ treatment groups are equal (K), so \bar{y}_i is the sample average of all responses at the i^{th} level of F_1, \bar{y}_j is the sample average of all responses at the j^{th} level of F_2, and $\bar{y}_.\bar{y}$ is the average response in the experiment.

Under the interaction model, the estimated population mean for the $(i,j)^{th}$ cell is the observed cell mean: $\hat{\mu}_{ij} = \bar{y}_{ij}$. This can be partitioned into estimated effects

$$\hat{\mu} = \bar{y}_. \text{ the estimated grand mean}$$
$$\hat{\alpha}_i = \bar{y}_i - \bar{y}_. \text{ the estimated } F_1 \text{ effect } i = 1, 2, \ldots, I$$
$$\hat{\beta}_j = \bar{y}_j - \bar{y}_. \text{ the estimated } F_2 \text{ effect } j = 1, 2, \ldots, J$$
$$\hat{(\alpha\beta)}_{ij} = \bar{y}_{ij} - \bar{y}_i - \bar{y}_j + \bar{y}_. \text{ the estimated cell interaction (5.1)}$$

that satisfy

$$\hat{\mu}_{ij} = \hat{\mu} + \hat{\alpha}_i + \hat{\beta}_j + \hat{(\alpha\beta)}_{ij}.$$

The ANOVA table

The ANOVA table for a balanced two-factor design decomposes the total variation in the data, as measured by the Total SS, into components that measure the variation of marginal sample means for F_1 and F_2 (the F_1 SS and F_2 SS), a component that measures the degree to which the factors interact (the F_1-by-F_2 Interaction SS), and a component that pools the sample variances across the IJ samples (the Error SS). Each SS has a df, given in the following ANOVA table. As usual, the MS for each source of variation is the corresponding SS divided by the df. The MS Error estimates the common population variance for the IJ treatments.

<table>
<thead>
<tr>
<th>Source</th>
<th>df</th>
<th>SS</th>
<th>MS</th>
</tr>
</thead>
<tbody>
<tr>
<td>F1</td>
<td>$I - 1$</td>
<td>$KJ \sum_i (\bar{y}_i - \bar{y}.)^2$</td>
<td>MS F1=SS/df</td>
</tr>
<tr>
<td>F2</td>
<td>$J - 1$</td>
<td>$KI \sum_j (\bar{y}_j - \bar{y}.)^2$</td>
<td>MS F2=SS/df</td>
</tr>
<tr>
<td>Interaction</td>
<td>$(I - 1)(J - 1)$</td>
<td>$K \sum_{ij} (y_{ij} - \bar{y}_i - \bar{y}_j + \bar{y}.)^2$</td>
<td>MS Interact=SS/df</td>
</tr>
<tr>
<td>Error</td>
<td>$IJ(K - 1)$</td>
<td>$(K - 1) \sum_{ij} s_{ij}^2$</td>
<td>MSE=SS/df</td>
</tr>
<tr>
<td>Total</td>
<td>$IJK - 1$</td>
<td>$\sum_{ijk} (y_{ijk} - \bar{y}.)^2$</td>
<td></td>
</tr>
</tbody>
</table>

The standard tests in the two-factor analysis, and their interpretations are:

The test of no F_1 effect: $H_0 : \alpha_1 = \cdots = \alpha_I = 0$ is equivalent to testing $H_0 : \bar{\mu}_1 = \bar{\mu}_2 = \cdots = \bar{\mu}_I$. The absence of an F_1 effect implies that each level of F_1 has the same population mean response when the means are averaged over levels of F_2. The test for no F_1 effect is based on MS F_1/MS Error, which is compared to the upper tail of an F-distribution with numerator and denominator df of $I - 1$ and $IJ(K - 1)$, respectively. H_0 is rejected when the F_1 marginal means \bar{y}_i vary significantly relative to the within sample variation. Equivalently, H_0 is rejected when the sum of squared F_1 effects (between sample variation) is large relative to the within sample variation.
The test of no F2 effect: $H_0: \beta_1 = \cdots = \beta_J = 0$ is equivalent to testing $H_0: \bar{\mu}_1 = \bar{\mu}_2 = \cdots = \bar{\mu}_J$. The absence of a F2 effect implies that each level of F2 has the same population mean response when the means are averaged over levels of F1. The test for no F2 effect is based on MS F2/MS Error, which is compared to an F-distribution with numerator and denominator df of $J - 1$ and $IJ(K - 1)$, respectively. H_0 is rejected when the F2 marginal means $\bar{y}_{.j}$ vary significantly relative to the within sample variation. Equivalently, H_0 is rejected when the sum of squared F2 effects (between sample variation) is large relative to the within sample variation.

The test of no interaction: $H_0: (\alpha\beta)_{ij} = 0$ for all i and j is based on MS Interact/MS Error, which is compared to an F-distribution with numerator and denominator df of $(I - 1)(J - 1)$ and $IJ(K - 1)$, respectively.

The interaction model places no restrictions on the population means μ_{ij}. Since the population means can be arbitrary, the interaction model can be viewed as a one factor model with IJ treatments. One connection between the two ways of viewing the two-factor analysis is that the F1, F2, and Interaction SS for the two-way interaction model sum to the Treatment or Model SS for comparing the IJ treatments. The Error SS for the two-way interaction model is identical to the Error SS for a one-way ANOVA of the IJ treatments. An overall test of no differences in the IJ population means is part of the two-way analysis.

I always summarize the data using the cell and marginal means instead of the estimated effects, primarily because means are the basic building blocks for the analysis. My discussion of the model and tests emphasizes both approaches to help you make the connection with the two ways this material is often presented in texts.

Understanding interaction

To understand interaction, suppose you (conceptually) plot the means in each row of the population table, giving what is known as the population mean profile plot. The F1 marginal population means average the population means within the F1 profiles. At each F2 level, the F2 marginal mean averages the population cell means across F1 profiles.
No interaction is present if the plot has perfectly parallel F1 profiles, as in the plot below for a 3×5 experiment. The levels of F1 and F2 do not interact. That is,

parallel profiles $\iff \mu_{ij} - \mu_{kj}$ is independent of j for each i and h

difference between levels of F1 does not depend on level of F2

$\iff \mu_{ij} - \mu_i = \mu_{kj} - \mu_h$, for all i, j, h

difference between level of F2 j and F2 mean does not depend on level of F1

$\iff \mu_{ij} - \mu_i = \bar{\mu}_{.j} - \bar{\mu}_{.}$, for all i, j

difference between level of F2 j and F2 mean is the same for all levels of F1

$\iff \mu_{ij} - \bar{\mu}_i = \bar{\mu}_{.j} + \bar{\mu}_{..} = 0$ for all i, j

interaction effect is 0

$\iff (\alpha \beta)_{ij} = 0$ for all i, j

interaction effect is 0

\iff no interaction term in model.

Interaction is present if the profiles are not perfectly parallel. An example of a profile plot for two-factor experiment (3×5) with interaction is given below.
The roles of F1 and F2 can be reversed in these plots without changing the assessment of a presence or absence of interaction. It is often helpful to view the interaction plot from both perspectives.

A qualitative check for interaction can be based on the sample means profile plot, but keep in mind that profiles of sample means are never perfectly parallel even when the factors do not interact in the population. The Interaction SS measures the extent of non-parallelism in the sample mean profiles. In particular, the Interaction SS is zero when the sample mean profiles are perfectly parallel because $(\alpha \beta)_{ij} = 0$ for all i and j.

5.2.3 Example: Survival Times of Beetles

First we generate cell means and a sample means profile plot (interaction plot) for the beetle experiment. The `ddply()` function was used to obtain the 12 treatment cell means. Three variables were needed to represent each response in the data set: dose (1-3, categorical), insecticide (A-D, categorical), and time (the survival time).

As noted earlier, the insecticides have noticeably different mean survival times averaged over doses, with insecticide A having the lowest mean. Similarly, higher doses tend to produce lower survival times. The sample means profile plot shows some evidence of interaction.

```r
library(plyr)
# Calculate the cell means for each (dose, insecticide) combination
mean(beetles.long[, "hours10"])
## [1] 0.4794
beetles.mean <- ddply(beetles.long, .(), summarise, m = mean(hours10))
beetles.mean
## .id  m
## 1 NA 0.4794
```
```r
beetles.mean.d <- ddply(beetles.long, .(dose), summarise, m = mean(hours10))
beetles.mean.d
##     dose  m
## 1    low 0.6175
## 2  medium 0.5444
## 3    high 0.2762

beetles.mean.i <- ddply(beetles.long, .(insecticide), summarise, m = mean(hours10))
beetles.mean.i
##     insecticide  m
## 1          A 0.3142
## 2          B 0.6767
## 3          C 0.3925
## 4          D 0.5342

beetles.mean.di <- ddply(beetles.long, .(dose,insecticide), summarise, m = mean(hours10))
beetles.mean.di
##    dose insecticide  m
## 1    low          A 0.4125
## 2    low          B 0.8800
## 3    low          C 0.5675
## 4    low          D 0.6100
## 5  medium          A 0.3200
## 6  medium          B 0.8150
## 7  medium          C 0.3750
## 8  medium          D 0.6675
## 9    high          A 0.2100
##10   high          B 0.3350
##11   high          C 0.2350
##12   high          D 0.3250

# Interaction plots, ggplot

p <- ggplot(beetles.long, aes(x = dose, y = hours10, colour = insecticide))
p <- p + geom_hline(aes(yintercept = 0), colour = "black", linetype = "solid", size = 0.2, alpha = 0.3)
p <- p + geom_boxplot(alpha = 0.5, outlier.size=0.1)
p <- p + geom_point(data = beetles.mean.di, aes(y = m), size = 4)
p <- p + geom_line(data = beetles.mean.di, aes(y = m, group = insecticide), size = 1.5)
p <- p + labs(title = "Beetles interaction plot, insecticide by dose")
print(p)

p <- ggplot(beetles.long, aes(x = insecticide, y = hours10, colour = dose))
p <- p + geom_hline(aes(yintercept = 0), colour = "black", linetype = "solid", size = 0.2, alpha = 0.3)
p <- p + geom_boxplot(alpha = 0.5, outlier.size=0.1)
p <- p + geom_point(data = beetles.mean.di, aes(y = m), size = 4)
p <- p + geom_line(data = beetles.mean.di, aes(y = m, group = dose), size = 1.5)
p <- p + labs(title = "Beetles interaction plot, dose by insecticide")
print(p)
```
5.2 Extending the One-Factor Design to Multiple Factors

In the `lm()` function below we specify a first-order model with interactions, including the main effects and two-way interactions. The interaction between dose and insecticide is indicated with `dose:insecticide`. Shorthand for this first-order model is `dose*insecticide` which expands to "dose + insecticide + dose:insecticide".

The F-test at the bottom of the `summary()` tests for no differences among the population mean.
survival times for the 12 dose and insecticide combinations. The p-value of < 0.0001 strongly suggests that the population mean survival times are not all equal.

The next summary at the top gives two partitionings of the one-way ANOVA Treatment SS into the SS for Dose, Insecticide, and the Dose by Insecticide interaction. The Mean Squares, F-statistics and p-values for testing these effects are given. The p-values for the F-statistics indicate that the dose and insecticide effects are significant at the 0.01 level. The F-test for no dose by insecticide interaction is not significant at the 0.10 level (p-value=0.112). Thus, the interaction seen in the profile plot of the sample means might be due solely to chance or sampling variability.

```r
lm.h.d.i.di <- lm(hours10 ~ dose + insecticide + dose:insecticide, data = beetles.long)
# lm.h.d.i.di <- lm(hours10 ~ dose*insecticide, data = beetles.long) # equivalent
library(car)
Anova(lm.h.d.i.di, type=3)
## Anova Table (Type III tests)
##                   Sum Sq Df F value Pr(>F)
## (Intercept)     0.681  1 30.60  2.9e-06 ***
## dose           0.082  2  1.85  0.17216
## insecticide    0.454  3  6.80  0.00095 ***
## dose:insecticide 0.250  6  1.87  0.11225
## Residuals       0.801 36
## ---
## Signif. codes:   0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
summary(lm.h.d.i.di)
## Coefficients:
##                     Estimate Std. Error t value Pr(>|t|)
## (Intercept)      0.41250    0.07461   5.534  2.9e-06 ***
## dosemedium      -0.09250    0.10549  -0.880    0.386
## dosehigh        -0.20250    0.10549  -1.919    0.063 .
## insecticideB    0.46750    0.10549   4.428  8.4e-05 ***
## insecticideC    0.15500    0.10549   1.468    0.150
## insecticideD    0.19750    0.10549   1.871    0.069 .
## dosemedium:insecticideB -0.34250    0.14911  -2.297    0.028 *
## dosehigh:insecticideB -0.13000    0.14911  -0.857    0.393
## dosemedium:insecticideC -0.10000    0.14911  -0.677    0.507
## dosehigh:insecticideC -0.08250    0.14911  -0.555    0.584
## ---
## Signif. codes:   0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.149 on 36 degrees of freedom
## Multiple R-squared:  0.734, Adjusted R-squared:  0.652
```
Since the interaction is not significant, I'll drop the interaction term and fit the additive model with main effects only. I update the model by removing the interaction term.

```r
lm.h.d.i <- update(lm.h.d.i.di, ~ . - dose:insecticide )
library(car)
Anova(lm.h.d.i, type=3)
```

Anova Table (Type III tests)

<table>
<thead>
<tr>
<th>Sum Sq</th>
<th>Df</th>
<th>F value</th>
<th>Pr(>F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Intercept)</td>
<td>1</td>
<td>65.4</td>
<td>4.2e-10 ***</td>
</tr>
<tr>
<td>dose</td>
<td>2</td>
<td>20.6</td>
<td>5.7e-07 ***</td>
</tr>
<tr>
<td>insecticide</td>
<td>3</td>
<td>12.3</td>
<td>6.7e-06 ***</td>
</tr>
<tr>
<td>Residuals</td>
<td>42</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

```r
summary(lm.h.d.i)
```

Call:
```
lm(formula = hours10 ~ dose + insecticide, data = beetles.long)
```

Residuals:
```
Min 1Q Median 3Q Max
-0.2517 -0.0963 -0.0149 0.0618 0.4983
```

Coefficients:
```
             Estimate Std. Error t value Pr(>|t|)
(Intercept)  0.4523     0.0559  8.090  4.2e-10 ***
dosemedium  -0.0731     0.0559 -1.310   0.1981
dosehigh    -0.3412     0.0559 -6.100  2.8e-07 ***
insecticideB 0.3625     0.0646  5.611  1.4e-06 ***
insecticideC 0.0783     0.0646  1.210   0.2319
insecticideD 0.2200     0.0646  3.410  0.0015 **
```

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.158 on 42 degrees of freedom
Multiple R-squared: 0.65, Adjusted R-squared: 0.609
F-statistic: 15.6 on 5 and 42 DF, p-value: 1.12e-08

The Bonferroni multiple comparisons indicate which treatment effects are different.

```r
# Testing multiple factors is of interest here.
# Note that the code below corrects the p-values
# for all the tests done for both factors together,
# that is, the Bonferroni-corrected significance level is (alpha / (d + i))
# where d = number of dose comparisons
# and i = number of insecticide comparisons.

# correcting over dose and insecticide
glht.beetle.di <- glht(aov(lm.h.d.i), linfct = mcp(dose = "Tukey"
, insecticide = "Tukey"))
summary(glht.beetle.di, test = adjusted("bonferroni"))
```
Paired Experiments and Randomized Block Experiments

Simultaneous Tests for General Linear Hypotheses

Multiple Comparisons of Means: Tukey Contrasts

Fit: aov(formula = lm.h.d.i)

Linear Hypotheses:

| Linear Hypotheses: | Estimate | Std. Error | t value | Pr(>|t|) |
|--------------------|----------|------------|---------|----------|
| dose: medium - low == 0 | -0.0731 | 0.0559 | -1.31 | 1.00000 |
| dose: high - low == 0 | -0.3412 | 0.0559 | -6.10 | 2.5e-06 *** |
| dose: high - medium == 0 | -0.2681 | 0.0559 | -4.79 | 0.00019 *** |
| insecticide: B - A == 0 | 0.3625 | 0.0646 | 5.61 | 1.3e-05 *** |
| insecticide: C - A == 0 | 0.0783 | 0.0646 | 1.21 | 1.00000 |
| insecticide: D - A == 0 | 0.2200 | 0.0646 | 3.41 | 0.01313 * |
| insecticide: C - B == 0 | -0.2842 | 0.0646 | -4.40 | 0.00065 *** |
| insecticide: D - B == 0 | -0.1425 | 0.0646 | -2.21 | 0.29570 |
| insecticide: D - C == 0 | 0.1417 | 0.0646 | 2.19 | 0.30453 |

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Adjusted p values reported -- bonferroni method)

plot the summary
op <- par(no.readonly = TRUE) # the whole list of settable par's.
make wider left margin to fit contrast labels
par(mar = c(5, 10, 4, 2) + 0.1) # order is c(bottom, left, top, right)
plot bonferroni-corrected difference intervals
plot(summary(glht.beetle.di, test = adjusted("bonferroni")),
 sub="Bonferroni-adjusted Treatment contrasts")
par(op) # reset plotting options
Interpretation of the Dose and Insecticide Effects

The interpretation of the dose and insecticide main effects depends on whether interaction is present. The distinction is important, so I will give both interpretations to emphasize the differences. Given the test for interaction, I would likely summarize the main effects assuming no interaction.

The average survival time decreases as the dose increases, with estimated mean survival times of 0.618, 0.544, and 0.276, respectively. A Bonferroni comparison shows that the population mean survival time for the high dose (averaged over insecticides) is significantly less than the population mean survival times for the low and medium doses (averaged over insecticides). The two lower doses are not significantly different from each other. This leads to two dose groups:

- Dose: 1 = Low, 2 = Med, 3 = Hig
- Marg Mean: 0.618, 0.544, 0.276
- Groups:

If dose and insecticide interact, you can conclude that beetles given a high dose of the insecticide typically survive for shorter periods of time averaged over insecticides. You can not, in general, conclude that the highest dose yields the lowest survival time regardless of insecticide. For example, the difference in the medium and high dose marginal means (0.544 - 0.276 = 0.268) estimates the typical decrease in survival time achieved by using the high dose instead of the medium dose, averaged over insecticides. If the two factors interact, then the difference in mean times between the medium and high doses on a given insecticide may be significantly greater than 0.268, significantly less than 0.268, or even negative. In the latter case the medium dose would be better than the high dose for the given insecticide, even though the high dose gives better performance averaged over insecticides. An interaction forces you to use the cell means to decide
which combination of dose and insecticide gives the best results (and the multiple comparisons as they were done above do not give multiple comparisons of cell means; a single factor variable combining both factors would need to be created). Of course, our profile plot tells us that this hypothetical situation is probably not tenable here, but it could be so when a significant interaction is present.

If dose and insecticide do not interact, then the difference in marginal dose means averaged over insecticides also estimates the difference in population mean survival times between two doses, regardless of the insecticide. This follows from the parallel profiles definition of no interaction. Thus, the difference in the medium and high dose marginal means \((0.544 - 0.276 = 0.268)\) estimates the expected decrease in survival time anticipated from using the high dose instead of the medium dose, regardless of the insecticide (and hence also when averaged over insecticides). A practical implication of no interaction is that you can conclude that the high dose is best, regardless of the insecticide used. The difference in marginal means for two doses estimates the difference in average survival expected, regardless of the insecticide.

An ordering of the mean survival times on the four insecticides (averaged over the three doses) is given below. Three groups are obtained from the Bonferroni comparisons, with any two insecticides separated by one or more other insecticides in the ordered string having significantly different mean survival times averaged over doses.

If interaction is present, you can conclude that insecticide A is no better than C, but significantly better than B or D, when performance is averaged over doses. If the interaction is absent, then A is not significantly better than C, but is significantly better than B or D, regardless of the dose. Furthermore, for example, the difference in marginal means for insecticides B and A of \(0.677 - 0.314 = 0.363\) is the expected decrease in survival time from using A instead of B, regardless of dose. This is also the expected decrease in survival times when averaged over doses.

<table>
<thead>
<tr>
<th>Insect:</th>
<th>B</th>
<th>D</th>
<th>C</th>
<th>A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Marg Mean:</td>
<td>0.677</td>
<td>0.534</td>
<td>0.393</td>
<td>0.314</td>
</tr>
<tr>
<td>Groups:</td>
<td>-----------</td>
<td>-----------</td>
<td>-----------</td>
<td>-----------</td>
</tr>
</tbody>
</table>

5.2.4 Example: Output voltage for batteries

The maximum output voltage for storage batteries is thought to be influenced by the temperature in the location at which the battery is operated and the material used in the plates. A scientist designed a two-factor study to examine this hypothesis, using three temperatures (50, 65, 80), and three materials for the plates (1, 2, 3). Four batteries were tested at each of the 9 combinations of temperature and material type. The maximum output voltage was recorded for each battery. This is a balanced 3-by-3 factorial experiment with four observations per treatment.

```r
capture <- read.table("http://statacumen.com/teach/ADA2/ADA2_notes.Ch05_battery.dat", header = TRUE)
capture$material <- factor(capture$material)
capture$temp <- factor(capture$temp)
```
5.2 Extending the One-Factor Design to Multiple Factors

<table>
<thead>
<tr>
<th>material</th>
<th>temp</th>
<th>v1</th>
<th>v2</th>
<th>v3</th>
<th>v4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>50</td>
<td>130</td>
<td>155</td>
<td>74</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>65</td>
<td>34</td>
<td>40</td>
<td>80</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>80</td>
<td>20</td>
<td>70</td>
<td>82</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>50</td>
<td>150</td>
<td>188</td>
<td>159</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>65</td>
<td>136</td>
<td>122</td>
<td>106</td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td>80</td>
<td>25</td>
<td>70</td>
<td>58</td>
</tr>
<tr>
<td>7</td>
<td>3</td>
<td>50</td>
<td>138</td>
<td>110</td>
<td>168</td>
</tr>
<tr>
<td>8</td>
<td>3</td>
<td>65</td>
<td>174</td>
<td>120</td>
<td>150</td>
</tr>
<tr>
<td>9</td>
<td>3</td>
<td>80</td>
<td>96</td>
<td>104</td>
<td>82</td>
</tr>
</tbody>
</table>

```
library(reshape2)
battery.long <- melt(battery
  , id.vars = c("material", "temp"
  , variable.name = "battery"
  , value.name = "maxvolt"
  )
str(battery.long)
```

The overall F-test at the bottom indicates at least one parameter in the model is significant. The two-way ANOVA table indicates that the main effect of temperature and the interaction are significant at the 0.05 level, the main effect of material is not.

```
lm.m.m.t.m.t <- lm(maxvolt ~ material*temp, data = battery.long)
library(car)
Anova(lm.m.m.t.m.t, type=3)
## Anova Table (Type III tests)
##
## Response: maxvolt
## Sum Sq Df F value Pr(>F)
## (Intercept)  72630  1 107.57 6.5e-11 ***
## material   886  2  0.66  0.52689
## temp       15965  2 11.82  0.00021 ***
## material:temp 9614  4  3.56  0.01861 *
## Residuals  18231 27
## ---
## Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
summary(lm.m.m.t.m.t)
```

The overall F-test at the bottom indicates at least one parameter in the model is significant. The two-way ANOVA table indicates that the main effect of temperature and the interaction are significant at the 0.05 level, the main effect of material is not.
The cell means plots of the material profiles have different slopes, which is consistent with the presence of a temperature-by-material interaction.

```r
library(plyr)
# Calculate the cell means for each (material, temp) combination
battery.mean <- ddply(battery.long, .(), summarise, m = mean(maxvolt))
battery.mean
##         .id m
## 1 <NA> 105.5

battery.mean.m <- ddply(battery.long, .(material), summarise, m = mean(maxvolt))
battery.mean.m
##  material m
## 1        1 83.17
## 2        2 108.33
## 3        3 125.08

battery.mean.t <- ddply(battery.long, .(temp), summarise, m = mean(maxvolt))
battery.mean.t
##  temp m
## 1 50 144.83
## 2 65 107.58
## 3 80  64.17

battery.mean.mt <- ddply(battery.long, .(material,temp), summarise, m = mean(maxvolt))
battery.mean.mt
##  material temp m
## 1        1 50 134.75
## 2        1 65  57.25
## 3        1 80  57.50
## 4        2 50 155.75
## 5        2 65 119.75
## 6        2 80  49.50
## 7        3 50 144.00
## 8        3 65 145.75
## 9        3 80  85.50

# Interaction plots, ggplot
p <- ggplot(battery.long, aes(x = material, y = maxvolt, colour = temp))
p <- p + geom_hline(aes(yintercept = 0), colour = "black")
```
The Bonferroni multiple comparisons may be inappropriate because of covariate interactions. That is, interactions make the main effects less meaningful (or their interpretation unclear) since the change in response when one factor is changed depends on what the second factor is.

The significant interaction between temperature and material implies that you cannot directly conclude that batteries stored at 50 degrees have the highest average output regardless of the material. Nor can you directly conclude that material 3 has a higher average output than material 1 regardless of the temperature. You can only conclude that the differences are significant when averaged over the levels of the other factor.

```r
# correcting over temp
glht.battery.t <- glht(aov(lm.m.m.t.mt), linfct = mcp(temp = "Tukey"))
## Warning: covariance interactions found -- default contrast might be inappropriate
summary(glht.battery.t, test = adjusted("bonferroni"))
```

Simultaneous Tests for General Linear Hypotheses

```r
p <- p + geom_boxplot(alpha = 0.5, outlier.size = 0.1)
p <- p + geom_point(data = battery.mean.mt, aes(y = m), size = 4)
p <- p + geom_line(data = battery.mean.mt, aes(y = m, group = temp), size = 1.5)
p <- p + labs(title = "Battery interaction plot, temp by material")
print(p)
```
Multiple Comparisons of Means: Tukey Contrasts

Fit: `aov(formula = lm.m.m.t.mt)`

Linear Hypotheses:

| Estimate | Std. Error | t value | Pr(>|t|) |
|----------|------------|---------|----------|
| 65 - 50 == 0 | -77.50 | 18.37 | -4.22 | 0.00074 *** |
| 80 - 50 == 0 | -77.25 | 18.37 | -4.20 | 0.00077 *** |
| 80 - 65 == 0 | 0.25 | 18.37 | 0.01 | 1.00000 |

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Ajusted p values reported -- bonferroni method)

plot bonferroni-corrected difference intervals

```r
plot(summary(glht.battery.t, test = adjusted("bonferroni")))
```

The Bonferroni comparisons indicate that the population mean max voltage for the three temperatures **averaged over material types** decreases as the temperature increases:

<table>
<thead>
<tr>
<th>Temp</th>
<th>Marg mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>80</td>
<td>64.17</td>
</tr>
<tr>
<td>65</td>
<td>107.58</td>
</tr>
<tr>
<td>50</td>
<td>144.83</td>
</tr>
</tbody>
</table>

However, you can compare materials at each temperature, and you can compare temperatures for each material. At individual temperatures, material 2 and 3 (or 1 and 2) might be significantly different even though they are not significantly different when averaged over temperatures. For example, material 2 might produce a significantly higher average output than the other two material types at 50 degrees. This comparison of cell means is relevant if you are interested in using the batteries at 50 degrees! Comparing cell means is possible using `lsmeans`, a point I will return to later.

5.2.5 Checking assumptions in a two-factor experiment

The normality and constant variance assumptions for a two-factor design can be visually checked using side-by-side boxplots (as was produced in the `ggplot` interaction plots) and residual plots.
Another useful tool for checking constant variances is to plot the sample deviations for each group against the group means.

Let us check the distributional assumptions for the insecticide experiment. The sampling design suggests that the independence assumptions are reasonable. The group sample sizes are small, so the residual plots are likely to be more informative than the side-by-side boxplots and the plot of the standard deviations.

The code below generates plots and summary statistics for the survival times. I used `ddply()` to store the means \overline{y}_{ij} and standard deviations s_{ij} for the 12 treatment combinations. The diagnostic plots we’ve been using for `lm()` displays residual plots. Only the relevant output is presented.

The set of box plots (each representing 4 points) for each insecticide/dose combination indicates both that means and standard deviations of treatments seem different. Also, there appears to be less variability for dose=3 (high) than for doses 1 and 2 in the table; the model assumes that variability is the same and does not depend on treatment. The plot of the standard deviation vs mean shows an increasing trend.
Diagnostic plots show the following features. The normal quantile plot shows an “S” shape rather than a straight line, suggesting the residuals are not normal, but have higher kurtosis (more peaky) than a normal distribution. The residuals vs the fitted (predicted) values show that the higher the predicted value the more variability (horn shaped). The plot of the Cook’s distances indicate a few influential observations.

interaction model
lm.h.d.i.di <- lm(hours10 ~ dose*insecticide, data = beetles.long)

plot diagnostics
par(mfrow=c(2,3))
plot(lm.h.d.i.di, which = c(1,4,6))
plot(beetles.long$dose, lm.h.d.i.di$residuals, main="Residuals vs dose")
abline(h = 0, col = "gray75")
plot(beetles.long$insecticide, lm.h.d.i.di$residuals, main="Residuals vs insecticide")
abline(h = 0, col = "gray75")

Normality of Residuals
library(car)
qqPlot(lm.h.d.i.di$residuals, las = 1, id.n = 3, main="QQ Plot")
42 20 30
48 47 1

residuals vs order of data
#plot(lm.h.d.i.di$residuals, main="Residuals vs Order of data")
abline(h = 0, col = "gray75")
Survival times are usually right skewed, with the spread or variability in the distribution increasing as the mean or median increases. Ideally, the distributions should be symmetric, normal, and the standard deviation should be fairly constant across groups.

The boxplots (note the ordering) and the plot of the s_{ij} against \bar{y}_{ij} show the tendency for the spread to increase with the mean. This is reinforced by the residual plot, where the variability increases as the predicted values (the cell means under the two-factor interaction model) increase.

As noted earlier, the QQ-plot of the studentized residuals is better suited to examine normality here than the boxplots which are constructed from 4 observations. Not surprisingly, the boxplots do not suggest non-normality. Looking at the QQ-plot we clearly see evidence of non-normality.

5.2.6 A Remedy for Non-Constant Variance

A plot of cell standard deviations against the cell means is sometimes used as a diagnostic tool for suggesting transformations of the data. Here are some suggestions for transforming non-negative measurements to make the variability independent of the mean (i.e., stabilize the variance). The transformations also tend to reduce skewness, if present (and may induce skewness if absent!). As an aside, some statisticians prefer to plot the IQR against the median to get a more robust view of the dependence of spread on typical level because s_{ij} and \bar{y}_{ij} are sensitive to outliers.

1. If s_{ij} increases linearly with \bar{y}_{ij}, use a log transformation of the response.
2. If s_{ij} increases as a quadratic function of \bar{y}_{ij}, use a reciprocal (inverse) transformation of the response.
3. If s_{ij} increases as a square root function of \bar{y}_{ij}, use a square root transformation of the response.
4. If s_{ij} is roughly independent of \bar{y}_{ij}, do not transform the response. This idea does not require the response to be non-negative!

A logarithmic transformation or a reciprocal (inverse) transformation of the survival times might help to stabilize the variance. The survival time distributions are fairly symmetric, so these nonlinear transformations may destroy the symmetry. As a first pass, I will consider the reciprocal transformation because the inverse survival time has a natural interpretation as the dying rate. For example, if you survive 2 hours, then 1/2 is the proportion of your remaining lifetime expired in the next hour. The unit of time is actually 10 hours, so 0.1/time is the actual rate. The 0.1 scaling factor has no effect on the analysis provided you appropriately rescale the results on the mean responses.

Create the rate variable.

```r
# create the rate variable (1/hours10)
beetles.long$rate <- 1/beetles.long$hours10
```

Redo the analysis replacing hours10 by rate.

The standard deviations of rate appear much more similar than those of time did.

```r
# boxplots, ggplot
p <- ggplot(beetles.long, aes(x = dose, y = rate, colour = insecticide))
p <- p + geom_boxplot()
print(p)

# mean vs sd plot
library(plyr)
# means and standard deviations for each dose/interaction cell
beetles.meansd.di.rate <- ddply(beetles.long, .(dose, insecticide), summarise
  , m = mean(rate), s = sd(rate))
beetles.meansd.di.rate
##    dose insecticide m   s
## 1  low      A  2.487 0.4967
## 2  low      B  1.163 0.1995
## 3  low      C  1.863 0.4894
## 4  low      D  1.690 0.3647
## 5 medium     A  3.268 0.8223
## 6 medium     B  1.393 0.5532
## 7 medium     C  2.714 0.4175
## 8 medium     D  1.702 0.7019
## 9 high      A  4.803 0.5296
##10 high      B  3.029 0.4214
##11 high      C  4.265 0.2348
##12 high      D  3.092 0.2441
p <- ggplot(beetles.meansd.di.rate, aes(x = m, y = s, shape = dose, colour = insecticide))
p <- p + geom_point(size=4)
p <- p + labs(title = "Beetles standard deviation vs mean")
print(p)
```
The profile plots and ANOVA table indicate that the main effects are significant but the interaction is not.

```r
library(plyr)
# Calculate the cell means for each (dose, insecticide) combination
beetles.mean <- ddply(beetles.long, .(), summarise, m = mean(rate))
beetles.mean
## .id m
## 1 <NA> 2.622
beetles.mean.d <- ddply(beetles.long, .(dose), summarise, m = mean(rate))
beetles.mean.d
## dose m
## 1 low 1.801
## 2 medium 2.269
## 3 high 3.797
beetles.mean.i <- ddply(beetles.long, .(insecticide), summarise, m = mean(rate))
beetles.mean.i
## insecticide m
## 1 A 3.519
## 2 B 1.862
## 3 C 2.947
## 4 D 2.161
beetles.mean.di <- ddply(beetles.long, .(dose,insecticide), summarise, m = mean(rate))
beetles.mean.di
## dose insecticide m
## 1 low A 2.487
## 2 low B 1.163
## 3 low C 1.863
## 4 low D 1.690
## 5 medium A 3.268
## 6 medium B 1.393
## 7 medium C 2.714
## 8 medium D 1.702
## 9 high A 4.803
## 10 high B 3.029
## 11 high C 4.265
## 12 high D 3.092

# Interaction plots, ggplot
p <- ggplot(beetles.long, aes(x = dose, y = rate, colour = insecticide))
p <- p + geom_hline(aes(yintercept = 0), colour = "black",
                   linetype = "solid", size = 0.2, alpha = 0.3)
p <- p + geom_boxplot(alpha = 0.5, outlier.size=0.1)
p <- p + geom_point(data = beetles.mean.di, aes(y = m), size = 4)
p <- p + geom_line(data = beetles.mean.di, aes(y = m, group = insecticide), size = 1.5)
p <- p + labs(title = "Beetles interaction plot, insecticide by dose")
print(p)
```

```r
p <- ggplot(beetles.long, aes(x = dose, y = rate, colour = dose))
p <- p + geom_hline(aes(yintercept = 0), colour = "black",
                   linetype = "solid", size = 0.2, alpha = 0.3)
p <- p + geom_boxplot(alpha = 0.5, outlier.size=0.1)
```
```r
lm.r.d.i.di <- lm(rate ~ dose * insecticide, data = beetles.long) # equivalent
library(car)
Anova(lm.r.d.i.di, type=3)
```

```
## Anova Table (Type III tests)
##
## Response: rate
##    Sum Sq Df F value Pr(>F)
## (Intercept) 24.74  1 103.04 4.2e-12 ***
##   dose     11.10  2 23.12 3.5e-07 ***
## insecticide  3.57  3  4.96 0.0055 **
## dose:insecticide  1.57  6  1.09 0.3867
## Residuals   8.64 36
##
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

```r
summary(lm.r.d.i.di)
```

```
## Call:
## lm(formula = rate ~ dose * insecticide, data = beetles.long)
##
## Residuals:
##     Min      1Q  Median      3Q     Max
## -0.7685 -0.2964 -0.0691  0.2546  1.0794
##
## Coefficients:
##               Estimate Std. Error   t value Pr(>|t|)
## (Intercept)   2.48690   0.24500    10.15   4.2e-12 ***
## dosemedium   0.78163   0.34652     2.26    0.03025 *
## dosehigh     2.31579   0.34652     6.68    8.6e-08 ***
## insecticideB -1.32342   0.34652    -3.82    0.00051 ***
```
5.2 Extending the One-Factor Design to Multiple Factors

insecticideC -0.6242 0.3465 -1.80 0.08001 .
insecticideD -0.7972 0.3465 -2.30 0.02730 *
dosemedium:insecticideB -0.5517 0.4900 -1.13 0.26767
dosehigh:insecticideB -0.4503 0.4900 -0.92 0.36421
dosemedium:insecticideC 0.0696 0.4900 0.14 0.88783
dosehigh:insecticideC 0.0865 0.4900 0.18 0.86093
dosemedium:insecticideD -0.7697 0.4900 -1.57 0.12495
dosehigh:insecticideD -0.9137 0.4900 -1.86 0.07039 .

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
Residual standard error: 0.49 on 36 degrees of freedom
Multiple R-squared: 0.868, Adjusted R-squared: 0.828
F-statistic: 21.5 on 11 and 36 DF, p-value: 1.29e-12

Drop the nonsignificant interaction term.

```r
lm.r.d.i <- update(lm.r.d.i, di, ~ . - dose:insecticide )
library(car)
Anova(lm.r.d.i, type=3)
## Anova Table (Type III tests)
##
## Response: rate

## Sum Sq Df F value Pr(>F)
## (Intercept) 58.2 1 239.4 < 2e-16 ***
## dose 34.9 2 71.7 2.9e-14 ***
## insecticide 20.4 3 28.0 4.2e-10 ***
## Residuals 10.2 42
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
summary(lm.r.d.i)
##
## Call:
## lm(formula = rate ~ dose + insecticide, data = beetles.long)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.8276 -0.3762 0.0212 0.2757 1.1815
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.698 0.174 15.47 < 2e-16 ***
## dose 0.469 0.174 2.69 0.0103 *
## insecticideB -1.657 0.201 -8.23 2.7e-10 ***
## insecticideC -0.572 0.201 -2.84 0.0069 **
## insecticideD -1.358 0.201 -6.75 3.3e-08 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.493 on 42 degrees of freedom
## Multiple R-squared: 0.844, Adjusted R-squared: 0.826
## F-statistic: 45.5 on 5 and 42 DF, p-value: 6.97e-16
```
Unlike the original analysis, the residual plots do not show any gross deviations from assumptions. Also, no case seems relatively influential.

\[
\text{plot diagnistics}
\]
\[
\text{par(mfrow=c(2,3))}
\]
\[
\text{plot(lm.r.d.i, which = c(1,4,6))}
\]
\[
\text{plot(beetles.long$dose, lm.r.d.i$residuals, main="Residuals vs dose")}
\]
\[
\text{abline(h = 0, col = "gray75")}
\]
\[
\text{plot(beetles.long$insecticide, lm.r.d.i$residuals, main="Residuals vs insecticide")}
\]
\[
\text{abline(h = 0, col = "gray75")}
\]
\[
\text{Normality of Residuals}
\]
\[
\text{library(car)}
\]
\[
\text{qqPlot(lm.r.d.i$residuals, las = 1, id.n = 3, main="QQ Plot")}
\]
\[
\text{Bonferroni multiple comparisons imply differences about the mean rates.}
\]
\[
\text{# Testing multiple factors is of interest here.}
\]
\[
\text{# Note that the code below corrects the p-values}
\]
\[
\text{# for all the tests done for both factors together,}
\]
\[
\text{# that is, the Bonferroni-corrected significance level is (alpha / (d + i))}
\]
\[
\text{# where } d = \text{ number of dose comparisons}
\]
\[
\text{# and } i = \text{ number of insecticide comparisons.}
\]
\[
\text{# correcting over dose and insecticide}
\]
\[
\text{glht.beetle.di.rate <- glht(aov(lm.r.d.i), linfct = mcp(dose = "Tukey", insecticide = "Tukey"))}
\]
\[
\text{summary(glht.beetle.di.rate, test = adjusted("bonferroni"))}
\]
Simultaneous Tests for General Linear Hypotheses

Multiple Comparisons of Means: Tukey Contrasts

Fit: aov(formula = lm.r.d.i)

Linear Hypotheses:

| Estimate | Std. Error | t value | Pr(>|t|) |
|----------|------------|---------|----------|
| 0.469 | 0.174 | 2.69 | 0.092 |
| 1.996 | 0.174 | 11.45 | 1.5e-13 *** |
| 1.528 | 0.174 | 8.76 | 4.5e-10 *** |
| -1.657 | 0.201 | -8.23 | 2.4e-09 *** |
| -0.572 | 0.201 | -2.84 | 0.062 |
| -1.358 | 0.201 | -6.75 | 3.0e-07 *** |
| 1.085 | 0.201 | 5.39 | 2.7e-05 *** |
| 0.299 | 0.201 | 1.49 | 1.000 |
| -0.786 | 0.201 | -3.91 | 0.003 ** |

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Adjusted p values reported -- bonferroni method)

```
par(mfrow=c(1,1))
# plot the summary
    op <- par(no.readonly = TRUE) # the whole list of settable par's.
    # make wider left margin to fit contrast labels
    par(mar = c(5, 10, 4, 2) + 0.1) # order is c(bottom, left, top, right)
    # plot bonferroni-corrected difference intervals
    plot(summary(glht.beetle.di.rate, test = adjusted("bonferroni"))
          , sub="Bonferroni-adjusted Treatment contrasts")
    par(op) # reset plotting options
```
Comments on the Two Analyses of Survival Times

The effects of the transformation are noticeable. For example, the comparisons among doses and insecticides are less sensitive (differences harder to distinguish) on the original scale (look at the Bonferroni groupings). A comparison of the interaction p-values and profile plots for the two analyses suggests that the transformation eliminates much of the observed interaction between the main effects. Although the interaction in the original analysis was not significant at the 10% level (p-value=0.112), the small sample sizes suggest that power for detecting interaction might be low. To be on the safe side, one might interpret the main effects in the original analysis as if an interaction were present. This need appears to be less pressing with the rates.

The statistical assumptions are reasonable for an analysis of the rates. I think that the simplicity of the main effects interpretation is a strong motivating factor for preferring the analysis of the transformed data to the original analysis. You might disagree, especially if you believe that the original time scale is most relevant for analysis.

Given the suitability of the inverse transformation, I did not consider the logarithmic transformation.

5.3 Multiple comparisons: balanced (means) vs unbalanced (lsmeans)

The lsmeans provides a way to compare cell means (combinations of factors), something that is not possible directly with glht(), which compares marginal means.
Using the battery example, we compare the multiple comparison methods using means (`glht()`) and lsmeans\(^2\) (`lsmeans()`). When there are only main effects, the two methods agree.

```r
# fit additive (main effects) model (same as before)
lm.m.m.t <- lm(maxvolt ~ material + temp, data = battery.long)

### comparing means (must be balanced or have only one factor)
# correcting over temp
glht.battery.t <- glht(aov(lm.m.m.t), linfct = mcp(temp = "Tukey"))
summary(glht.battery.t, test = adjusted("bonferroni"))
```

Simultaneous Tests for General Linear Hypotheses
Multiple Comparisons of Means: Tukey Contrasts

Fit: aov(formula = lm.m.m.t)

Linear Hypotheses:
Estimate Std. Error t value Pr(>|t|)
65 - 50 == 0 -37.2 12.2 -3.04 0.0142 *
80 - 50 == 0 -80.7 12.2 -6.59 6.9e-07 ***
80 - 65 == 0 -43.4 12.2 -3.55 0.0038 **

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Adjusted p values reported -- bonferroni method)

```r
### comparing lsmeans (may be unbalanced)
library(lsmeans)

# compare levels of main effects
# temp
lsmeans(lm.m.m.t, list(pairwise ~ temp), adjust = "bonferroni")
```

```
## $`temp lsmeans`
## temp  lsmean    SE df lower.CL upper.CL
##  50  144.83  8.652 31   127.19   162.48
##  65   107.58  8.652 31    89.94   125.23
##  80    64.17  8.652 31    46.52    81.81
##
## $`temp pairwise differences`
## estimate    SE df t.ratio p.value
##  50 - 65  37.25 12.24 31  3.044  0.01417
##  50 - 80  80.67 12.24 31  6.593  0.00000
##  65 - 80  43.42 12.24 31  3.548  0.00377
##
```

When there are model interactions, the comparisons of the main effects are inappropriate, and give different results depending on the method of comparison.

```r
# fit interaction model (same as before)
lm.m.m.t.mt <- lm(maxvolt ~ material*temp, data = battery.long)

### comparing means (must be balanced or have only one factor)
```

\(^2\text{lsmeans}\) is a package written by Russell V. Lenth, PhD of UNM 1975, and well-known for his online power calculators.
correcting over temp
glht.battery.t <- glht(aov(lm.m.m.t.mt), linfct = mcp(temp = "Tukey"))
Warning: covariate interactions found -- default contrast might be inappropriate
summary(glht.battery.t, test = adjusted("bonferroni"))
##
Simultaneous Tests for General Linear Hypotheses
##
Multiple Comparisons of Means: Tukey Contrasts
##
Fit: aov(formula = lm.m.m.t.mt)
##
Linear Hypotheses:
Estimate Std. Error t value Pr(>|t|)
65 - 50 == 0 -77.50 18.37 -4.22 0.00074 ***
80 - 50 == 0 -77.25 18.37 -4.20 0.00077 ***
80 - 65 == 0 0.25 18.37 0.01 1.00000

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Adjusted p values reported -- bonferroni method)

comparing lsmeans (may be unbalanced)
library(lsmeans)
compare levels of main effects
temp
lsmeans(lm.m.m.t.mt, list(pairwise ~ temp), adjust = "bonferroni")
Warning: lsmeans of temp may be misleading due to interaction with other predictor(s)
$`temp lsmeans`
temp lsmean SE df lower.CL upper.CL
50 144.83 7.501 27 129.44 160.22
65 107.58 7.501 27 92.19 122.97
80 64.17 7.501 27 48.78 79.56
##
$`temp pairwise differences`
estimate SE df t.ratio p.value
50 - 65 37.25 10.61 27 3.511 0.00476
50 - 80 80.67 10.61 27 7.604 0.00000
65 - 80 43.42 10.61 27 4.093 0.00104
p values are adjusted using the bonferroni method for 3 tests

When there are model interactions and you want to compare cell means, levels of one factor at
each level of another factor separately, then you must use lsmeans.

fit interaction model (same as before)
lm.m.m.t.mt <- lm(maxvolt ~ material*temp, data = battery.long)

comparing lsmeans (may be unbalanced)
library(lsmeans)
compare levels of one factor at each level of another factor separately
material at levels of temp
lsmeans(lm.m.m.t.mt, list(pairwise ~ material | temp), adjust = "bonferroni")
$material:temp lsmeans`
material temp lsmean SE df lower.CL upper.CL
1 50 134.75 12.99 27 108.09 161.41

library(lsmeans)
Finally, an important point demonstrated in the next section is that the cell and marginal averages given by the \texttt{means} and \texttt{lsmeans} methods agree here for the main effects model because the design is balanced. For unbalanced designs with two or more factors, \texttt{lsmeans} and \texttt{means} compute different averages. I will argue that \texttt{lsmeans} are the appropriate averages for unbalanced analyses. You should use the \texttt{means} statement with caution — it is OK for balanced or unbalanced
5.4 Unbalanced Two-Factor Designs and Analysis

Sample sizes are usually unequal, or **unbalanced**, for the different treatment groups in an experiment. Although this has no consequence on the specification of a model, you have to be more careful with the **analysis of unbalanced experiments** that have two or more factors. With unbalanced designs, the Type I and Type III SS differ, as do the main effect averages given by **means** and **lsmeans**. Inferences might critically depend on which summaries are used. I will use the following example to emphasize the differences between the types of SS and averages.

5.4.1 Example: Rat insulin

The experiment consists of measuring insulin levels in rats a certain length of time after a fixed dose of insulin was injected into their jugular or portal veins. This is a two-factor study with two vein types (jugular, portal) and three time levels (0, 30, and 60). An unusual feature of this experiment is that the rats used in the six vein and time combinations are distinct. I will fit a two-factor interaction model, which assumes that the responses are independent within and across treatments (other models may be preferred). The design is **unbalanced**, with sample sizes varying from 3 to 12.

An alternative experimental design might randomly assign rats to the two vein groups, and then measure the insulin levels of each rat at the three time points. Depending on the questions of interest, you could compare veins using a one-way MANOVA, or use other multivariate techniques that allow correlated responses within rats.

```r
rat <- read.table("http://statacumen.com/teach/ADA2/ADA2_notes_Ch05_ratinsulin.dat", header = TRUE)
# make time a factor variable and label the levels
rat$time <- factor(rat$time)
str(rat)
## 'data.frame': 48 obs. of 3 variables:
## $ vein : Factor w/ 2 levels "j","p": 1 1 1 1 1 1 1 1 1 1 ... 
## $ time : Factor w/ 3 levels "0","30","60": 1 1 1 1 1 2 2 2 2 2 ... 
## $ insulin: int 18 36 12 24 43 61 116 63 132 68 ... 
head(rat, 3)
## vein time insulin
## 1 j 0 18
## 2 j 0 36
## 3 j 0 12
tail(rat, 3)
## vein time insulin
## 46 p 60 105
## 47 p 60 71
## 48 p 60 83
```

It appears the standard deviation increases with the mean.

```r
# boxplots, ggplot
p <- ggplot(rat, aes(x = time, y = insulin, colour = vein))
p <- p + geom_boxplot()
print(p)
```
5.4 Unbalanced Two-Factor Designs and Analysis

mean vs sd plot
library(plyr)
means and standard deviations for each time/interaction cell
rat.meansd.tv <- ddply(rat, .(time,vein), summarise
 , m = mean(insulin), s = sd(insulin), n = length(insulin))
rat.meansd.tv
time vein m s n
1 0 j 26.60 12.76 5
2 0 p 81.92 27.75 12
3 30 j 79.50 36.45 6
4 30 p 172.90 76.12 10
5 60 j 61.33 62.52 3
6 60 p 128.50 49.72 12
p <- ggplot(rat.meansd.tv, aes(x = m, y = s, shape = time, colour = vein, label=n))
p <- p + geom_point(size=4)
labels are sample sizes
p <- p + geom_text(hjust = 0.5, vjust = -0.5)
p <- p + labs(title = "Rats standard deviation vs mean")
print(p)

We take the log of insulin to correct the problem. The variances are more constant now, except for one sample with only 3 observations which has a larger standard deviation than the others, but because this is based on such a small sample size, it’s not of much concern.

rat$loginsulin <- log(rat$insulin)

boxplots, ggplot
p <- ggplot(rat, aes(x = time, y = loginsulin, colour = vein))
p <- p + geom_boxplot()
print(p)

mean vs sd plot
library(plyr)
means and standard deviations for each time/interaction cell

```r
rat.meansd.tv <- ddply(rat, .(time,vein), summarise, m = mean(loginsulin), s = sd(loginsulin), n = length(loginsulin))
rat.meansd.tv
```

<table>
<thead>
<tr>
<th></th>
<th>time</th>
<th>vein</th>
<th>m</th>
<th>s</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>j</td>
<td>3.180</td>
<td>0.5166</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>p</td>
<td>4.338</td>
<td>0.4096</td>
<td>12</td>
</tr>
<tr>
<td>3</td>
<td>30</td>
<td>j</td>
<td>4.287</td>
<td>0.4661</td>
<td>6</td>
</tr>
<tr>
<td>4</td>
<td>30</td>
<td>p</td>
<td>5.072</td>
<td>0.4185</td>
<td>10</td>
</tr>
<tr>
<td>5</td>
<td>60</td>
<td>j</td>
<td>3.759</td>
<td>1.0255</td>
<td>3</td>
</tr>
<tr>
<td>6</td>
<td>60</td>
<td>p</td>
<td>4.785</td>
<td>0.3953</td>
<td>12</td>
</tr>
</tbody>
</table>

```r
p <- ggplot(rat.meansd.tv, aes(x = m, y = s, shape = time, colour = vein, label=n))
p <- p + geom_point(size=4)
# labels are sample sizes
p <- p + geom_text(hjust = 0.5, vjust = -0.5)
p <- p + labs(title = "Rats standard deviation vs mean")
print(p)
```

Rats standard deviation vs mean

Type I and Type III SS

We can request ANOVA tables including Type I or Type III SS\(^3\) for each effect in a model. The Type I SS is the **sequential reduction** in Error SS achieved when an effect is added to a model that includes only the prior effects listed in the `model` statement. The Type III SS are more difficult to define explicitly, but they roughly correspond to the reduction in Error SS achieved when an effect is added **last** to the model.

Type I SS and Type III SS are equal for balanced designs and for one-way ANOVA, but are typically different for unbalanced designs, where there is no unique way to define the SS for an effect. The problem here is similar to multiple regression, where the SS for a predictor \(X\) is the decrease in Residual SS when \(X\) is added to a model. This SS is not unique because the change in

the Residual SS depends on which predictors are included in the model prior to X. In a regression analysis, the standard tests for effects in a model are based on Type III SS and not on the Type I SS.

For the insulin analysis, the Type I and Type III interaction SS are identical because this effect was added last to the `model` statement. The Type I and III SS for the main effects are not equal. Also note that the Type I SS for the main effects and interaction add to the model SS, but the Type III SS do not.

Looking at the output, we see the Type I and Type III SS are different, except for the interaction term.

```r
lm.i.t.v.tv <- lm(loginsulin ~ time*vein, data = rat,
                  contrasts = list(time = contr.sum, vein = contr.sum))
## CRITICAL!!! Unbalanced design warning.
## The contrast statement above must be included identifying
## each main effect with "contr.sum" in order for the correct
## Type III SS to be computed.

library(car)
# type I SS (intercept SS not shown)
summary(aov(lm.i.t.v.tv))
## Df Sum Sq Mean Sq F value Pr(>F)
## time 2 5.45 2.73 12.18 6.7e-05 ***
## vein 1 9.32 9.32 41.66 8.8e-08 ***
## time:vein 2 0.26 0.13 0.58 0.56
## Residuals 42 9.40 0.22
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

# type III SS
Anova(lm.i.t.v.tv, type=3)
## Anova Table (Type III tests)
## Response: loginsulin
## Sum Sq Df F value Pr(>F)
## (Intercept) 669 1 2987.58 < 2e-16 ***
## time 6 2 13.80 2.5e-05 ***
## vein 9 1 40.80 1.1e-07 ***
## time:vein 0 2 0.58 0.56
## Residuals 9 42
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

Because the profile plot lines all seem parallel, and because of the interaction Type III SS p-value above, it appears there is not sufficient evidence for a vein-by-time interaction. For now we’ll keep the interaction in the model for the purpose of discussing differences between means and lsmeans and Type I and Type III SS.

```r
# calculate means for plot
library(plyr)
rat.mean.tv <- ddply(rat, .(time,vein), summarise, m = mean(loginsulin))

# Interaction plots, ggplot
p <- ggplot(rat, aes(x = time, y = loginsulin, colour = vein))
p <- p + geom_hline(aes(yintercept = 0), colour = "black")
Means versus lsmeans

The lsmeans (sometimes called adjusted means) for a single factor is an arithmetic average of cell means. For example, the mean responses in the jugular vein at times 0, 30, and 60 are 3.18, 4.29, and 3.76, respectively. The lsmeans for the jugular vein is thus $3.74 = (3.18 + 4.29 + 3.76) / 3$. This average gives equal weight to the 3 times even though the sample sizes at these times differ (5, 6, and 3). The means of 3.78 for the jugular is the average of the 14 jugular responses, ignoring time. If the cell sample sizes were equal, the lsmeans and means averages would agree.

The means and lsmeans for individual cells (i.e., for the 6 vein*time combinations) are identical, and equal to cell means.

```r
library(plyr)
unbalanced, don't match
rat.mean.t <- ddply(rat, .(time), summarise, m = mean(loginsulin))
rat.mean.t
```
library(lsmeans)
lsmeans(lm.i.t.v.tv, list(pairwise ~ time), adjust = "bonferroni")

## Warning: lsmeans of time may be misleading due to interaction with other predictor(s)

### time lsmeans

<table>
<thead>
<tr>
<th>time</th>
<th>lsmean</th>
<th>SE</th>
<th>df</th>
<th>lower.CL</th>
<th>upper.CL</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>3.759</td>
<td>0.126</td>
<td>42</td>
<td>3.505</td>
<td>4.013</td>
</tr>
<tr>
<td>30</td>
<td>4.680</td>
<td>0.122</td>
<td>42</td>
<td>4.433</td>
<td>4.926</td>
</tr>
<tr>
<td>60</td>
<td>4.272</td>
<td>0.153</td>
<td>42</td>
<td>3.964</td>
<td>4.580</td>
</tr>
</tbody>
</table>

### time pairwise differences

<table>
<thead>
<tr>
<th>estimate</th>
<th>SE</th>
<th>df</th>
<th>t.ratio</th>
<th>p.value</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 - 30</td>
<td>-0.921</td>
<td>0.176</td>
<td>5.249</td>
<td>0.0001</td>
</tr>
<tr>
<td>0 - 60</td>
<td>-0.513</td>
<td>0.198</td>
<td>2.594</td>
<td>0.0391</td>
</tr>
<tr>
<td>30 - 60</td>
<td>0.407</td>
<td>0.196</td>
<td>2.083</td>
<td>0.1300</td>
</tr>
</tbody>
</table>

p values are adjusted using the bonferroni method for 3 tests

# unbalanced, don't match
rat.mean.v <- ddply(rat, .(vein), summarise, m = mean(loginsulin))
rat.mean.v

### vein m

<table>
<thead>
<tr>
<th>vein</th>
<th>m</th>
</tr>
</thead>
<tbody>
<tr>
<td>j</td>
<td>3.778</td>
</tr>
<tr>
<td>p</td>
<td>4.712</td>
</tr>
</tbody>
</table>

# compare jugular mean above (3.778) with the lsmeans average below (3.742)

(3.179610 + 4.286804 + 3.759076)/3

## [1] 3.742

### vein lsmeans

<table>
<thead>
<tr>
<th>vein</th>
<th>lsmean</th>
<th>SE</th>
<th>df</th>
<th>lower.CL</th>
<th>upper.CL</th>
</tr>
</thead>
<tbody>
<tr>
<td>j</td>
<td>3.742</td>
<td>0.132</td>
<td>42</td>
<td>3.476</td>
<td>4.008</td>
</tr>
<tr>
<td>p</td>
<td>4.732</td>
<td>0.082</td>
<td>42</td>
<td>4.568</td>
<td>4.896</td>
</tr>
</tbody>
</table>

### vein pairwise differences

<table>
<thead>
<tr>
<th>estimate</th>
<th>SE</th>
<th>df</th>
<th>t.ratio</th>
<th>p.value</th>
</tr>
</thead>
<tbody>
<tr>
<td>j - p</td>
<td>-0.990</td>
<td>0.155</td>
<td>6.387</td>
<td>0</td>
</tr>
</tbody>
</table>

p values are adjusted using the bonferroni method for 1 tests

# unbalanced, but highest-order interaction cell means will match
rat.mean.tv <- ddply(rat, .(time, vein), summarise, m = mean(loginsulin))
rat.mean.tv

### time vein m

<table>
<thead>
<tr>
<th>time</th>
<th>vein</th>
<th>m</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>j</td>
<td>3.180</td>
</tr>
<tr>
<td>0</td>
<td>p</td>
<td>4.338</td>
</tr>
<tr>
<td>30</td>
<td>j</td>
<td>4.287</td>
</tr>
<tr>
<td>30</td>
<td>p</td>
<td>5.072</td>
</tr>
<tr>
<td>60</td>
<td>j</td>
<td>3.759</td>
</tr>
<tr>
<td>60</td>
<td>p</td>
<td>4.785</td>
</tr>
</tbody>
</table>

### time:vein lsmeans

library(lsmeans)
lsmeans(lm.i.t.v.tv, list(pairwise ~ time | vein), adjust = "bonferroni")

## Warning: lsmeans of time may be misleading due to interaction with other predictor(s)

### time:vein lsmeans

<table>
<thead>
<tr>
<th>time</th>
<th>vein</th>
<th>lsmean</th>
<th>SE</th>
<th>df</th>
<th>lower.CL</th>
<th>upper.CL</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>j</td>
<td>3.148</td>
<td>0.126</td>
<td>42</td>
<td>2.886</td>
<td>3.408</td>
</tr>
<tr>
<td>0</td>
<td>p</td>
<td>4.312</td>
<td>0.082</td>
<td>42</td>
<td>4.149</td>
<td>4.475</td>
</tr>
<tr>
<td>30</td>
<td>j</td>
<td>4.268</td>
<td>0.153</td>
<td>42</td>
<td>3.938</td>
<td>4.598</td>
</tr>
<tr>
<td>30</td>
<td>p</td>
<td>5.017</td>
<td>0.152</td>
<td>42</td>
<td>4.716</td>
<td>5.318</td>
</tr>
<tr>
<td>60</td>
<td>j</td>
<td>3.759</td>
<td>0.153</td>
<td>42</td>
<td>3.429</td>
<td>4.089</td>
</tr>
<tr>
<td>60</td>
<td>p</td>
<td>4.785</td>
<td>0.175</td>
<td>42</td>
<td>4.435</td>
<td>5.136</td>
</tr>
</tbody>
</table>

### time:vein pairwise differences

<table>
<thead>
<tr>
<th>estimate</th>
<th>SE</th>
<th>df</th>
<th>t.ratio</th>
<th>p.value</th>
</tr>
</thead>
<tbody>
<tr>
<td>j - p</td>
<td>-0.990</td>
<td>0.155</td>
<td>6.387</td>
<td>0</td>
</tr>
</tbody>
</table>

p values are adjusted using the bonferroni method for 3 tests
## time

### vein

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>time</th>
<th>vein</th>
<th>lsmean</th>
<th>SE</th>
<th>df</th>
<th>lower.CL</th>
<th>upper.CL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>j</td>
<td>0</td>
<td></td>
<td>3.180</td>
<td>0.2116</td>
<td>42</td>
<td>2.753</td>
<td>3.607</td>
</tr>
<tr>
<td></td>
<td>j</td>
<td>30</td>
<td></td>
<td>4.287</td>
<td>0.1931</td>
<td>42</td>
<td>3.897</td>
<td>4.677</td>
</tr>
<tr>
<td></td>
<td>j</td>
<td>60</td>
<td></td>
<td>3.759</td>
<td>0.2731</td>
<td>42</td>
<td>3.208</td>
<td>4.310</td>
</tr>
<tr>
<td></td>
<td>p</td>
<td>0</td>
<td></td>
<td>4.338</td>
<td>0.1366</td>
<td>42</td>
<td>4.063</td>
<td>4.614</td>
</tr>
<tr>
<td></td>
<td>p</td>
<td>30</td>
<td></td>
<td>5.072</td>
<td>0.1496</td>
<td>42</td>
<td>4.771</td>
<td>5.374</td>
</tr>
<tr>
<td></td>
<td>p</td>
<td>60</td>
<td></td>
<td>4.785</td>
<td>0.1366</td>
<td>42</td>
<td>4.510</td>
<td>5.061</td>
</tr>
</tbody>
</table>

### $`time:vein pairwise differences`%

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>estimate</th>
<th>SE</th>
<th>df</th>
<th>t.ratio</th>
<th>p.value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>j</td>
<td>-1.1072</td>
<td>0.2864</td>
<td>42</td>
<td>-3.865</td>
<td>0.00227</td>
</tr>
<tr>
<td></td>
<td>j</td>
<td>-0.5795</td>
<td>0.3455</td>
<td>42</td>
<td>-1.677</td>
<td>0.60541</td>
</tr>
<tr>
<td></td>
<td>j</td>
<td>0.5277</td>
<td>0.3345</td>
<td>42</td>
<td>1.578</td>
<td>0.73284</td>
</tr>
<tr>
<td></td>
<td>p</td>
<td>-0.7342</td>
<td>0.2025</td>
<td>42</td>
<td>-3.625</td>
<td>0.00465</td>
</tr>
<tr>
<td></td>
<td>p</td>
<td>-0.4472</td>
<td>0.1931</td>
<td>42</td>
<td>-2.316</td>
<td>0.15313</td>
</tr>
<tr>
<td></td>
<td>p</td>
<td>0.2870</td>
<td>0.2025</td>
<td>42</td>
<td>1.417</td>
<td>0.98348</td>
</tr>
</tbody>
</table>

p values are adjusted using the bonferroni method for 6 tests

\[\text{lsmeans(lm.i.t.v.tv, list(pairwise ~ vein | time), adjust = "bonferroni")}\]

### $`vein:time lsmeans`%

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>vein</th>
<th>time</th>
<th>lsmean</th>
<th>SE</th>
<th>df</th>
<th>lower.CL</th>
<th>upper.CL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>j</td>
<td>0</td>
<td></td>
<td>3.180</td>
<td>0.2116</td>
<td>42</td>
<td>2.753</td>
<td>3.607</td>
</tr>
<tr>
<td></td>
<td>p</td>
<td>0</td>
<td></td>
<td>4.338</td>
<td>0.1366</td>
<td>42</td>
<td>4.063</td>
<td>4.614</td>
</tr>
<tr>
<td></td>
<td>j</td>
<td>30</td>
<td></td>
<td>4.287</td>
<td>0.1931</td>
<td>42</td>
<td>3.897</td>
<td>4.677</td>
</tr>
<tr>
<td></td>
<td>p</td>
<td>30</td>
<td></td>
<td>5.072</td>
<td>0.1496</td>
<td>42</td>
<td>4.771</td>
<td>5.374</td>
</tr>
<tr>
<td></td>
<td>j</td>
<td>60</td>
<td></td>
<td>3.759</td>
<td>0.2731</td>
<td>42</td>
<td>3.208</td>
<td>4.310</td>
</tr>
<tr>
<td></td>
<td>p</td>
<td>60</td>
<td></td>
<td>4.785</td>
<td>0.1366</td>
<td>42</td>
<td>4.510</td>
<td>5.061</td>
</tr>
</tbody>
</table>

### $`vein:time pairwise differences`%

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>estimate</th>
<th>SE</th>
<th>df</th>
<th>t.ratio</th>
<th>p.value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>j</td>
<td>-1.1586</td>
<td>0.2518</td>
<td>42</td>
<td>-4.601</td>
<td>0.00012</td>
</tr>
<tr>
<td></td>
<td>j</td>
<td>-0.7856</td>
<td>0.2443</td>
<td>42</td>
<td>-3.216</td>
<td>0.00751</td>
</tr>
<tr>
<td></td>
<td>j</td>
<td>1.0264</td>
<td>0.3054</td>
<td>42</td>
<td>-3.361</td>
<td>0.00499</td>
</tr>
</tbody>
</table>

p values are adjusted using the bonferroni method for 3 tests

For completeness, these diagnostic plots are mostly fine, though the plot of the Cook’s distances indicate a couple influential observations.

```R
interaction model
lm.i.t.v.tv <- lm(loginsulin ~ time*vein, data = rat, contrasts = list(time = contr.sum, vein = contr.sum))
plot diagnistics
par(mfrow=c(2,3))
plot(lm.i.t.v.tv, which = c(1,4,6))
plot(rat$time, lm.i.t.v.tv$residuals, main="Residuals vs time")
horizontal line at zero
abline(h = 0, col = "gray75")
plot(rat$vein, lm.i.t.v.tv$residuals, main="Residuals vs vein")
horizontal line at zero
abline(h = 0, col = "gray75")
library(car)
qqPlot(lm.i.t.v.tv$residuals, las = 1, id.n = 3, main="QQ Plot")
13 12 17
48 1 2
residuals vs order of data
plot(lm.i.t.v.tv$residuals, main="Residuals vs Order of data")
horizontal line at zero
abline(h = 0, col = "gray75")
```

```R
lsmeans(lm.i.t.v.tv, list(pairwise ~ vein | time), adjust = "bonferroni")
```
Should I use means or lsmeans, Type I or Type III SS? Use lsmeans and Type III SS.

Regardless of whether the design is balanced, the basic building blocks for a two-factor analysis are cell means, and the marginal means, defined as the average of the cell means over the levels of the other factor.

The $F$-statistics based on Type III SSs are appropriate for unbalanced two-factor designs because they test the same hypotheses that were considered in balanced designs. That is, the Type III $F$-tests on the main effects check for equality in population means averaged over levels of the other factor. The Type III $F$-test for no interaction checks for parallel profiles. Given that the Type III $F$-tests for the main effects check for equal population cell means averaged over the levels of the other factor, multiple comparisons for main effects should be based on lsmeans.

The Type I SS and $F$-tests and the multiple comparisons based on means should be ignored because they do not, in general, test meaningful hypotheses. The problem with using the means output is that the experimenter has fixed the sample sizes for a two-factor experiment, so comparisons of means, which ignore the second factor, introduces a potential bias due to choice of sample sizes. Put another way, any differences seen in the means in the jugular and portal could be solely due to the sample sizes used in the experiment and not due to differences in the veins.

Focusing on the Type III SS, the $F$-tests indicate that the vein and time effects are significant, but that the interaction is not significant. The jugular and portal profiles are reasonably parallel, which is consistent with a lack of interaction. What can you conclude from the lsmeans comparisons of veins and times?

Answer: significant differences between veins, and between times 0 and 30.
5.5 Writing factor model equations and interpreting coefficients

This section is an exercise in writing statistical factor models, plotting predicted values, and interpreting model coefficients. You’ll need pen (preferably multi-colored) and paper.

In class I’ll discuss indicator variables and writing these models. Together, we’ll plot the model predicted values, write the model for each factor combination, and indicate the $\beta$ coefficients on the plot ($\beta$s are vertical differences). From the exercise, I hope that coefficient interpretation will become clear. Assume a balanced design with $n_i$ observations for each treatment combination.

5.5.1 One-way ANOVA, 1 factor with 3 levels

1. Write ANOVA factor model (general and indicator-variables)
2. Write model for each factor level with $\beta$s and predicted values
3. Plot the predicted values on axes
4. Label the $\beta$s on the plot
5. Calculate marginal and grand means in table and label in plot

\[
\begin{array}{c|ccc}
\text{Level} & 1 & 2 & 3 \\
\hline
\hat{y} & 5 & 4 & 6 \\
\end{array}
\]

5.5.2 Two-way ANOVA, 2 factors with 3 and 2 levels, additive model

1. Write two-way ANOVA factor model (general and indicator-variables)
2. Write model for each factor level with $\beta$s and predicted values
3. Plot the predicted values on axes
4. Label the $\beta$s on the plot
5. Calculate marginal and grand means in table and label in plot

\[
\begin{array}{c|ccc}
\text{Factor 2} & 1 & 2 & 3 \\
\hline
\text{Factor 1} & 5 & 4 & 6 \\
1 & 8 & 7 & 9 \\
\end{array}
\]

5.5.3 Two-way ANOVA, 2 factors with 3 and 2 levels, interaction model

1. Write two-way ANOVA factor model (general and indicator-variables)
2. Write model for each factor level with $\beta$s and predicted values
3. Plot the predicted values on axes
4. Label the $\beta$s on the plot

5. Calculate marginal and grand means in table and label in plot

<table>
<thead>
<tr>
<th>$\hat{y}$</th>
<th>Factor 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Factor 2</td>
<td>1  2  3</td>
</tr>
<tr>
<td>1</td>
<td>5  4  6</td>
</tr>
<tr>
<td>2</td>
<td>8  10 3</td>
</tr>
</tbody>
</table>
Paired Experiments and Randomized Block Experiments
Chapter 6

A Short Discussion of Observational Studies

"Thou shall adjust for what thou can not control."

In most scientific studies, the groups being compared do not consist of identical experimental units that have been randomly assigned to receive a treatment. Instead, the groups might be extremely heterogeneous on factors that might be related to a specific response on which you wish to compare the groups. Inferences about the nature of differences among groups in such observational studies can be flawed if this heterogeneity is ignored in the statistical analysis.

The following problem emphasizes the care that is needed when analyzing observational studies, and highlights the distinction between the means and lsmeans output for a two-way table. The data are artificial, but the conclusions are consistent with an interesting analysis conducted by researchers at Sandia National Laboratories.

A representative sample of 550 high school seniors was selected in 1970. A similar sample of 550 was selected in 1990. The final SAT scores (on a 1600 point scale) were obtained for each student.

The boxplots for the two samples show heavy-tailed distributions with similar spreads. Given the large sample sizes, the $F$-test comparing populations is approximately valid even though the population distributions are non-normal.

```r
sat <- read.table("http://statacumen.com/teach/ADA2/ADA2_notes_Ch06_sat.dat", header = TRUE)
sat$year <- factor(sat$year)
sat$eth <- factor(sat$eth)

Interaction plots, ggplot
p <- ggplot(sat, aes(x = year, y = grade))
p <- p + geom_boxplot(alpha = 0.5)
p <- p + geom_point(position = position_jitter(v = 0.1, h = 0), colour="gray25", size=1, alpha = 0.2)

#p <- p + geom_line(data = sat.mean.y, aes(y = m), size = 1.5)
p <- p + labs(title = "SAT scores by year")
print(p)
```
A simple analysis might compare the average SAT scores for the two years, to see whether students are scoring higher, lower, or about the same, over time. The one-way \texttt{lsmeans} and \texttt{means} breakdowns of the SAT scores are identical; the average SAT scores for 1970 and 1990 are 892.8 and 882.2, respectively. The one-way ANOVA, combined with the observed averages, indicates that the typical SAT score has decreased significantly (10.7 points) over the 20 year period.

\begin{verbatim}
lm.g.y <- lm(grade ~ year, data = sat
contrasts = list(year = contr.sum))
library(car)
# type III SS
Anova(lm.g.y, type=3)
## Anova Table (Type III tests)
##    Sum Sq  Df F value Pr(>F)
## (Intercept) 8.66e+08  1 1.71e+06 < 2e-16 ***
## year 3.14e+04  1  6.19e+01  8.6e-15 ***
## Residuals 5.57e+05 1098
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

library(plyr)
# balanced with respect to year, so means and lsmeans match
sat.mean.y <- ddply(sat, .(year), summarise, m = mean(grade))
sat.mean.y
##   year m
## 1 1970 892.8
## 2 1990 882.2
\end{verbatim}
library(lsmeans)
lsmeans(lm.g.y, list(pairwise ~ year), adjust = "bonferroni")

Should we be alarmed? Should we be concerned that students entering college have fewer skills than students 20 years ago? Should we be pumping billions of dollars into the bloated bureaucracies of our public school systems with the hope that a few of these dollars might be put to good use in programs to enhance performance? This is the consensus among some people in the know, all of whom wax eloquently about the impending inability of the U.S. to compete in the new global economy.

The SAT study is not a well-designed experiment, where a scientist has controlled all the factors that might affect the response (the SAT score) other than the treatment (the year). Even without these controls, there is no randomization of treatments to students selected from a target population.

The SAT study is an observational study of two distinct populations. The observed differences in SAT scores may indeed be due to a decrease in performance. The differences might also be due to factors that make the two populations incomparable for assessing changes in performance over time.

My hypothetical populations have students from two ethnic groups (1 and 2). If you construct box-plots of the SAT scores for the four combinations of ethnicity and year, you see that the typical SAT score within each ethnic group has increased over time, whereas the typical SAT score ignoring ethnicity decreased over time. Is this a paradox, and what are appropriate conclusions in the analysis?

sat.mean.ye <- ddply(sat, .(year,eth), summarise, m = mean(grade))
sat.mean.ye

# Interaction plots, ggplot
library(ggplot2)
p <- ggplot(sat, aes(x = year, y = grade, colour = eth))
p <- p + geom_boxplot(alpha = 0.5, outlier.size=0.5)
p <- p + geom_point(data = sat.mean.ye, aes(y = n), size = 4)
p <- p + geom_line(data = sat.mean.ye, aes(y = n, group = eth), size = 1.5)
p <- p + labs(title = "SAT interaction plot, eth by year")
print(p)

#p <- ggplot(sat, aes(x = eth, y = grade, colour = year))
#p <- p + geom_boxplot(alpha = 0.5, outlier.size=0.5)
#p <- p + geom_point(data = sat.mean.ye, aes(y = n), size = 4)
#p <- p + geom_line(data = sat.mean.ye, aes(y = n, group = year), size = 1.5)
#p <- p + labs(title = "SAT interaction plot, year by eth")
#print(p)
I fit a two-factor model with year and ethnicity effects plus an interaction. The two-factor model gives a method to compare the SAT scores over time, after adjusting for the effect of ethnicity on performance. The $F$-test for comparing years adjusts for ethnicity because it is based on comparing the average SAT scores across years after averaging the cell means over ethnicities, thereby eliminating from the comparison of years any effects due to changes in the ethnic composition of the populations. The two-way analysis is preferable to the unadjusted one-way analysis which ignores ethnicity.

```r
lm.g.y.e.ye <- lm(grade ~ year * eth, data = sat,
 contrasts = list(year = contr.sum, eth = contr.sum))
CRITICAL!!! Unbalanced design warning.
The contrast statement above must be included identifying
each main effect with "contr.sum" in order for the correct
Type III SS to be computed.
library(car)
type III SS
Anova(lm.g.y.e.ye, type=3)
Anova Table (Type III tests)
Response: grade
Sum Sq Df F value Pr(>F)
(Intercept) 2.86e+08 1 5.70e+06 <2e-16 ***
year 2.28e+05 1 4.55e+03 <2e-16 ***
eth 5.02e+05 1 1.00e+04 <2e-16 ***
year:eth 1.45e+02 1 2.89e+00 0.089 .
Residuals 5.50e+04 1096
```
The year and ethnicity main effects are significant in the two factor model, but the interaction is not. The marginal \texttt{lsmeans} indicate that the average SAT score increased significantly over time when averaged over ethnicities. This is consistent with the cell mean SAT scores increasing over time \textit{within} each ethnic group. Given the lack of a significant interaction, the expected increase in SAT scores from 1970 to 1990 \textit{within each} ethnic group is the difference in marginal averages: \( 912.0 - 861.9 = 50.1 \).

```r
library(plyr)
unbalanced, don't match (lsmeans is correct)
sat.mean.y <- ddply(sat, .(year), summarise, m = mean(grade))
sat.mean.y
year m
1 1970 892.8
2 1990 882.2

library(lsmeans)
lsmeans(lm.g.y.e.ye, list(pairwise ~ year), adjust = "bonferroni")
Warning: lsmeans of year may be misleading due to interaction with other predictor(s)
$`year lsmeans`
year lsmean SE df lower.CL upper.CL
1970 861.9 0.5253 1096 860.9 863.0
1990 912.0 0.5253 1096 911.0 913.1
##
$`year pairwise differences`
estimate SE df t.ratio p.value
1970 - 1990 -50.11 0.7429 1096 -67.45 0
p values are adjusted using the bonferroni method for 1 tests

unbalanced, don't match (lsmeans is correct)
sat.mean.e <- ddply(sat, .(eth), summarise, m = mean(grade))
sat.mean.e
eth m
1 1 904.2
2 2 870.8

lsmeans(lm.g.y.e.ye, list(pairwise ~ eth), adjust = "bonferroni")
Warning: lsmeans of eth may be misleading due to interaction with other predictor(s)
$`eth lsmeans`
eth lsmean SE df lower.CL upper.CL
1 924.1 0.5253 1096 923.1 925.2
2 849.8 0.5253 1096 848.8 850.9
##
$`eth pairwise differences`
estimate SE df t.ratio p.value
1 - 2 74.31 0.7429 1096 100 0
p values are adjusted using the bonferroni method for 1 tests

unbalanced, but highest-order interaction cell means will match
sat.mean.ye <- ddply(sat, .(year,eth), summarise, m = mean(grade))
sat.mean.ye
year eth m
1 1970 1 899.7
```
As noted in the insulin analysis, the marginal `lsmeans` and `means` are different for unbalanced two-factor analyses. The marginal `means` ignore the levels of the other factors when averaging responses. The marginal `lsmeans` are averages of cell means over the levels of the other factor. Thus, for example, the 1970 `mean` SAT score of 892.8 is the average of the 550 scores selected that year. The 1970 `lsmeans` SAT score of 861.9 is midway between the average 1970 SAT scores for the two ethnic groups: 861.9 = (899.7 + 824.1)/2. Hopefully, this discussion also clarifies why the year marginal `means` are identical in the one and two-factor analyses, but the year `lsmeans` are not.

The 1970 and 1990 marginal `means` estimate the typical SAT score ignoring all factors that may influence performance. These marginal averages are not relevant for understanding any trends in performance over time because they do not account for changes in the composition of the population that may be related to performance.

The average SAT scores (ignoring ethnicity) decreased from 1970 to 1990 because the ethnic composition of the student population changed. Ten out of every eleven students sampled in 1970 were from the first ethnic group. Only one out of eleven students sampled in 1990 was from this group. Students in the second ethnic group are underachievers, but they are becoming a larger portion of the population over time. The decrease in average (`means`) performance inferred from comparing 1970 to 1990 is confounded with the increased representation of the underachievers over time. Once ethnicity was taken into consideration, the typical SAT scores were shown to have increased, rather than decreased.
In summary, the one-way analysis ignoring ethnicity is valid, and allows you to conclude that the typical SAT score has decreased over time, but it does not provide any insight into the nature of the changes that have occurred. A two-factor analysis backed up with a comparison of the marginal \textit{lsmeans} is needed to compare performances over time, adjusting for the changes in ethnic composition.

The Sandia study reached the same conclusion. The Sandia team showed that the widely reported decreases in SAT scores over time are due to changes in the ethnic distribution of the student population over time, with individuals in historically underachieving ethnic groups becoming a larger portion of the student population over time.

A more complete analysis of the SAT study would adjust the SAT scores to account for other potential confounding factors, such as sex, and differences due to the number of times the exam was taken. These confounding effects are taken into consideration by including them as effects in the model.

The interpretation of the results from an observational study with several effects of interest, and several confounding variables, is greatly simplified by eliminating the insignificant effects from the model. For example, the year by ethnicity interaction in the SAT study might be omitted from the model to simplify interpretation. The year effects would then be estimated after fitting a two-way additive model with year and ethnicity effects only. The same approach is sometimes used with designed experiments, say the insulin study that we analyzed earlier.

\textbf{An important caveat} The ideas that we discussed on the design and analysis of experiments and observational studies are universal. They apply regardless of whether you are analyzing categorical data, counts, or measurements.
Part IV

ANCOVA and logistic regression
Chapter 7

Analysis of Covariance: Comparing Regression Lines

Suppose that you are interested in comparing the typical lifetime (hours) of two tool types (A and B). A simple analysis of the data given below would consist of making side-by-side boxplots followed by a two-sample test of equal means (or medians). The standard two-sample test using the pooled variance estimator is a special case of the one-way ANOVA with two groups. The summaries suggest that the distribution of lifetimes for the tool types are different. In the output below, \( \mu_i \) is population mean lifetime for tool type \( i \) (\( i = A, B \)).

```r
tools <- read.table("http://statacumen.com/teach/ADA2/ADA2_notes_Ch07_tools.dat", header = TRUE)
str(tools)
'data.frame': 20 obs. of 3 variables:
$ lifetime: num 18.7 14.5 17.4 14.5 13.4 ...
$ rpm : int 610 950 720 840 980 530 680 540 890 730 ...
$ type : Factor w/ 2 levels "A","B": 1 1 1 1 1 1 1 1 1 1 ...

library(ggplot2)
p <- ggplot(tools, aes(x = type, y = lifetime))
plot a reference line for the global mean (assuming no groups)
p <- p + geom_hline(aes(yintercept = mean(lifetime)),
 colour = "black", linetype = "dashed", size = 0.3, alpha = 0.5)
boxplot, size=.75 to stand out behind CI
p <- p + geom_boxplot(size = 0.75, alpha = 0.5)
points for observed data
p <- p + geom_point(position = position_jitter(v = 0.05, h = 0), alpha = 0.5)
diamond at mean for each group
p <- p + stat_summary(fun.y = mean, geom = "point", shape = 18, size = 6)
A two sample t-test comparing mean lifetimes of tool types indicates a difference between means.

```
t.summary <- t.test(lifetime ~ type, data = tools)
t.summary
```
```
##
## Welch Two Sample t-test
##
## data: lifetime by type
## t = -6.435, df = 15.93, p-value = 8.422e-06
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -19.701 -9.935
## sample estimates:
## mean in group A mean in group B
## 17.11 31.93
```

This comparison is potentially misleading because the samples are not comparable. A one-way ANOVA is most appropriate for designed experiments where all the factors influencing the response, other than the treatment (tool type), are fixed by the experimenter. The tools were operated at different speeds. If speed influences lifetime, then the observed differences in lifetimes could be due to differences in speeds at which the two tool types were operated.

Fake example For example, suppose speed is inversely related to lifetime of the tool. Then, the differences seen in the boxplots above could be due to tool type B being operated at lower speeds than tool type A. To see how this is possible, consider the data plot given below, where the relationship between lifetime and speed is identical in each sample. A simple linear regression model relating hours to speed, ignoring tool type, fits the data exactly, yet the lifetime distributions for the tool types, ignoring speed, differ dramatically. (The data were generated to fall exactly on a straight line). The regression model indicates that you would expect identical mean lifetimes for tool types A and B, if they were, or could be, operated at identical speeds. This is not exactly what happens in the actual data. However, I hope the point is clear.
As noted in the Chapter 6 SAT example, you should be wary of group comparisons where important factors that influence the response have not been accounted for or controlled. In the SAT example, the differences in scores were affected by a change in the ethnic composition over time. A two-way ANOVA with two factors, time and ethnicity, gave the most sensible analysis.

For the tool lifetime problem, you should compare groups (tools) after adjusting the lifetimes to account for the influence of a measurement variable, speed. The appropriate statistical technique for handling this problem is called analysis of covariance (ANCOVA).

7.1 ANCOVA

A natural way to account for the effect of speed is through a multiple regression model with lifetime as the response and two predictors, speed and tool type. A binary categorical variable, here tool type, is included in the model as a dummy variable or indicator variable (a \{0, 1\} variable).

Consider the model

$$\text{Tool lifetime} = \beta_0 + \beta_1 \text{typeB} + \beta_2 \text{rpm} + e,$$

where typeB is 0 for type A tools, and 1 for type B tools. For type A tools, the model simplifies to:

$$\text{Tool lifetime} = \beta_0 + \beta_1 (0) + \beta_2 \text{rpm} + e = \beta_0 + \beta_2 \text{rpm} + e.$$

For type B tools, the model simplifies to:

$$\text{Tool lifetime} = \beta_0 + \beta_1 (1) + \beta_2 \text{rpm} + e = (\beta_0 + \beta_1) + \beta_2 \text{rpm} + e.$$

This ANCOVA model fits two regression lines, one for each tool type, but restricts the slopes of the regression lines to be identical. To see this, let us focus on the interpretation of the regression coefficients. For the ANCOVA model,
\[\beta_2 = \text{slope of population regression lines for tool types A and B}. \]

and

\[\beta_0 = \text{intercept of population regression line for tool A (called the reference group)}. \]

Given that

\[\beta_0 + \beta_1 = \text{intercept of population regression line for tool B}, \]

it follows that

\[\beta_1 = \text{difference between tool B and tool A intercepts}. \]

A picture of the population regression lines for one version of the model is given below.

An important feature of the ANCOVA model is that \(\beta_1 \) measures the difference in mean response for the tool types, regardless of the speed. A test of \(H_0 : \beta_1 = 0 \) is the primary interest, and is interpreted as a comparison of the tool types, after adjusting or allowing for the speeds at which the tools were operated.

The ANCOVA model is plausible. The relationship between lifetime and speed is roughly linear within tool types, with similar slopes but unequal intercepts across groups. The plot of the studentized residuals against the fitted values shows no gross abnormalities, but suggests that the variability about the regression line for tool type A is somewhat smaller than the variability for tool type B. The model assumes that the variability of the responses is the same for each group. The QQ-plot does not show any gross deviations from a straight line.

```r
library(ggplot2)
p <- ggplot(tools, aes(x = rpm, y = lifetime, colour = type, shape = type))
p <- p + geom_point(size=4)
library(R.oo) # for ascii code lookup
p <- p + scale_shape_manual(values=charToInt(sort(unique(tools$type))))
p <- p + geom_smooth(method = lm, se = FALSE)
p <- p + labs(title="Tools data, lifetime by rpm with categorical type")
print(p)
```
To tools data, lifetime by rpm with categorical type

```
lm.l.r.t <- lm(lifetime ~ rpm + type, data = tools)
#library(car)
#Anova(aov(lm.l.r.t), type=3)
summary(lm.l.r.t)
```

```
##
## Call:
## lm(formula = lifetime ~ rpm + type, data = tools)
##
## Residuals:
## Min 1Q Median 3Q Max
## -5.553 -1.787 -0.002 1.839 4.984
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 36.98560 3.51038 10.54 7.2e-09 ***
## rpm -0.02661 0.00452 -5.89 1.8e-05 ***
## typeB 15.00425 1.35967 11.04 3.6e-09 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 3.04 on 17 degrees of freedom
## Multiple R-squared: 0.9, Adjusted R-squared: 0.889
## F-statistic: 76.7 on 2 and 17 DF, p-value: 3.09e-09
```

```
# plot diagnostics
par(mfrow=c(2,3))
plot(lm.l.r.t, which = c(1,4,6), pch=as.character(tools$type))

plot(tools$rpm, lm.l.r.t$residuals, main="Residuals vs rpm", pch=as.character(tools$type))
# horizontal line at zero
abline(h = 0, col = "gray75")

plot(tools$type, lm.l.r.t$residuals, main="Residuals vs type")
# horizontal line at zero
abline(h = 0, col = "gray75")

# Normality of Residuals
library(car)
qqPlot(lm.l.r.t$residuals, las = 1, id.n = 3, main="QQ Plot", pch=as.character(tools$type))
## 7 20 19
## 2 20 19

# residuals vs order of data
#plot(lm.l.r.t$residuals, main="Residuals vs Order of data")
# # horizontal line at zero
# abline(h = 0, col = "gray75")
```
The fitted relationship for the combined data set is

\[
\text{Predicted Lifetime} = 36.99 + 15.00 \text{ typeB} - 0.0266 \text{ rpm}.
\]

Assigning the LS estimates to the appropriate parameters, the fitted relationships for the two tool types must be, for tool type B:

\[
\text{Predicted Lifetime} = (36.99 + 15.00) - 0.0266 \text{ rpm} = 51.99 - 0.0266 \text{ rpm},
\]

and for tool type A:

\[
\text{Predicted Lifetime} = 36.99 - 0.0266 \text{ rpm}.
\]

The \(t \)-test of \(H_0 : \beta_1 = 0 \) checks whether the intercepts for the population regression lines are equal, assuming equal slopes. The \(t \)-test p-value < 0.0001 suggests that the population regression lines for tools A and B have unequal intercepts. The LS lines indicate that the average lifetime of either type tool decreases by 0.0266 hours for each increase in 1 RPM. Regardless of the lathe speed, the model predicts that type B tools will last 15 hours longer (i.e., the regression coefficient for the typeB predictor) than type A tools. Summarizing this result another way, the \(t \)-test suggests that there is a significant difference between the lifetimes of the two tool types, after adjusting for the effect of the speeds at which the tools were operated. The estimated difference in average lifetime is 15 hours, regardless of the lathe speed.
7.2 Generalizing the ANCOVA Model to Allow Unequal Slopes

I will present a flexible approach for checking equal slopes and equal intercepts in ANCOVA-type models. The algorithm also provides a way to build regression models in studies where the primary interest is comparing the regression lines across groups rather than comparing groups after adjusting for a regression effect. The approach can be applied to an arbitrary number of groups and predictors. For simplicity, I will consider a problem with three groups and a single regression effect.

The data\(^1\) below are the IQ scores of identical twins, one raised in a foster home (IQF) and the other raised by natural parents (IQN). The 27 pairs are divided into three groups by social status of the natural parents (H=high, M=medium, L=low). I will examine the regression of IQF on IQN for each of the three social classes.

There is no a priori reason to assume that the regression lines for the three groups have equal slopes or equal intercepts. These are, however, reasonable hypotheses to examine. The easiest way to check these hypotheses is to fit a multiple regression model to the combined data set, and check whether certain carefully defined regression effects are zero. The most general model has six parameters, and corresponds to fitting a simple linear regression model to the three groups separately \((3 \times 2 = 6)\).

Two indicator variables are needed to uniquely identify each observation by social class. For example, let \(I_1 = 1\) for H status families and \(I_1 = 0\) otherwise, and let \(I_2 = 1\) for M status families and \(I_2 = 0\) otherwise. The indicators \(I_1\) and \(I_2\) jointly assume 3 values:

<table>
<thead>
<tr>
<th>Status</th>
<th>(I_1)</th>
<th>(I_2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>L</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>M</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>H</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Given the indicators \(I_1\) and \(I_2\) and the predictor IQN, define two interaction or product effects: \(I_1 \times \text{IQN}\) and \(I_2 \times \text{IQN}\).

7.2.1 Unequal slopes ANCOVA model

The most general model allows separate slopes and intercepts for each group:

\[
\text{IQF} = \beta_0 + \beta_1 I_1 + \beta_2 I_2 + \beta_3 \text{IQN} + \beta_4 I_1 \text{IQN} + \beta_5 I_2 \text{IQN} + e. \tag{7.1}
\]

This model is best understood by considering the three status classes separately. If status = L, then \(I_1 = I_2 = 0\). For these families

\[
\text{IQF} = \beta_0 + \beta_3 \text{IQN} + e.
\]

If status = M, then \(I_1 = 0\) and \(I_2 = 1\). For these families

\[
\text{IQF} = \beta_0 + \beta_2(1) + \beta_3 \text{IQN} + \beta_5 \text{IQN} + e
\]

\[
= (\beta_0 + \beta_2) + (\beta_3 + \beta_5) \text{IQN} + e.
\]

\(^1\)The data were originally analyzed by Sir Cyril Burt.
Finally, if status = H, then $I_1 = 1$ and $I_2 = 0$. For these families

$$\text{IQF} = \beta_0 + \beta_1 (1) + \beta_3 \text{IQN} + \beta_4 \text{IQN} + e$$
$$= (\beta_0 + \beta_1) + (\beta_3 + \beta_4) \text{IQN} + e.$$

The regression coefficients β_0 and β_3 are the intercept and slope for the L status population regression line. The other parameters measure differences in intercepts and slopes across the three groups, using L status families as a baseline or reference group. In particular:

$\beta_1 =$ difference between the intercepts of the H and L population regression lines.

$\beta_2 =$ difference between the intercepts of the M and L population regression lines.

$\beta_4 =$ difference between the slopes of the H and L population regression lines.

$\beta_5 =$ difference between the slopes of the M and L population regression lines.

The plot gives a possible picture of the population regression lines corresponding to the general model (7.1).

We fit the general model to the twins data.

twins <- read.table("http://statacumen.com/teach/ADA2/ADA2_notes_Ch07_twins.dat", header = TRUE)
set "L" as baseline level
twins$status <- relevel(twins$status, "L")
str(twins)
'data.frame': 27 obs. of 3 variables:
$ IQF : int 82 80 88 108 116 117 132 71 75 93 ...
$ IQN : int 82 90 91 115 115 129 131 78 79 82 ...
$ status: Factor w/ 3 levels "L","H","M": 2 2 2 2 2 2 2 3 3 3 ...
7.2 Generalizing the ANCOVA Model to Allow Unequal Slopes

```r
library(ggplot2)
p <- ggplot(twins, aes(x = IQN, y = IQF, colour = status, shape = status))
p <- p + geom_point(size=4)
library(R.oo) # for ascii code lookup
p <- p + scale_shape_manual(values=charToInt(sort(unique(twins$status))))
p <- p + geom_smooth(method = lm, se = FALSE)
p <- p + labs(title="Twins data, IQF by IQN with categorical status")
# equal axes since x- and y-variables are same quantity
dat.range <- range(twins[,c("IQF","IQN")])
p <- p + xlim(dat.range) + ylim(dat.range) + coord_equal(ratio=1)
print(p)

# Twins data, IQF by IQN with categorical status

lm.f.n.s.ns <- lm(IQF ~ IQN*status, data = twins)
library(car)
Anova(aov(lm.f.n.s.ns), type=3)
## Anova Table (Type III tests)
##
## Response: IQF
##           Sum Sq Df F value Pr(>F)
## (Intercept) 12 1  0.18  0.67
## IQN     1700  1 27.10 3.7e-05 ***
## status     9  2  0.07  0.93
## IQN:status  1  2  0.01  0.99
## Residuals 1317 21
##---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

summary(lm.f.n.s.ns)
##
## Call:
##   lm(formula = IQF ~ IQN * status, data = twins)
##
## Residuals:
##    Min     1Q    Median     3Q    Max
## -14.480  -5.248  -0.155  4.582  13.798
##
## Coefficients:
##   Estimate Std. Error t value Pr(>|t|)
```
The natural way to express the fitted model is to give separate prediction equations for the three status groups. Here is an easy way to get the separate fits. For the general model (7.1), the
predicted IQF satisfies

\[
\text{Predicted IQF} = (\text{Intercept} + \text{Coeff for Status Indicator}) \\
+ (\text{Coeff for Status Product Effect} + \text{Coeff for IQN}) \times \text{IQN}.
\]

For the baseline group, use 0 as the coefficients for the status indicator and product effect.
Thus, for the baseline group with status = L,

\[
\text{Predicted IQF} = 7.20 + 0 + (0.948 + 0) \times \text{IQN} \\
= 7.20 + 0.948 \times \text{IQN}.
\]

For the M status group with indicator \(I_2\) and product effect \(I_2 \times \text{IQN}\):

\[
\text{Predicted IQF} = 7.20 - 6.39 + (0.948 + 0.024) \times \text{IQN} \\
= 0.81 + 0.972 \times \text{IQN}.
\]

For the H status group with indicator \(I_1\) and product effect \(I_1 \times \text{IQN}\):

\[
\text{Predicted IQF} = 7.20 - 9.08 + (0.948 + 0.029) \times \text{IQN} \\
= -1.88 + 0.977 \times \text{IQN}.
\]

The LS lines are identical to separately fitting simple linear regressions to the three groups.

7.2.2 Equal slopes ANCOVA model

There are three other models of potential interest besides the general model. The **equal slopes** ANCOVA model

\[
\text{IQF} = \beta_0 + \beta_1 I_1 + \beta_2 I_2 + \beta_3 \text{IQN} + e
\]

is a special case of (7.1) with \(\beta_4 = \beta_5 = 0\) (no interaction). In the ANCOVA model, \(\beta_3\) is the slope for all three regression lines. The other parameters have the same interpretation as in the general model (7.1), see the plot above. Output from the ANCOVA model is given below.
For the ANCOVA model, the predicted IQF for the three groups satisfies

\[
\text{Predicted IQF} = (\text{Intercept} + \text{Coeff for Status Indicator}) + (\text{Coeff for IQN}) \times \text{IQN}.
\]

As with the general model, use 0 as the coefficients for the status indicator and product effect for the baseline group.

For L status families:

\[
\text{Predicted IQF} = 5.62 + 0.966 \text{ IQN},
\]

for M status:

\[
\text{Predicted IQF} = 5.62 - 4.19 + 0.966 \text{ IQN} = 1.43 + 0.966 \text{ IQN},
\]

and for H status:

\[
\text{Predicted IQF} = 5.62 - 6.23 + 0.966 \text{ IQN} = -0.61 + 0.966 \text{ IQN}.
\]
7.2.3 Equal slopes and equal intercepts ANCOVA model

The model with equal slopes and equal intercepts

\[\text{IQF} = \beta_0 + \beta_3 \text{IQN} + e \]

is a special case of the ANCOVA model with \(\beta_1 = \beta_2 = 0 \). This model does not distinguish among social classes. The common intercept and slope for the social classes are \(\beta_0 \) and \(\beta_3 \), respectively.

The predicted IQF for this model is

\[\text{IQF} = 9.21 + 0.901 \text{IQN} \]

for each social class.

```
lm.f.n <- lm(IQF ~ IQN, data = twins)
#library(car)
#Anova(aov(lm.f.n), type=3)
summary(lm.f.n)
```

##
Call:
lm(formula = IQF ~ IQN, data = twins)
##
Residuals:
Min 1Q Median 3Q Max
-11.351 -5.731 0.057 4.324 16.353
##
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 9.2076 9.2999 0.99 0.3313
IQN 0.9014 0.0963 9.36 1.22e-09 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
Residual standard error: 7.73 on 25 degrees of freedom
Multiple R-squared: 0.778, Adjusted R-squared: 0.769
F-statistic: 87.6 on 1 and 25 DF, p-value: 1.22e-09
```

7.2.4 No slopes, but intercepts ANCOVA model

The model with no predictor (IQN) effects

\[ \text{IQF} = \beta_0 + \beta_1 I_1 + \beta_2 I_2 + e \]

is a special case of the ANCOVA model with \( \beta_3 = 0 \). In this model, social status has an effect on IQF but IQN does not. This model of parallel regression lines with zero slopes is identical to a one-way ANOVA model for the three social classes, where the intercepts play the role of the population means, see the plot below.
For the ANOVA model, the predicted IQF for the three groups satisfies

\[ \text{Predicted IQF} = \text{Intercept} + \text{Coeff for Status Indicator} \]

Again, use 0 as the coefficients for the baseline status indicator.

For L status families:

\[ \text{Predicted IQF} = 93.71, \]

for M status:

\[
\begin{align*}
\text{Predicted IQF} & = 93.71 - 4.88 \\
& = 88.83,
\end{align*}
\]

and for H status:

\[
\begin{align*}
\text{Predicted IQF} & = 93.71 + 9.57 \\
& = 103.28.
\end{align*}
\]

The predicted IQFs are the mean IQFs for the three groups.

```r
lm.f.s <- lm(IQF ~ status, data = twins)
library(car)
Anova(aov(lm.f.s), type=3)
Anova Table (Type III tests)
##
Response: IQF
Sum Sq Df F value Pr(>F)
(Intercept) 122953.1 1 492.386 <2e-16 ***
status 732.3 2 1.463 0.250
Residuals 5992.8 24

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```
7.3 Relating Models to Two-Factor ANOVA

Recall the multiple regression formulation of the general model (7.1):

\[ IQF = \beta_0 + \beta_1 I_1 + \beta_2 I_2 + \beta_3 IQN + \beta_4 I_1 IQN + \beta_5 I_2 IQN + e. \] (7.2)

If you think of \( \beta_0 \) as a grand mean, \( \beta_1 I_1 + \beta_2 I_2 \) as the status effect (i.e., the two indicators \( I_1 \) and \( I_2 \) allow you to differentiate among social classes), \( \beta_3 \) IQN as the IQN effect and \( \beta_4 I_1 IQN + \beta_5 I_2 IQN \) as the status by IQN interaction, then you can represent the model as

\[ IQF = \text{Grand Mean} + \text{Status Effect} + \text{IQN effect} + \text{Status} \times \text{IQN interaction} + \text{Residual}. \] (7.3)

This representation has the same form as a two-factor ANOVA model with interaction, except that IQN is a quantitative effect rather than a qualitative (i.e., categorical) effect. The general model has the same structure as a two-factor interaction ANOVA model because the plot of the population means allows non-parallel profiles. However, the general model is a special case of the two-factor interaction ANOVA model because it restricts the means to change linearly with IQN.

The ANCOVA model has main effects for status and IQN but no interaction:

\[ IQF = \text{Grand Mean} + \text{Status Effect} + \text{IQN effect} + \text{Residual}. \] (7.4)

The ANCOVA model is a special case of the additive two-factor ANOVA model because the plot of the population means has parallel profiles, but is not equivalent to the additive two-factor ANOVA model.

The model with equal slopes and intercepts has no main effect for status nor an interaction between status and IQN:

\[ IQF = \text{Grand Mean} + \text{IQN effect} + \text{Residual}. \] (7.5)
The one-way ANOVA model has no main effect for IQN nor an interaction between status and IQN:

\[
IQF = \text{Grand Mean} + \text{Status Effect} + \text{Residual}. \tag{7.6}
\]

I will expand on these ideas later, as they are useful for understanding the connections between regression and ANOVA models.

### 7.4 Choosing Among Models

I will suggest a backward sequential method to select which of models (7.1), (7.4), and (7.5) fits best. You would typically be interested in the one-way ANOVA model (7.6) only when the effect of IQN was negligible.

**Step 1:** Fit the full model (7.1) and test the hypothesis of equal slopes \(H_0 : \beta_4 = \beta_5 = 0\). (aside: \(t\)-tests are used to test either \(\beta_4 = 0\) or \(\beta_5 = 0\).) To test \(H_0\), eliminate the predictor variables \(I_1\) IQN and \(I_2\) IQN associated with \(\beta_4\) and \(\beta_5\) from the full model (7.1). Then fit the reduced model (7.4) with equal slopes. Reject \(H_0 : \beta_4 = \beta_5 = 0\) if the increase in the Residual SS obtained by deleting \(I_1\) IQN and \(I_2\) IQN from the full model is significant. Formally, compute the \(F\)-statistic:

\[
F_{obs} = \frac{(\text{ERROR SS for reduced model} - \text{ERROR SS for full model})/2}{\text{ERROR MS for full model}}
\]

and compare it to an upper-tail critical value for an \(F\)-distribution with 2 and \(df\) degrees of freedom, where \(df\) is the Residual \(df\) for the full model. The \(F\)-test is a direct extension of the single degree-of-freedom \(F\)-tests in the stepwise fits. A p-value for \(F\)-test is obtained from \texttt{library(car)} with \texttt{Anova(aov(LMOBJECT), type=3)} for the interaction. If \(H_0\) is rejected, stop and conclude that the population regression lines have different slopes (and then I do not care whether the intercepts are equal). Otherwise, proceed to step 2.

**Step 2:** Fit the equal slopes or ANCOVA model (7.4) and test for equal intercepts \(H_0 : \beta_1 = \beta_2 = 0\). Follow the procedure outlined in Step 1, treating the ANCOVA model as the full model and the model \(IQF = \beta_0 + \beta_3\) IQN + \(e\) with equal slopes and intercepts as the reduced model. See the intercept term using \texttt{library(car)} with \texttt{Anova(aov(LMOBJECT), type=3)}. If \(H_0\) is rejected, conclude that that population regression lines are parallel with unequal intercepts. Otherwise, conclude that regression lines are identical.

**Step 3:** Estimate the parameters under the appropriate model, and conduct a diagnostic analysis. Summarize the fitted model by status class.

A comparison of regression lines across \(k > 3\) groups requires \(k - 1\) indicator variables to define the groups, and \(k - 1\) interaction variables, assuming the model has a single predictor. The comparison of models mimics the discussion above, except that the numerator of the \(F\)-statistic is divided by \(k - 1\) instead of 2, and the numerator \(df\) for the \(F\)-test is \(k - 1\) instead of 2. If \(k = 2\), the \(F\)-tests for comparing the three models are equivalent to \(t\)-tests given with the parameter estimates summary. For example, recall how you tested for equal intercepts in the tools problems.

The plot of the twins data shows fairly linear relationships within each social class. The linear relationships appear to have similar slopes and similar intercepts. The p-value for testing the
hypothesis that the slopes of the population regression lines are equal is essentially 1. The observed data are consistent with the reduced model of equal slopes.

The p-value for comparing the model of equal slopes and equal intercepts to the ANCOVA model is 0.238, so there is insufficient evidence to reject the reduced model with equal slopes and intercepts. The estimated regression line, regardless of social class, is:

$$\text{Predicted IQF} = 9.21 + 0.901 \times \text{IQN}.$$  

There are no serious inadequacies with this model, based on a diagnostic analysis (not shown).

An interpretation of this analysis is that the natural parents’ social class has no impact on the relationship between the IQ scores of identical twins raised apart. What other interesting features of the data would be interesting to explore? For example, what values of the intercept and slope of the population regression line are of intrinsic interest?

### 7.4.1 Simultaneous testing of regression parameters

In the twins example, we have this full interaction model,

$$\text{IQF} = \beta_0 + \beta_1 I_1 + \beta_2 I_2 + \beta_3 \text{IQN} + \beta_4 I_1 \text{IQN} + \beta_5 I_2 \text{IQN} + e,$$  \hspace{1cm} (7.7) 

where $I_1 = 1$ indicates H, and $I_2 = 1$ indicates M, and L is the baseline status.

Consider these two specific hypotheses:

1. $H_0: \beta_2 = 0$ and $\beta_5 = 0$
2. $H_0: \beta_1 = \beta_2$ and $\beta_4 = \beta_5$

That is, the intercept and slope for the regression lines are equal for the pairs of status groups.

First, it is necessary to formulate these hypotheses in terms of testable parameters. That is, find the $\beta$ values that make the null hypothesis true in terms of the model equation.

1. $H_0: \beta_2 = 0$ and $\beta_5 = 0$
2. $H_0: \beta_1 = \beta_2$ and $\beta_4 = \beta_5$

Using linear model theory, there are methods for testing these multiple-parameter hypothesis tests.

One strategy is to use the Wald test of null hypothesis $r\tilde{\beta} = r$, where $r$ is a matrix of contrast coefficients (typically +1 or −1), $\beta$ is our vector of regression $\beta$ coefficients, and $\tilde{r}$ is a hypothesized vector of what the linear system $r\tilde{\beta}$ equals. For our first hypothesis test, the linear system we’re testing in matrix notation is

$$ \begin{bmatrix} 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \beta_0 \\ \beta_1 \\ \beta_2 \\ \beta_3 \\ \beta_4 \\ \beta_5 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}. $$

Let’s go about testing another hypothesis, first, using the Wald test, then we’ll test our two simultaneous hypotheses above.
- $H_0$: equal slopes for all status groups
- $H_0: \beta_4 = \beta_5 = 0$

```r
lm.f.n.s.ns <- lm(IQF ~ IQN*status, data = twins)
library(car)
Anova(aov(lm.f.n.s.ns), type=3)
Anova Table (Type III tests)
##
Response: IQF
Sum Sq Df F value Pr(>F)
(Intercept) 12 1 0.18 0.67
IQN 1700 1 27.10 3.7e-05 ***
status 9 2 0.07 0.93
IQN:status 1 2 0.01 0.99
Residuals 1317 21

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

beta coefficients (term positions: 1, 2, 3, 4, 5, 6)
coef(lm.f.n.s.ns)
(Intercept) IQN statusH statusM IQN:statusH
7.20461 0.94842 -9.07665 -6.38859 0.02914
IQN:statusM
0.02414
```

The test for the interaction above (IQN:status) has a p-value=0.9926, which indicates that common slope is reasonable. In the Wald test notation, we want to test whether those last two coefficients (term positions 5 and 6) both equal 0. Here we get the same result as the ANOVA table.

```r
library(aod) # for wald.test()
Typically, we are interested in testing whether individual parameters or
set of parameters are all simultaneously equal to 0s
However, any null hypothesis values can be included in the vector coef.test.values.
coef.test.values <- rep(0, length(coef(lm.f.n.s.ns)))
wald.test(b = coef(lm.f.n.s.ns) - coef.test.values,
 Sigma = vcov(lm.f.n.s.ns),
 Terms = c(5,6))
Wald test:

Chi-squared test:
X2 = 0.015, df = 2, P(> X2) = 0.99
```

Now to our two simultaneous hypotheses. In hypothesis 1 we are testing $\beta_2 = 0$ and $\beta_5 = 0$, which are the 3rd and 6th position for coefficients in our original equation (7.7). However, we need to choose the correct positions based on the `coef()` order, and these are positions 4 and 6. The large p-value=0.55 suggests that M and L can be described by the same regression line, same slope and intercept.

```r
library(aod) # for wald.test()
cof.test.values <- rep(0, length(coef(lm.f.n.s.ns)))
wld.test(b = coef(lm.f.n.s.ns) - cof.test.values,
 Sigma = vcov(lm.f.n.s.ns),
 Terms = c(4,6))
Wald test:
```
### Choosing Among Models

In hypothesis 2 we are testing $\beta_1 - \beta_2 = 0$ and $\beta_4 - \beta_5 = 0$ which are the difference of the 2nd and 3rd coefficients and the difference of the 5th and 6th coefficients. However, we need to choose the correct positions based on the `coef()` order, and these are positions 3 and 4, and 5 and 6. The large p-value=0.91 suggests that M and H can be described by the same regression line, same slope and intercept.

The results of these tests are not surprising, given our previous analysis where we found that the status effect is not significant for all three groups.

Any simultaneous linear combination of parameters can be tested in this way.
7.5 Comments on Comparing Regression Lines

In the twins example, I defined two indicator variables (plus two interaction variables) from an ordinal categorical variable: status (H, M, L). Many researchers would assign numerical codes to the status groups and use the coding as a predictor in a regression model. For status, a “natural” coding might be to define NSTAT=0 for L, 1 for M, and 2 for H status families. This suggests building a multiple regression model with a single status variable (i.e., single df):

\[
IQF = \beta_0 + \beta_1 IQN + \beta_2 NSTAT + e.
\]

If you consider the status classes separately, the model implies that

\[
IQF = \beta_0 + \beta_1 IQN + \beta_2(0) + e = \beta_0 + \beta_1 IQN + e \quad \text{for L status families},
\]

\[
IQF = \beta_0 + \beta_1 IQN + \beta_2(1) + e = (\beta_0 + \beta_2) + \beta_1 IQN + e \quad \text{for M status families},
\]

\[
IQF = \beta_0 + \beta_1 IQN + \beta_2(2) + e = (\beta_0 + 2\beta_2) + \beta_1 IQN + e \quad \text{for H status families}.
\]

The model assumes that the IQF by IQN regression lines are parallel for the three groups, and are separated by a constant \( \beta_2 \). This model is more restrictive (and less reasonable) than the ANCOVA model with equal slopes but arbitrary intercepts. Of course, this model is easier to work with because it requires keeping track of only one status variable instead of two status indicators.

A plot of the population regression lines under this model is given above, assuming \( \beta_2 < 0 \).
8.1 Polynomial Models with One Predictor

A $p^{th}$ order polynomial model relating a dependent variable $Y$ to a predictor $X$ is given by

$$Y = \beta_0 + \beta_1 X + \beta_2 X^2 + \cdots + \beta_p X^p + \varepsilon.$$ 

This is a multiple regression model with predictors $X, X^2, \ldots, X^p$. For $p = 2, 3, 4, 5$ we have quadratic, cubic, quartic and quintic relationships, respectively.

A second order polynomial (quadratic) allows at most one local maximum or minimum (i.e., a point where trend changes direction from increasing to decreasing, or from decreasing to increasing). A third order polynomial (cubic) allows at most two local maxima or minima. In general, a $p^{th}$ order polynomial allows at most $p - 1$ local maxima or minima. The two panels below illustrate different quadratic and cubic relationships.

```R
R code for quadratic and cubic plots
x <- seq(-3,3,0.01);
y21 <- x^2-5;
y22 <- -(x+1)^2+3;
y31 <- (x+1)^2*(x-3);
y32 <- -(x-.2)^2*(x+.5)-10;
plot(x, y21, type="l", main="Quadratics", ylab="y")
points(x, y22, type="l", lt=2)
plot(x, y31, type="l", main="Cubics", ylab="y")
points(x, y32, type="l", lt=2)
```
It is important to recognize that not all, or even none, of the “turning-points” in a polynomial may be observed if the range of $X$ is suitably restricted.

Although polynomial models allow a rich class of non-linear relationships between $Y$ and $X$ (by virtue of Taylor’s Theorem in calculus), some caution is needed when fitting polynomials. In particular, the extreme $X$-values can be highly influential, numerical instabilities occur when fitting high order models, and predictions based on high order polynomial models can be woeful.

To illustrate the third concern, consider a data set $(Y_i, X_i)$ for $i = 1, 2, \ldots, n$ where the $X_i$s are distinct. One can show mathematically that an $(n - 1)^{st}$ degree polynomial will fit the observed data exactly. However, for a high order polynomial to fit exactly, the fitted curve must oscillate wildly between data points. In the picture below, I show the 10th degree polynomial that fits exactly the 11 distinct data points. Although $R^2 = 1$, I would not use the fitted model to make predictions with new data. (If possible, models should always be validated using new data.) Intuitively, a quadratic or a lower order polynomial would likely be significantly better. In essence, the 10th degree polynomial is modelling the variability in the data, rather than the trend.

```r
R code for quadratic and cubic plots
X <- rnorm(11); Y <- rnorm(11); # observed
X1 <- X^1 ;
X2 <- X^2 ;
X3 <- X^3 ;
X4 <- X^4 ;
X5 <- X^5 ;
X6 <- X^6 ;
X7 <- X^7 ;
X8 <- X^8 ;
X9 <- X^9 ;
X10 <- X^10;
fit <- lm(Y~X+X2+X3+X4+X5+X6+X7+X8+X9+X10)
fit$coefficients
(Intercept) X X2 X3 X4
36.7 -461.6 -620.6 13030.9 29149.1
X5 X6 X7 X8 X9
-26416.3 -81282.2 15955.1 70539.5 -3396.1
X10
-18290.5
x <- seq(-2.5,2.5,0.01);
x1 <- x^1 ;
x2 <- x^2 ;
x3 <- x^3 ;
x4 <- x^4 ;
x5 <- x^5 ;
x6 <- x^6 ;
x7 <- x^7 ;
x8 <- x^8 ;
x9 <- x^9 ;
x10 <- x^10;
```

Quadratics

Cubics

---

$X$-values : $-3$ to $3$

$Y$-values : $-4$ to $4$
Another concern is that the importance of lower order terms (i.e., $X, X^2, \ldots, X^{p-1}$) depends on the scale in which we measure $X$. For example, suppose for some chemical reaction,

$$\text{Time to reaction} = \beta_0 + \beta_1 \text{Temp} + \beta_2 \text{Temp}^2 + \varepsilon.$$ 

The significance level for the estimate of the Temp coefficient depends on whether we measure temperature in degrees Celsius or Fahrenheit.

To avoid these problems, I recommend

1. Center the $X$ data at $\bar{X}$ and fit the model

   $$Y = \beta_0 + \beta_1 (X - \bar{X}) + \beta_2 (X - \bar{X})^2 + \cdots + \beta_p (X - \bar{X})^p + \varepsilon.$$ 

   This is usually important only for cubic and higher order models.

2. Restrict attention to low order models, say quartic or less. If a fourth-order polynomial does not fit, a transformation may provide a more succinct summary.

3. Pay careful attention to diagnostics.

4. Add or delete variables using the natural hierarchy among powers of $X$ and include all lower order terms if a higher order term is needed. For example, in a forward-selection
type algorithm, add terms $X$, $X^2$, $\ldots$, sequentially until no additional term is significant, but do not delete powers that were entered earlier. Similarly, with a backward-elimination type algorithm, start with the model of maximum acceptable order (for example a fourth or third order polynomial) and consider deleting terms in the order $X^p$, $X^{p-1}$, $\ldots$, until no further terms can be omitted. The `select=backward` option in the `reg` procedure does not allow you to invoke the hierarchy principle with backward elimination. The backward option sequentially eliminates the least significant effect in the model, regardless of what other effects are included.

### 8.1.1 Example: Cloud point and percent I-8

The cloud point of a liquid is a measure of the degree of crystallization in a stock, and is measured by the refractive index $^1$. It has been suggested that the percent of I-8 (variable “i8”) in the base stock is an excellent predictor of the cloud point using a second order (quadratic) model:

$$
\text{Cloud point} = \beta_0 + \beta_1 \text{i8} + \beta_2 \text{i8}^2 + \varepsilon.
$$

Data were collected to examine this model.

```r
cloudpoint <- read.table("http://statacumen.com/teach/ADA2/ADA2_notes_Ch08_cloudpoint.dat", header = TRUE)
center i8 by subtracting the mean
cloudpoint$i8 <- cloudpoint$i8 - mean(cloudpoint$i8)
```

The plot of the data suggest a departure from a linear relationship.

```r
library(ggplot2)
p <- ggplot(cloudpoint, aes(x = i8, y = cloud))
p <- p + geom_point()
p <- p + labs(title="Cloudpoint data, cloud by centered i8")
print(p)
```

Fit the simple linear regression model and plot the residuals.

```r
lm.c.i <- lm(cloud ~ i8, data = cloudpoint)
#library(car)
#Anova(aov(lm.c.i), type=3)
#summary(lm.c.i)
```

$^1$Draper and Smith 1966, p. 162
The data plot is clearly nonlinear, suggesting that a simple linear regression model is inadequate. This is confirmed by a plot of the studentized residuals against the fitted values from a simple linear regression of Cloud point on i8. Also by the residuals against the i8 values. We do not see any local maxima or minima, so a second order model is likely to be adequate. To be sure, we will first fit a cubic model, and see whether the third order term is important.

```r
plot diagnistics
par(mfrow=c(2,3))
plot(lm.c.i, which = c(1,4,6), pch=as.character(cloudpoint$type))
plot(cloudpoint$i8, lm.c.i$residuals, main="Residuals vs i8", pch=as.character(cloudpoint$type))
horizontal line at zero
abline(h = 0, col = "gray75")
Normality of Residuals
library(car)
qqPlot(lm.c.i$residuals, las = 1, id.n = 3, main="QQ Plot", pch=as.character(cloudpoint$type))
1 11 17
1 18 2
residuals vs order of data
plot(lm.c.i$residuals, main="Residuals vs Order of data")
horizontal line at zero
abline(h = 0, col = "gray75")
```

The output below shows that the cubic term improves the fit of the quadratic model (i.e., the cubic term is important when added last to the model). The plot of the studentized residuals against the fitted values does not show any extreme abnormalities. Furthermore, no individual point is poorly fitted by the model. Case 1 has the largest studentized residual: $r_1 = -1.997$.

```r
I() is used to create an interpreted object treated "as is"
so we can include quadratic and cubic terms in the formula
without creating separate columns in the dataset of these terms
lm.c.i3 <- lm(cloud ~ i8 + I(i8^2) + I(i8^3), data = cloudpoint)
library(car)
#Anova(aov(lm.c.i3), type=3)
```
summary(lm.c.i3)
##
## Call:
## lm(formula = cloud ~ i8 + I(i8^2) + I(i8^3), data = cloudpoint)
##
## Residuals:
##     Min  1Q Median  3Q    Max
##-0.4289 -0.1866  0.0735  0.1354  0.3933
##
## Coefficients:
##         Estimate Std. Error t value Pr(>|t|)
## (Intercept) 28.87045   0.08836  326.72  < 2e-16 ***
## i8          0.84789   0.04854   17.47   6.7e-11 ***
## I(i8^2)   -0.06600   0.00732    -9.01   3.3e-07 ***
## I(i8^3)   0.00974    0.00259     3.76    0.0021 **
##---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.26 on 14 degrees of freedom
## Multiple R-squared:  0.994, Adjusted R-squared:  0.993
## F-statistic: 813 on 3 and 14 DF,  p-value: 6.19e-16

Below are plots of the data and the studentized residuals.

# plot diagnostics
par(mfrow=c(2,3))
plot(lm.c.i3, which = c(1,4,6), pch=as.character(cloudpoint$type))
plot(cloudpoint$i8, lm.c.i3$residuals, main="Residuals vs i8", pch=as.character(cloudpoint$type))
# horizontal line at zero
abline(h = 0, col = "gray75")

# Normality of Residuals
library(car)
qqPlot(lm.c.i3$residuals, las = 1, id.n = 3, main="QQ Plot", pch=as.character(cloudpoint$type))
## 4 12 1
## 1 18 2

# residuals vs order of data
plot(lm.c.i3$residuals, main="Residuals vs Order of data")
# horizontal line at zero
abline(h = 0, col = "gray75")
The first and last observations have the lowest and highest values of I8, given by 0 and 10, respectively. These cases are also the most influential points in the data set (largest Cook’s D). If we delete these cases and redo the analysis we find that the cubic term is no longer important (p-value=0.55) when added after the quadratic term. One may reasonably conclude that the significance of the cubic term in the original analysis is solely due to the two extreme I8 values, and that the quadratic model appears to fit well over the smaller range of $1 \leq I8 \leq 9$.

```r
remove points for minimum and maximum i8 values
cloudpoint2 <- cloudpoint[!(cloudpoint$i8 == min(cloudpoint$i8) |
 cloudpoint$i8 == max(cloudpoint$i8)),]

lm.c.i2 <- lm(cloud ~ i8 + I(i8^2) + I(i8^3), data = cloudpoint2)
#library(car)
#Anova(aov(lm.c.i2), type=3)
summary(lm.c.i2)
##
Call:
lm(formula = cloud ~ i8 + I(i8^2) + I(i8^3), data = cloudpoint2)
##
Residuals:
Min 1Q Median 3Q Max
-0.3662 -0.1285 0.0374 0.1403 0.3374
##
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 28.85704 0.08946 322.55 < 2e-16 ***
i8 0.90451 0.05834 15.50 8e-09 ***
I(i8^2) -0.06071 0.01269 -4.78 0.00057 ***
I(i8^3) 0.00317 0.00517 0.61 0.55220
```
8.2 Polynomial Models with Two Predictors

Polynomial models are sometimes fit to data collected from experiments with two or more predictors. For simplicity, consider the general quadratic model, with two predictors:

\[ Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_1^2 + \beta_4 X_2^2 + \beta_5 X_1 X_2 + \varepsilon. \]

The model, which can be justified as a second order approximation to a smooth trend, includes quadratic terms in \( X_1 \) and \( X_2 \) and the product or interaction of \( X_1 \) and \( X_2 \).

8.2.1 Example: Mooney viscosity

The data below give the Mooney viscosity at 100 degrees Celsius (\( Y \)) as a function of the filler level (\( X_1 \)) and the naphthenic oil (\( X_2 \)) level for an experiment involving filled and plasticized elastomer compounds.

\begin{verbatim}
mooney <- read.table("http://statacumen.com/teach/ADA2/ADA2_notes_Ch08_mooney.dat", header = TRUE)
library(ggplot2)
p <- ggplot(mooney, aes(x = oil, y = mooney, label = filler))
p <- p + geom_text()
p <- p + scale_y_continuous(limits = c(0, max(mooney$mooney, na.rm=TRUE)))
p <- p + labs(title="Mooney data, mooney by oil with filler labels")
print(p)
## Warning: Removed 1 rows containing missing values (geom_text).
library(ggplot2)
p <- ggplot(mooney, aes(x = filler, y = mooney, label = oil))
p <- p + geom_text()
p <- p + scale_y_continuous(limits = c(0, max(mooney$mooney, na.rm=TRUE)))
p <- p + labs(title="Mooney data, mooney by filler with oil labels")
print(p)
## Warning: Removed 1 rows containing missing values (geom_text).
\end{verbatim}
At each of the 4 oil levels, the relationship between the Mooney viscosity and filler level (with 6 levels) appears to be quadratic. Similarly, the relationship between the Mooney viscosity and oil level appears quadratic for each filler level (with 4 levels). This supports fitting the general quadratic model as a first step in the analysis.

The output below shows that each term is needed in the model. Although there are potentially influential points (cases 6 and 20), deleting either or both cases does not change the significance of the effects in the model (not shown).

```r
I create each term separately
lm.m.o2.f2 <- lm(mooney ~ oil + filler + I(oil^2) + I(filler^2) + I(oil * filler),
 data = mooney)
summary(lm.m.o2.f2)
```
(1 observation deleted due to missingness)

Multiple R-squared: 0.992, Adjusted R-squared: 0.989

F-statistic: 405 on 5 and 17 DF, p-value: <2e-16

poly() will evaluate variables and give joint polynomial values
which is helpful when you have many predictors

# This model is equivalent to the one above
#lm.m.o2.f2 <- lm(mooney ~ poly(oil, filler, degree = 2, raw = TRUE), data = mooney)

# plot diagnostics
par(mfrow=c(2,3))
plot(lm.m.o2.f2, which = c(1,4,6), pch=as.character(mooney$oil[ind]))

# because of one missing value, get the indices of non-missing
ind <- as.numeric(names(lm.m.o2.f2$residuals))
plot(mooney$oil[ind], lm.m.o2.f2$residuals, main="Residuals vs oil with filler labels", pch=as.character(mooney$filler[ind]))
abline(h = 0, col = "gray75")

plot(mooney$filler[ind], lm.m.o2.f2$residuals, main="Residuals vs filler with oil labels", pch=as.character(mooney$oil[ind]))
abline(h = 0, col = "gray75")

# Normality of Residuals
library(car)
qqPlot(lm.m.o2.f2$residuals, las = 1, id.n = 3, main="QQ Plot", pch=as.character(mooney$oil[ind]))

# residuals vs order of data
#plot(lm.m.o2.f2$residuals, main="Residuals vs Order of data")
#abline(h = 0, col = "gray75")
8.2.2 Example: Mooney viscosity on log scale

As noted earlier, transformations can often be used instead of polynomials. For example, the original data plots suggest transforming the Moody viscosity to a log scale. If we make this transformation and replot the data, we see that the log Mooney viscosity is roughly linearly related to the filler level at each oil level, but is a quadratic function of oil at each filler level. The plots of the transformed data suggest that a simpler model will be appropriate.

```r
log transform the response
mooney$logmooney <- log(mooney$mooney)

library(ggplot2)
p <- ggplot(mooney, aes(x = oil, y = logmooney, label = filler))
p <- p + geom_text()
#p <- p + scale_y_continuous(limits = c(0, max(mooney$logmooney, na.rm=TRUE)))
p <- p + labs(title="Mooney data, log(mooney) by oil with filler labels")
print(p)
```

To see that a simpler model is appropriate, we fit the full quadratic model. The interaction term can be omitted here, without much loss of predictive ability (R-squared is similar). The p-value for the interaction term in the quadratic model is 0.34.

```r
I create each term separately
lm.lm.o2.f2 <- lm(logmooney ~ oil + filler + I(oil^2) + I(filler^2) + I(oil * filler),
 data = mooney)
summary(lm.lm.o2.f2)
```

```
Call:
lm(formula = logmooney ~ oil + filler + I(oil^2) + I(filler^2) + I(oil * filler),
data = mooney)

Residuals:
Min 1Q Median 3Q Max
-0.9769 -0.1727 0.0000 0.1727 0.9769
```
## Min 1Q Median 3Q Max
## -0.07726 -0.03580 0.00919 0.03064 0.07564

### Coefficients:

|       | Estimate | Std. Error | t value | Pr(>|t|) |
|-------|----------|------------|---------|----------|
| (Intercept) | 3.24e+00 | 3.56e-02  | 90.97   | < 2e-16  ***|
| oil    | -3.92e-02 | 2.90e-03  | -13.51  | 1.6e-10  ***|
| filler | 2.86e-02  | 2.08e-03  | 13.78   | 1.2e-10  ***|
| I(oil^2) | 4.23e-04 | 6.34e-05  | 6.67    | 4.0e-06  ***|
| I(fill^2) | 4.66e-05 | 3.28e-05  | 1.42    | 0.17     |
| I(oil * filler) | -4.23e-05 | 4.33e-05 | -0.98   | 0.34     |

---

**Signif. codes:**  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

### Residual standard error: 0.0535 on 17 degrees of freedom

### (1 observation deleted due to missingness)

### Multiple R-squared: 0.995, Adjusted R-squared: 0.994

### F-statistic: 737 on 5 and 17 DF, p-value: <2e-16
After omitting the interaction term, the quadratic effect in filler is not needed in the model (output not given). Once these two effects are removed, each of the remaining effects is significant.

```r
I create each term separately
lm.lm.o2.f <- lm(logmooney ~ oil + filler + I(oil^2),
 data = mooney)
summary(lm.lm.o2.f)
```

## Call:
```
lm(formula = logmooney ~ oil + filler + I(oil^2), data = mooney)
```

## Residuals:
```
 Min 1Q Median 3Q Max
-0.09080 -0.03111 -0.00883 0.03253 0.10059
```

## Coefficients:
```
 Estimate Std. Error t value Pr(>|t|)
(Intercept) 3.23e+00 2.73e-02 118.14 < 2e-16 ***
oil -4.02e-02 2.70e-03 -14.89 6.3e-12 ***
filler 3.09e-02 5.72e-04 53.99 < 2e-16 ***
I(oil^2) 4.10e-04 6.36e-05 6.45 3.5e-06 ***
```

---

## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

## Residual standard error: 0.0542 on 19 degrees of freedom
```
(1 observation deleted due to missingness)
```

## Multiple R-squared: 0.995, Adjusted R-squared: 0.994

## F-statistic: 1.2e+03 on 3 and 19 DF, p-value: <2e-16
The model does not appear to have inadequacies. Assuming no difficulties, an important effect of the transformation is that the resulting model is simpler than the model selected on the original scale. This is satisfying to me, but you may not agree. Note that the selected model, with linear effects due to the oil and filler levels and a quadratic effect due to the oil level, agrees with our visual assessment of the data. Assuming no inadequacies, the predicted log Moody viscosity is given by

$$\log(\text{Moody viscosity}) = 3.2297 - 0.0402 \text{ Oil} + 0.0004 \text{ Oil}^2 + 0.0309 \text{ Filler}.$$ 

Quadratic models with two or more predictors are often used in industrial experiments to estimate the optimal combination of predictor values to maximize or minimize the response, over the range of predictor variable values where the model is reasonable. (This strategy is called “response surface methodology”.) For example, we might wish to know what combination of oil level between
0 and 40 and filler level between 0 and 60 provides the lowest predicted Mooney viscosity (on the original or log scale). We can visually approximate the minimizer using the data plots, but one can do a more careful job of analysis using standard tools from calculus.
Chapter 9
Discussion of Response Models with Factors and Predictors

We have considered simple models for designed experiments and observational studies where a response variable is modeled as a linear combination of effects due to factors or predictors, or both. With designed experiments, where only qualitative factors are considered, we get a “pure ANOVA” model. For example, in the experiment comparing survival times of beetles, the potential effects of insecticide (with levels A, B, C, and D) and dose (with levels 1=low, 2=medium, and 3=high) are included in the model as factors because these variables are qualitative. The natural model to consider is a two-way ANOVA with effects for dose and insecticide and a dose-by-insecticide interaction. If, however, the dose given to each beetle was recorded on a measurement scale, then the dosages can be used to define a predictor variable which can be used as a “regression effect” in a model. That is, the dose or some function of dose can be used as a (quantitative) predictor instead of as a qualitative effect.

For simplicity, assume that the doses are 10, 20, and 30, but the actual levels are irrelevant to the discussion. The simple additive model, or ANCOVA model, assumes that there is a linear relationship between mean survival time and dose, with different intercepts for the four insecticides. If data set includes the survival time (times) for each beetle, the insecticide (insect: an alphanumeric variable, with values A, B, C, and D), and dose, you would fit the ANCOVA model this way:

```r
beetles$insect <- factor(beetles$insect)
lm.t.i.d <- lm(times ~ insect + dose, data = beetles)
```

A more complex model that allows separate regression lines for each insecticide is specified as follows:

```r
beetles$insect <- factor(beetles$insect)
lm.t.i.d.id <- lm(times ~ insect + dose + insect:dose, data = beetles)
```

It is important to recognize that the `factor()` statement defines which variables in the model are treated as factors. Each effect of Factor data type is treated as a factor. Effects in the model statement that are numeric data types are treated as predictors. To treat a measurement variable as a factor (with one level for each distinct observed value of the variable) instead of a predictor, convert that variable type to a factor using `factor()`. Thus, in the survival time experiment, these models:

```r
beetles$insect <- factor(beetles$insect)
beetles$dose <- factor(beetles$dose)
call this (A) for additive
lm.t.i.d <- lm(times ~ insect + dose, data = beetles)
call this (I) for interaction
```
lm.t.i.d.id <- lm(times ~ insect + dose + insect:dose, data = beetles)

give the analysis for a two-way ANOVA model without interaction and with interaction, respectively, where both dose and insecticide are treated as factors (since dose and insect are both converted to factors), even though we just defined dose on a measurement scale!

Is there a basic connection between the ANCOVA and separate regression line models for dose and two-way ANOVA models where dose and insecticide are treated as factors? Yes — I mentioned a connection when discussing ANCOVA and I will try now to make the connection more explicit.

For the moment, let us simplify the discussion and assume that only one insecticide was used at three dose levels. The LS estimates of the mean responses from the quadratic model

$$\text{Times} = \beta_0 + \beta_1 \text{Dose} + \beta_2 \text{Dose}^2 + \varepsilon$$

are the observed average survival times at the three dose levels. The LS curve goes through the mean survival time at each dose, as illustrated in the picture below.

If we treat dose as a factor, and fit the one-way ANOVA model

$$\text{Times} = \text{Grand Mean} + \text{Dose Effect} + \text{Residual},$$

then the LS estimates of the population mean survival times are the observed mean survival times. The two models are mathematically equivalent, but the parameters have different interpretations. In essence, the one-way ANOVA model places no restrictions on the values of the population means (no a priori relation between them) at the three doses, and neither does the quadratic model! (WHY?)

In a one-way ANOVA, the standard hypothesis of interest is that the dose effects are zero. This can be tested using the one-way ANOVA F-test, or by testing $H_0 : \beta_1 = \beta_2 = 0$ in the quadratic model. With three dosages, the absence of a linear or quadratic effect implies that all the population mean survival times must be equal. An advantage of the polynomial model over the one-way ANOVA is that it provides an easy way to quantify how dose impacts the mean survival, and a convenient way to check whether a simple description such as a simple linear regression model is adequate to describe the effect.
More generally, if dose has $p$ levels, then the one-way ANOVA model

\[ \text{Times} = \text{Grand Mean} + \text{Dose Effect} + \text{Residual}, \]

is equivalent to the $(p - 1)^{st}$ degree polynomial

\[ \text{Times} = \beta_0 + \beta_1 \text{Dose} + \beta_2 \text{Dose}^2 + \cdots + \beta_{p-1} \text{Dose}^{(p-1)} + \varepsilon \]

and the one-way ANOVA F-test for no treatment effects is equivalent to testing $H_0 : \beta_1 = \beta_2 = \cdots = \beta_{p-1} = 0$ in this polynomial.

Returning to the original experiment with 4 insecticides and 3 doses, I can show the following two equivalences. First, the two-way additive ANOVA model, with insecticide and dose as factors, i.e., model (A), is mathematically equivalent to an additive model with insecticide as a factor, and a quadratic effect in dose:

\[
\text{beetles}\$insect <- \text{factor}(\text{beetles}\$insect)
\text{lm.t.i.d.d2} <- \text{lm}(\text{times} \sim \text{insect} + \text{dose} + \text{I}(\text{dose}^2), \text{data} = \text{beetles})
\]

Thinking of dose$^2$ as a quadratic term in dose, rather than as an interaction, this model has an additive insecticide effect, but the dose effect is not differentiated across insecticides. That is, the model assumes that the quadratic curves for the four insecticides differ only in level (i.e., different intercepts) and that the coefficients for the dose and dose$^2$ effects are identical across insecticides.

This is an additive model, because the population means plot has parallel profiles. A possible pictorial representation of this model is given below.

Second, the two-way ANOVA interaction model, with insecticide and dose as factors, i.e., model (I), is mathematically equivalent to an interaction model with insecticide as a factor, and a quadratic effect in dose:

\[
\text{beetles}\$insect <- \text{factor}(\text{beetles}\$insect)
\text{lm.t.i.d.d2.id.id2} <- \text{lm}(\text{times} \sim \text{insect} + \text{dose} + \text{I}(\text{dose}^2) + \text{insect:dose} + \text{insect:}\text{I}(\text{dose}^2), \text{data} = \text{beetles})
\]

This model fits separate quadratic relationships for each of the four insecticides, by including interactions between insecticides and the linear and quadratic terms in dose. Because dose has three levels, this model places no restrictions on the mean responses.

To summarize, we have established that
The additive two-way ANOVA model with insecticide and dose as factors is mathematically identical to an additive model with an insecticide factor and a quadratic effect in dose. The ANCOVA model with a linear effect in dose is a special case of these models, where the quadratic effect is omitted.

The two-way ANOVA interaction model with insecticide and dose as factors is mathematically identical to a model with an insecticide factor, a quadratic effect in dose, and interactions between the insecticide and the linear and quadratic dose effects. The separate regression lines model with a linear effect in dose is a special case of these models, where the quadratic dose effect and the interaction of the quadratic term with insecticide are omitted.

Recall that response models with factors and predictors as effects can be fit using the \texttt{lm()} procedure, but each factor or interaction involving a factor must be represented in the model using indicator variables or product terms. The number of required indicators or product effects is one less than the number of distinct levels of the factor. For example, to fit the model with “parallel” quadratic curves in dose, you can define (in the \texttt{data.frame()}) three indicator variables for the insecticide effect, say \(I_1, I_2,\) and \(I_3,\) and fit the model

\[
\text{Times} = \beta_0 + \beta_1 I_1 + \beta_2 I_2 + \beta_3 I_3 + \beta_4 \text{Dose} + \beta_5 \text{Dose}^2 + \varepsilon.
\]

For the “quadratic interaction model”, you must define 6 interaction or product terms between the 3 indicators and the 2 dose terms:

\[
\text{Times} = \beta_0 + \beta_1 I_1 + \beta_2 I_2 + \beta_3 I_3 + \beta_4 \text{Dose} + \beta_5 \text{Dose}^2 \\
+ \beta_6 I_1 \text{Dose} + \beta_7 I_2 \text{Dose} + \beta_8 I_3 \text{Dose} \\
+ \beta_9 I_1 \text{Dose}^2 + \beta_{10} I_2 \text{Dose}^2 + \beta_{11} I_3 \text{Dose}^2 + \varepsilon.
\]

The \((\beta_6 I_1 \text{Dose} + \beta_7 I_2 \text{Dose} + \beta_8 I_3 \text{Dose})\) component in the model formally corresponds to the \textit{insect*dose} interaction, whereas the \((\beta_6 I_1 \text{Dose}^2 + \beta_{10} I_2 \text{Dose}^2 + \beta_{11} I_3 \text{Dose}^2)\) component is equivalent to the \textit{insect*dose*dose} interaction (i.e., testing \(H_0 : \beta_9 = \beta_{10} = \beta_{11} = 0\)).

This discussion is not intended to confuse, but rather to impress upon you the intimate connection between regression and ANOVA, and to convince you of the care that is needed when modelling variation even in simple studies. Researchers are usually faced with more complex modelling problems than we have examined, where many variables might influence the response. If experimentation is possible, a scientist will often control the levels of variables that influence the response but that are not of primary interest. This can result in a manageable experiment with, say, four or fewer qualitative or quantitative variables that are systematically varied in a scientifically meaningful way. In observational studies, where experimentation is not possible, the scientist builds models to assess the effects of interest on the response, adjusting the response for all the uncontrolled variables that might be important. The uncontrolled variables are usually a mixture of factors and predictors. Ideally, the scientist knows what variables to control in an experiment and which to vary, and what variables are important to collect in an observational study.

The level of complexity that I am describing here might be intimidating, but certain basic principles can be applied to many of the studies you will see. Graduate students in statistics often take several courses (5+) in experimental design, regression analysis, and linear model theory to master the breadth of models, and the subtleties of modelling, that are needed to be a good data analyst. I can only scratch the surface here. I will discuss a reasonably complex study having
9.1 Some Comments on Building Models

A primary goal in many statistical analyses is to build a model or models to understand the variation in a response. Fortunately, or unfortunately, there is no consensus on how this should be done. Ideally, theory would suggest models to compare, but in many studies the goal is to provide an initial model that will be refined, validated, or refuted, by further experimentation. An extreme view is that the selected model(s) should only include effects that are “statistically important”, whereas another extreme suggests that all effects that might be “scientifically important” should be included.

A difficulty with implementing either approach is that importance is relative to specific goals (i.e., Why are you building the model and what do you plan to use the model for? Is the model a prescription or device to make predictions? Is the model a tool to understand the effect that one or more variables have on a response, after adjusting for uninteresting, but important effects that can not be controlled? etc.) Madigan and Raftery, in the 1994 edition of *The Journal of the American Statistical Association*, comment that “Science is an iterative process in which competing models of reality are compared on the basis of how well they predict what is observed; models that predict much less well than their competitors are discarded.” They argue that models should be selected using Occam’s razor, a widely accepted norm in scientific investigations whereby the simplest plausible model among all reasonable models, given the data, is preferred. Madigan and Raftery’s ideas are fairly consistent with the first extreme, but can be implemented in a variety of ways, depending on how you measure prediction adequacy. They propose a Bayesian approach, based on model averaging and prior beliefs on the plausibility of different models. An alternative method using Mallow’s $C_p$ criterion will be discussed later.

A simple compromise between the two extremes might be to start the model building process with the most complex model that is scientifically reasonable, but still interpretable, and systematically eliminate effects using backward elimination. The initial or **maximal** model might include polynomial effects for predictors, main effects and interactions (2 factor, 3 factor, etc.) between factors, and products or interactions between predictors and factors. This approach might appear to be less than ideal because the importance of effects is assessed using hypothesis tests and no attempt is made to assess the effect of changes on predictions. However, one can show that the average squared error in predictions is essentially reduced by eliminating **insignificant** regression effects from the model, so this approach seems tenable.

It might be sensible to only assess significance of effects specified in the model statement. However, many of these effects consist of several degrees-of-freedom. That is, the effect corresponds to several regression coefficients in the model. (Refer to the discussion following the displayed equations on page 192). The individual regression variables that comprise an effect could also be tested individually. However, if the effect is a factor (with 3+ levels) or an interaction involving a factor, then the interpretation of tests on individual regression coefficients depends on the level of the factor that was selected to be the baseline category. The Type III $F$-test on the entire effect does not depend on the baseline category. In essence, two researchers can start with different representations of the same mathematical model (i.e., the parameters are defined differently for multiple factors and multiple predictors. The example focuses on strategies for building models, with little attempt to do careful diagnostic analyses. Hopefully, the example will give you an appreciation for statistical modelling, but please be careful — these tools are dangerous!
different choices of baseline categories), use the same algorithm for selecting a model, yet come to different final models for the data.

Statisticians often follow the hierarchy principle, which states that a lower order term (be it a factor or a predictor) may be considered for exclusion from a model only if no higher order effects that include the term are present in the model. For example, given an initial model with effects $A$, $B$, $C$, and the $A \times B$ interaction, the only candidates for omission at the first step are $C$ and $A \times B$. If you follow the hierarchy principle, and test an entire effect rather than test the single degree-of-freedom components that comprise an effect, then the difficulty described above can not occur. The hierarchy principle is most appealing with pure ANOVA models (such as the three-factor model in the example below), where all the regression variables are indicators. In ANOVA models, the ANOVA effects are of interest because they imply certain structure on the means. The individual regression variables that define the effects are not usually a primary interest.

A non-hierarchical backward elimination algorithm where single degree-of-freedom effects are eliminated independently of the other effects in the model is implemented in the `step()` procedure. Recall our discussion of backwards elimination from Chapter 3 earlier this semester.

### 9.2 Example: The Effect of Sex and Rank on Faculty Salary

The data in this example were collected from the personnel files of faculty at a small college in the 1970s. The data were collected to assess whether women were being discriminated against (consciously or unconsciously) in salary. The sample consists of tenured and tenure-stream faculty only. Temporary faculty were excluded from consideration (because they were already being discriminated against).

The variables below are id (individual identification numbers from 1 to 52), sex (coded 1 for female and 0 for male), rank (coded 1 for Asst. Professor, 2 for Assoc. Professor and 3 for Full Professor), year (number of years in current rank), degree (coded 1 for Doctorate, 0 else), yd (number of years since highest degree was earned), and salary (academic year salary in dollars).

```r
faculty <- read.table("http://statacumen.com/teach/ADA2/ADA2_notes_Ch09_faculty.dat", header = TRUE)
head(faculty)
id sex rank year degree yd salary
1 1 0 3 25 1 35 36350
2 2 0 3 13 1 22 35350
3 3 0 3 10 1 23 28200
4 4 1 3 7 1 27 26775
5 5 0 3 19 0 30 33696
6 6 0 3 16 1 21 28516
str(faculty)
'data.frame': 52 obs. of 7 variables:
$ id : int 1 2 3 4 5 6 7 8 9 10 ...
$ sex : int 0 0 0 1 0 0 1 0 0 0 ...
$ rank : int 3 3 3 3 3 3 3 3 3 3 ...
$ year : int 25 13 10 7 19 16 0 16 13 13 ...
$ degree: int 1 1 1 1 0 1 0 1 0 0 ...
$ yd : int 35 22 23 27 30 21 32 18 30 31 ...
$ salary: int 36350 35350 28200 26775 33696 28516 24900 31909 31850 32850 ...

faculty$sex <- factor(faculty$sex , labels=c("Male", "Female"))
ordering the rank variable so Full is the baseline, then descending.
```
The data includes two potential predictors of salary (year and yd), and three factors (sex, rank, and degree). A primary statistical interest is whether males and females are compensated equally, on average, after adjusting salary for rank, years in rank, and the other given effects. Furthermore, we wish to know whether an effect due to sex is the same for each rank, or not.

Before answering these questions, let us look at the data. I will initially focus on the effect of the individual factors (sex, rank, and degree) on salary. A series of box-plots is given below. Looking at the boxplots, notice that women tend to earn less than men, that faculty with Doctorates tend to earn more than those without Doctorates (median), and that salary tends to increase with rank.
9.2.1 A Three-Way ANOVA on Salary Data

Hopefully, our earlier analyses have cured you of the desire to claim that a sex effect exists before considering whether the differences between male and female salaries might be due to other factors. The output below gives the sample sizes, means, and standard deviations for the 11 combinations of sex, rank, and degree observed in the data. Side-by-side boxplots of the salaries for the 11 combinations are also provided. One combination of the three factors was not observed: female Associate Professors without Doctorates.

Looking at the summaries, the differences between sexes within each combination of rank and degree appear to be fairly small. There is a big difference in the ranks of men and women, with a higher percentage of men in the more advanced ranks. This might explain the differences between male and female salaries, when other factors are ignored.
library(plyr)

fac.sum <- ddply(faculty, .(sex, rank, degree), function(.df) {
  data.frame(n = length(.df$salary),
             m = mean(.df$salary),
             s = sd(.df$salary))
})

fac.sum

## sex rank degree n  m   s
## 1 Male Full Other 4 30712 4242
## 2 Male Full Doctorate 12 29593 3480
## 3 Male Assoc Other 7 23585 1733
## 4 Male Assoc Doctorate 5 23246 2120
## 5 Male Asst Other 3 20296 2080
## 6 Male Asst Doctorate 17 16901 729
## 7 Female Full Other 1 24900 NA
## 8 Female Full Doctorate 3 30107 6904
## 9 Female Assoc Other 2 21570 1245
## 10 Female Asst Other 1 21600 NA
## 11 Female Asst Doctorate 7 17006 1835

# plot marginal boxplots

library(ggplot2)

# create position dodge offset for plotting points
pd <- position_dodge(0.75) # 0.75 puts dots up center of boxplots

p <- ggplot(faculty, aes(x = degree, y = salary, fill = sex))
  # plot a reference line for the global mean (assuming no groups)
  p <- p + geom_hline(aes(yintercept = mean(salary)),
                      colour = "black", linetype = "dashed", size = 0.3, alpha = 0.5)
  # boxplot, size=.25 for thin lines
  p <- p + geom_boxplot(size = 0.25, alpha = 0.25)
  # points for observed data
  p <- p + geom_point(position = pd, alpha = 0.5)
  p <- p + facet_grid(. ~ rank)
  p <- p + scale_y_continuous(limits = c(0, max(faculty$salary)));
  p <- p + labs(title = "Salary by rank, degree, and sex")
print(p)

# your not defined: adjusting position using y instead
# your not defined: adjusting position using y instead
# your not defined: adjusting position using y instead
I will consider two simple analyses of these data. The first analysis considers the effect of the three factors on salary. The second analysis considers the effect of the predictors. A complete analysis using both factors and predictors is then considered. I am doing the three factor analysis because the most complex pure ANOVA problem we considered this semester has two factors — the analysis is for illustration only!!

The full model for a three-factor study includes the three main effects, the three possible two-factor interactions, plus the three-factor interaction. Identifying the factors by S (sex), D (degree) and R (rank), we write the full model as

\[
\text{Salary} = \text{Grand mean} + S\text{ effect} + D\text{ effect} + R\text{ effect} + S*D\text{ interaction} + S*R\text{ interaction} + R*D\text{ interaction} + S*D*R\text{ interaction} + \text{Residual}.
\]

You should understand what main effects and two-factor interactions measure, but what about the three-factor term? If you look at the two levels of degree separately, then a three-factor interaction is needed if the interaction between sex and rank is different for the two degrees. (i.e., the profile plots are different for the two degrees). Not surprisingly, three-factor interactions are hard to interpret.

I considered a hierarchical backward elimination of effects (see Chapter 3 for details). Individual regression variables are not considered for deletion, unless they correspond to an effect in the model statement. All tests were performed at the 0.10 level, but this hardly matters here.

The first step in the elimination is to fit the full model and check whether the three-factor term is significant. The three-factor term was not significant (in fact, it couldn’t be fit because one category had zero observations). After eliminating this effect, I fit the model with all three two-factor terms, and then sequentially deleted the least important effects, one at a time, while still adhering to the
hierarchy principle using the AIC criterion from the `step()` function. The final model includes only an effect due to rank. Finally, I compute the `lsmeans()` to compare salary for all pairs of rank.

```r
fit full model
lm.faculty.factor.full <- lm(salary ~ sex*rank*degree, data = faculty)

Note that there are not enough degrees-of-freedom to estimate all these effects
because we have 0 observations for Female/Assoc/Doctorate
library(car)
Anova(lm.faculty.factor.full, type=3)

Error: there are aliased coefficients in the model
summary(lm.faculty.factor.full)

Call:
lm(formula = salary ~ sex * rank * degree, data = faculty)
##
Residuals:
Min 1Q Median 3Q Max
-6262 -1453 -226 1350 7938
##
Coefficients: (1 not defined because of singularities)
Estimate Std. Error t value Pr(>|t|)
(Intercept) 30712 1485 20.68 < 2e-16
sexFemale -5812 3321 -1.75 0.08758
rankAssoc -7127 1862 -3.83 0.00043
rankAsst -10416 2268 -4.59 4.1e-05
degreeDoctorate -1119 1715 -0.65 0.51777
sexFemale:rankAssoc 3797 4086 0.93 0.35823
sexFemale:rankAsst 7116 4774 1.49 0.14373
sexFemale:degreeDoctorate 6325 3834 1.65 0.10665
rankAssoc:degreeDoctorate 780 2442 0.32 0.75095
rankAsst:degreeDoctorate -2276 2672 -0.85 0.39930
sexFemale:rankAssoc:degreeDoctorate NA NA NA NA
sexFemale:rankAsst:degreeDoctorate -7525 5384 -1.40 0.16972
##
(Intercept) ***
sexFemale .
rankAssoc ***
rankAsst ***
degreeDoctorate
sexFemale:rankAssoc
sexFemale:rankAsst
sexFemale:degreeDoctorate
rankAssoc:degreeDoctorate
rankAsst:degreeDoctorate
sexFemale:rankAssoc:degreeDoctorate
sexFemale:rankAsst:degreeDoctorate

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
Residual standard error: 2970 on 41 degrees of freedom
Multiple R-squared: 0.797, Adjusted R-squared: 0.748
F-statistic: 16.1 on 10 and 41 DF, p-value: 2.99e-11
```
Discussion of Response Models with Factors and Predictors

## AIC

# option: test="F" includes additional information
# for parameter estimate tests that we're familiar with
# option: for BIC, include k=log(nrow( [data.frame name] ))

lm.faculty.factor.red.AIC <- step(lm.faculty.factor.full, direction="backward", test="F")

## Start: AIC=841.3

## salary ~ sex * rank * degree

##
## Df Sum of Sq RSS AIC  F value Pr(>F)
## <none> 3.62e+08  841
## - sex:rank:degree 1 17233177 3.79e+08  842 1.95 0.17

## Because the full model can not be fit, the step() procedure does not work
## Below we remove the three-way interaction, then the step() procedure will
## do the rest of the work for us.

Remove the three-way interaction, then use step() to perform backward selection based on AIC.

# model reduction using update() and subtracting (removing) model terms

lm.faculty.factor.red <- lm.faculty.factor.full;

# remove variable

lm.faculty.factor.red <- update(lm.faculty.factor.red, ~ . - sex:rank:degree );
Anova(lm.faculty.factor.red, type=3)

## Anova Table (Type III tests)

##
## Response: salary

## Df Sum Sq  F value  Pr(>F)
## (Intercept) 1 3.93e+09 435.91 <2e-16 ***
## sex 1 1.12e+07 1.24 0.27094
## rank 2 1.97e+08 10.90 0.00015 ***
## degree 1 4.22e+05 0.05 0.82989
## sex:rank 2 2.70e+06 1.5 0.86140
## sex:degree 1 7.66e+06 0.85 0.36202
## rank:degree 2 3.34e+07 1.85 0.16936
## Residuals 42 3.79e+08

## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

# AIC backward selection

lm.faculty.factor.red.AIC <- step(lm.faculty.factor.red, direction="backward", test="F")

## Start: AIC=841.7

## salary ~ sex + rank + degree + sex:rank + sex:degree + rank:degree

##
## Df Sum of Sq RSS AIC  F value  Pr(>F)
## - sex:rank 2 2.701493e+08 838 0.15 0.86
## - sex:degree 1 7.661926e+08 841 0.85 0.36
## <none> 3.79e+08 842
## - rank:degree 2 3.3433415e+08 842 1.85 0.17

## Step: AIC=838

## salary ~ sex + rank + degree + sex:degree + rank:degree

##
## Df Sum of Sq RSS AIC  F value  Pr(>F)
## 9.2 Example: The Effect of Sex and Rank on Faculty Salary

```
- sex:degree 1 12335789 3.94e+08 838 1.42 0.24
<none> 3.82e+08 838
- rank:degree 2 32435968 4.14e+08 838 1.87 0.17
#
Step: AIC=837.7
salary ~ sex + rank + degree + rank:degree
##
Df Sum of Sq RSS AIC F value Pr(>F)
- sex 1 3009036 3.97e+08 836 0.34 0.56
- rank:degree 2 27067985 4.21e+08 837 1.55 0.22
<none> 3.94e+08 838
##
Step: AIC=836.1
salary ~ rank + degree + rank:degree
##
Df Sum of Sq RSS AIC F value Pr(>F)
- rank:degree 2 3.1e+07 4.28e+08 836 1.8 0.18
<none> 4.28e+08 836
##
Step: AIC=836
salary ~ rank + degree
##
Df Sum of Sq RSS AIC F value Pr(>F)
- degree 1 1.10e+07 4.39e+08 835 1.23 0.27
<none> 4.28e+08 836
- rank 2 1.35e+09 1.78e+09 906 75.65 1.2e-15 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
Step: AIC=835.3
salary ~ rank
##
Df Sum of Sq RSS AIC F value Pr(>F)
<none> 4.39e+08 835
- rank 2 1.35e+09 1.79e+09 904 75.2 1.2e-15 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

all are significant, stop.
final model: salary ~ rank
lm.faculty.factor.final <- lm.faculty.factor.red.AIC

library(car)
Anova(lm.faculty.factor.final, type=3)
Anova Table (Type III tests)
##
Response: salary
##
Df Sum Sq F value Pr(>F)
(Intercept) 1 1.76e+10 1963.9 < 2e-16 ***
rank 1 1.35e+09 75.2 1.2e-15 ***
Residuals 49 4.39e+08 94

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

summary(lm.faculty.factor.final)
```
All ranks are different with salaries increasing with rank.

```r
$`rank lsmeans`
rank lsmean SE df lower.CL upper.CL
Full 29659 669 49 28314 31004
Assoc 23176 799 49 21568 24783
Asst 17769 705 49 16351 19186
##
$`rank pairwise differences`
estimate SE df t.ratio p.value
Full - Assoc 6483 1043 49 6.22 1.1e-07
Full - Asst 11890 972 49 12.23 <2e-16
Assoc - Asst 5407 1066 49 5.07 2e-05
```

This analysis suggests that sex is not predictive of salary, once other factors are taken into account. In particular, faculty rank appears to be the sole important effect, in the sense that once salaries are adjusted for rank no other factors explain a significant amount of the unexplained variation in salaries.

As noted earlier, the analysis was meant to illustrate a three-factor ANOVA and backward selection. The analysis is likely flawed, because it ignores the effects of year and year since degree on salary.

### 9.2.2 Using Year and Year Since Degree to Predict Salary

Plots of the salary against years in rank and years since degree show fairly strong associations with salary. The variability in salaries appears to be increasing with year and with year since degree, which might be expected. You might think to transform the salaries to a log scale to eliminate this
As a point of comparison with the three-factor ANOVA, I fit a multiple regression model with year and years since degree as predictors of salary. These two predictors are important for explaining the variation in salaries, but together they explain much less of the variation (58%) than rank does on its own (75%).

```r
interaction model
lm.s.y.yd.yyd <- lm(salary ~ year*yd, data = faculty)
summary(lm.s.y.yd.yyd)
```

```
Call:
lm(formula = salary ~ year * yd, data = faculty)
##
Residuals:
Min 1Q Median 3Q Max
-10369 -2362 -506 2363 12212
##
Coefficients:
```
204 Discussion of Response Models with Factors and Predictors

## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 16287.39 1395.05 11.68 1.3e-15 ***
## year 561.15 275.24 2.04 0.0470 *
## yd 235.42 83.27 2.83 0.0068 **
## year:yd -3.09 10.41 -0.30 0.7680
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 3960 on 48 degrees of freedom
## Multiple R-squared: 0.579, Adjusted R-squared: 0.553
## F-statistic: 22 on 3 and 48 DF, p-value: 4.17e-09

```
interaction is not significant
lm.s.y.yd <- lm(salary ~ year + yd, data = faculty)
summary(lm.s.y.yd)
```

```r
Call:
lm(formula = salary ~ year + yd, data = faculty)
Residuals:
Min 1Q Median 3Q Max
-10321 -2347 -333 2299 12241
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 16555.7 1052.4 15.73 < 2e-16 ***
year 489.3 129.6 3.78 0.00043 ***
yd 222.3 69.8 3.18 0.00253 **

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 3920 on 49 degrees of freedom
Multiple R-squared: 0.578, Adjusted R-squared: 0.561
F-statistic: 33.6 on 2 and 49 DF, p-value: 6.53e-10
```

9.2.3 Using Factors and Predictors to Model Salaries

The plots we looked at helped us to understand the data. In particular, the plot of salary against years in rank, using rank as a plotting symbol, suggests that a combination of predictors and factors will likely be better for modelling faculty salaries than either of the two models that we proposed up to this point.

There is no evidence of non-linearity in the plots of salary against the predictors, so I will not consider transforming years since degree, years in rank, or salary. Note that the increasing variability in salaries for increasing years in rank and increasing years since degree is partly due to differences in the relationships across ranks. The non-constant variance should be less of a concern in any model that includes rank and either years in rank or years since degree as effects.

I started the model building process with a maximal or full model with the five main effects plus the 10 possible interactions between two effects, regardless of whether the effects were factors...
or predictors. Notationally, this model is written as follows:

\[
\text{Salary} = \text{Grand mean} + S \text{ effect} + D \text{ effect} + R \text{ effect} + \text{YEAR effect} + \text{YD effect}
+ S*D \text{ interaction} + S*R \text{ interaction} + S*\text{YEAR interaction} + S*\text{YD interaction}
+ D*R \text{ interaction} + D*\text{YEAR interaction} + D*\text{YD interaction}
+ R*\text{YEAR interaction} + R*\text{YD interaction} + \text{YEAR*YD interaction} + \text{Residual},
\]

where the year and year since degree effects (YD) are linear terms (as in the multiple regression model we considered). To check whether any important effects might have been omitted, I added individual three-factor terms to this model. All of the three factor terms were insignificant (not shown), so I believe that my choice for the “maximal” model is sensible.

The output below gives the fit to the maximal model, and subsequent fits, using the hierarchy principle. Only selected summaries are provided.

```r
fit full model with two-way interactions
lm.faculty.full <- lm(salary ~ (sex + rank + degree + year + yd)^2, data = faculty)
library(car)
Anova(lm.faculty.full, type=3)
Anova Table (Type III tests)
##
Response: salary
Sum Sq Df F value Pr(>F)
(Intercept) 2.26e+07 1 3.69 0.064 .
sex 4.09e+06 1 0.67 0.420
rank 5.73e+06 2 0.47 0.631
degree 4.14e+06 1 0.68 0.417
year 2.02e+06 1 0.33 0.570
yd 3.19e+06 1 0.52 0.476
sex:rank 9.32e+05 2 0.08 0.927
sex:degree 7.16e+06 1 0.17 0.288
sex:year 7.19e+06 1 0.17 0.287
sex:yd 2.02e+06 1 0.33 0.569
rank:degree 1.30e+07 2 1.06 0.358
rank:year 1.57e+06 2 0.13 0.880
rank:yd 9.82e+06 2 0.80 0.458
degree:year 4.51e+06 1 0.74 0.397
degree:yd 6.41e+06 1 1.05 0.314
year:yd 5.09e+04 1 0.01 0.928
Residuals 1.90e+08 31

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

# This time I use BIC for model reduction by specifying k=
# (compare this to model result using AIC --
# too many nonsignificant parameters left in model)

```r
BIC
option: test="F" includes additional information
for parameter estimate tests that we're familiar with
option: for BIC, include k=log(nrow(data.frame name))
lm.faculty.red.BIC <- step(lm.faculty.full, direction="backward", test="F",
, k=log(nrow(faculty)))
```
## Start: AIC=868.7

```r
salary ~ (sex + rank + degree + year + yd)^2
```

<table>
<thead>
<tr>
<th></th>
<th>Df</th>
<th>Sum of Sq</th>
<th>RSS</th>
<th>AIC</th>
<th>F value</th>
<th>Pr(&gt;F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>- sex:rank</td>
<td>2</td>
<td>932237</td>
<td>1.91e+08</td>
<td>861</td>
<td>0.08</td>
<td>0.93</td>
</tr>
<tr>
<td>- rank:year</td>
<td>2</td>
<td>1571933</td>
<td>1.91e+08</td>
<td>861</td>
<td>0.13</td>
<td>0.88</td>
</tr>
<tr>
<td>- rank:yd</td>
<td>2</td>
<td>9822382</td>
<td>2.00e+08</td>
<td>863</td>
<td>0.80</td>
<td>0.46</td>
</tr>
<tr>
<td>- rank:degree</td>
<td>2</td>
<td>13021265</td>
<td>2.03e+08</td>
<td>864</td>
<td>1.06</td>
<td>0.36</td>
</tr>
<tr>
<td>- year:yd</td>
<td>1</td>
<td>50921</td>
<td>1.90e+08</td>
<td>865</td>
<td>0.01</td>
<td>0.93</td>
</tr>
<tr>
<td>- sex:yd</td>
<td>1</td>
<td>2024210</td>
<td>1.92e+08</td>
<td>865</td>
<td>0.33</td>
<td>0.57</td>
</tr>
<tr>
<td>- degree:year</td>
<td>1</td>
<td>4510249</td>
<td>1.94e+08</td>
<td>866</td>
<td>0.74</td>
<td>0.40</td>
</tr>
<tr>
<td>- degree:yd</td>
<td>1</td>
<td>6407880</td>
<td>1.96e+08</td>
<td>866</td>
<td>1.05</td>
<td>0.31</td>
</tr>
<tr>
<td>- sex:degree</td>
<td>1</td>
<td>7164815</td>
<td>1.97e+08</td>
<td>867</td>
<td>1.17</td>
<td>0.29</td>
</tr>
<tr>
<td>- sex:year</td>
<td>1</td>
<td>7194388</td>
<td>1.97e+08</td>
<td>867</td>
<td>1.17</td>
<td>0.29</td>
</tr>
<tr>
<td>&lt;none&gt;</td>
<td>1</td>
<td>1.90e+08</td>
<td>869</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

## Step: AIC=861.1

```r
salary ~ sex + rank + degree + year + yd + sex:degree + sex:year +
sex:yd + rank:degree + rank:year + rank:yd + degree:year +
degree:yd + year:yd
```

<table>
<thead>
<tr>
<th></th>
<th>Df</th>
<th>Sum of Sq</th>
<th>RSS</th>
<th>AIC</th>
<th>F value</th>
<th>Pr(&gt;F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>- rank:year</td>
<td>2</td>
<td>4480611</td>
<td>1.95e+08</td>
<td>854</td>
<td>0.39</td>
<td>0.68</td>
</tr>
<tr>
<td>- rank:yd</td>
<td>2</td>
<td>14587933</td>
<td>2.05e+08</td>
<td>857</td>
<td>1.26</td>
<td>0.30</td>
</tr>
<tr>
<td>- year:yd</td>
<td>1</td>
<td>25889</td>
<td>1.91e+08</td>
<td>857</td>
<td>0.00</td>
<td>0.95</td>
</tr>
<tr>
<td>- rank:degree</td>
<td>2</td>
<td>16365099</td>
<td>2.07e+08</td>
<td>857</td>
<td>1.42</td>
<td>0.26</td>
</tr>
<tr>
<td>- sex:yd</td>
<td>1</td>
<td>3293276</td>
<td>1.94e+08</td>
<td>858</td>
<td>0.57</td>
<td>0.46</td>
</tr>
<tr>
<td>- degree:year</td>
<td>1</td>
<td>4428068</td>
<td>1.95e+08</td>
<td>858</td>
<td>0.77</td>
<td>0.39</td>
</tr>
<tr>
<td>- degree:yd</td>
<td>1</td>
<td>6525075</td>
<td>1.97e+08</td>
<td>859</td>
<td>1.13</td>
<td>0.30</td>
</tr>
<tr>
<td>- sex:year</td>
<td>1</td>
<td>10462381</td>
<td>2.01e+08</td>
<td>860</td>
<td>1.81</td>
<td>0.19</td>
</tr>
<tr>
<td>- sex:degree</td>
<td>1</td>
<td>10654937</td>
<td>2.01e+08</td>
<td>860</td>
<td>1.84</td>
<td>0.18</td>
</tr>
<tr>
<td>&lt;none&gt;</td>
<td>1</td>
<td>1.91e+08</td>
<td>861</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

## Step: AIC=854.4

```r
salary ~ sex + rank + degree + year + yd + sex:degree + sex:year +
sex:yd + rank:degree + rank:year + rank:yd + degree:year +
degree:yd + year:yd
```

<table>
<thead>
<tr>
<th></th>
<th>Df</th>
<th>Sum of Sq</th>
<th>RSS</th>
<th>AIC</th>
<th>F value</th>
<th>Pr(&gt;F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>- year:yd</td>
<td>1</td>
<td>582367</td>
<td>1.96e+08</td>
<td>851</td>
<td>0.10</td>
<td>0.75</td>
</tr>
<tr>
<td>- rank:degree</td>
<td>2</td>
<td>18612514</td>
<td>2.14e+08</td>
<td>851</td>
<td>1.67</td>
<td>0.20</td>
</tr>
<tr>
<td>- sex:yd</td>
<td>1</td>
<td>3008739</td>
<td>1.98e+08</td>
<td>851</td>
<td>0.54</td>
<td>0.47</td>
</tr>
<tr>
<td>- rank:yd</td>
<td>2</td>
<td>20258184</td>
<td>2.15e+08</td>
<td>852</td>
<td>1.82</td>
<td>0.18</td>
</tr>
<tr>
<td>- degree:year</td>
<td>1</td>
<td>7497925</td>
<td>2.03e+08</td>
<td>852</td>
<td>1.34</td>
<td>0.25</td>
</tr>
<tr>
<td>- degree:yd</td>
<td>1</td>
<td>8179956</td>
<td>2.03e+08</td>
<td>853</td>
<td>1.47</td>
<td>0.23</td>
</tr>
<tr>
<td>- sex:degree</td>
<td>1</td>
<td>12500896</td>
<td>2.08e+08</td>
<td>854</td>
<td>2.24</td>
<td>0.14</td>
</tr>
<tr>
<td>- sex:year</td>
<td>1</td>
<td>12669105</td>
<td>2.08e+08</td>
<td>854</td>
<td>2.27</td>
<td>0.14</td>
</tr>
<tr>
<td>&lt;none&gt;</td>
<td>1</td>
<td>1.95e+08</td>
<td>854</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

## Step: AIC=850.6

```r
salary ~ sex + rank + degree + year + yd + sex:degree + sex:year +
sex:yd + rank:degree + rank:year + rank:yd + degree:year + degree:yd
```

<table>
<thead>
<tr>
<th></th>
<th>Df</th>
<th>Sum of Sq</th>
<th>RSS</th>
<th>AIC</th>
<th>F value</th>
<th>Pr(&gt;F)</th>
</tr>
</thead>
</table>
## Example: The Effect of Sex and Rank on Faculty Salary

### AIC=847.3

#### salary ~ sex + rank + degree + year + yd + sex:degree + sex:year +
####   rank:degree + rank:yd + degree:year + degree:yd
####
#### Df Sum of Sq RSS AIC F value Pr(>F)
#### - rank:degree 2 21157939 2.19e+08 845 1.97 0.153
#### - degree:year 1 8497324 2.07e+08 846 1.59 0.216
#### - degree:yd 1 9463400 2.08e+08 846 1.77 0.192
#### - sex:degree 1 10394382 2.09e+08 846 1.94 0.172
#### <none> 1.98e+08 847
#### - sex:year 1 22789419 2.21e+08 849 4.25 0.046 *
#### - rank:yd 2 42516602 2.41e+08 849 3.97 0.027 *
#### ---
#### Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
####
#### Step: AIC=844.6

#### salary ~ sex + rank + degree + year + yd + sex:degree + sex:year +
####   rank:yd + degree:year + degree:yd
####
#### Df Sum of Sq RSS AIC F value Pr(>F)
#### - sex:degree 1 3112507 2.23e+08 841 0.57 0.456
#### - degree:year 1 4414318 2.24e+08 838 0.80 0.375
#### - rank:yd 2 24695126 2.44e+08 838 2.25 0.119
#### - sex:year 1 16645026 2.36e+08 841 3.03 0.089 .
#### <none> 2.19e+08 845
####
#### Step: AIC=840.8

#### salary ~ sex + rank + degree + year + yd + sex:degree + sex:year +
####   rank:yd + degree:year
####
#### Df Sum of Sq RSS AIC F value Pr(>F)
#### - sex:degree 1 3112507 2.23e+08 838 0.57 0.456
#### - degree:year 1 4414318 2.24e+08 838 0.80 0.375
#### - rank:yd 2 24695126 2.44e+08 838 2.25 0.119
#### - sex:year 1 16645026 2.36e+08 841 3.03 0.089 .
#### <none> 2.20e+08 841
#### ---
#### Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
####
#### Step: AIC=837.6

#### salary ~ sex + rank + degree + year + yd + sex:year + rank:yd +
####   degree:year
## Discussion of Response Models with Factors and Predictors

<table>
<thead>
<tr>
<th>Model</th>
<th>Df</th>
<th>Sum of Sq</th>
<th>RSS</th>
<th>AIC</th>
<th>F value</th>
<th>Pr(&gt;F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>~ sex:year</td>
<td>1</td>
<td>2585275</td>
<td>2.25e+08</td>
<td>834</td>
<td>0.48</td>
<td>0.49</td>
</tr>
<tr>
<td>~ rank:yd</td>
<td>2</td>
<td>25367664</td>
<td>2.48e+08</td>
<td>835</td>
<td>2.33</td>
<td>0.11</td>
</tr>
<tr>
<td>~ sex:year</td>
<td>1</td>
<td>14770974</td>
<td>2.38e+08</td>
<td>837</td>
<td>2.72</td>
<td>0.11</td>
</tr>
<tr>
<td>~&lt;none&gt;</td>
<td></td>
<td>2.23e+08</td>
<td>838</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

## Step: AIC=834.2

## salary ~ sex + rank + degree + year + yd + sex:year + rank:yd

<table>
<thead>
<tr>
<th>Model</th>
<th>Df</th>
<th>Sum of Sq</th>
<th>RSS</th>
<th>AIC</th>
<th>F value</th>
<th>Pr(&gt;F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>~ rank:yd</td>
<td>2</td>
<td>24905278</td>
<td>2.50e+08</td>
<td>832</td>
<td>2.32</td>
<td>0.11</td>
</tr>
<tr>
<td>~ degree</td>
<td>1</td>
<td>8902098</td>
<td>2.34e+08</td>
<td>832</td>
<td>1.66</td>
<td>0.20</td>
</tr>
<tr>
<td>~ sex:year</td>
<td>1</td>
<td>14134386</td>
<td>2.40e+08</td>
<td>833</td>
<td>2.63</td>
<td>0.11</td>
</tr>
<tr>
<td>~&lt;none&gt;</td>
<td></td>
<td>2.25e+08</td>
<td>834</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

## Step: AIC=831.8

## salary ~ sex + rank + degree + year + yd + sex:year

<table>
<thead>
<tr>
<th>Model</th>
<th>Df</th>
<th>Sum of Sq</th>
<th>RSS</th>
<th>AIC</th>
<th>F value</th>
<th>Pr(&gt;F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>~ sex:year</td>
<td>1</td>
<td>8.46e+06</td>
<td>2.59e+08</td>
<td>830</td>
<td>1.49</td>
<td>0.229</td>
</tr>
<tr>
<td>~ degree</td>
<td>1</td>
<td>1.12e+07</td>
<td>2.62e+08</td>
<td>830</td>
<td>1.97</td>
<td>0.167</td>
</tr>
<tr>
<td>~ yd</td>
<td>1</td>
<td>1.63e+07</td>
<td>2.67e+08</td>
<td>831</td>
<td>2.87</td>
<td>0.098.</td>
</tr>
<tr>
<td>~&lt;none&gt;</td>
<td></td>
<td>2.50e+08</td>
<td>832</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>~ rank</td>
<td>2</td>
<td>4.06e+08</td>
<td>6.57e+08</td>
<td>874</td>
<td>35.69</td>
<td>6.1e-10</td>
</tr>
</tbody>
</table>

## Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

## Step: AIC=829.5

## salary ~ sex + rank + degree + year + yd

<table>
<thead>
<tr>
<th>Model</th>
<th>Df</th>
<th>Sum of Sq</th>
<th>RSS</th>
<th>AIC</th>
<th>F value</th>
<th>Pr(&gt;F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>~ sex</td>
<td>1</td>
<td>9.13e+06</td>
<td>2.68e+08</td>
<td>827</td>
<td>1.59</td>
<td>0.21</td>
</tr>
<tr>
<td>~ degree</td>
<td>1</td>
<td>1.07e+07</td>
<td>2.70e+08</td>
<td>828</td>
<td>1.86</td>
<td>0.18</td>
</tr>
<tr>
<td>~ yd</td>
<td>1</td>
<td>1.49e+07</td>
<td>2.74e+08</td>
<td>828</td>
<td>2.58</td>
<td>0.11</td>
</tr>
<tr>
<td>~&lt;none&gt;</td>
<td></td>
<td>2.59e+08</td>
<td>830</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>~ year</td>
<td>1</td>
<td>1.45e+08</td>
<td>4.04e+08</td>
<td>849</td>
<td>25.18</td>
<td>8.7e-06</td>
</tr>
<tr>
<td>~ rank</td>
<td>2</td>
<td>4.00e+08</td>
<td>6.59e+08</td>
<td>870</td>
<td>34.75</td>
<td>7.5e-10</td>
</tr>
</tbody>
</table>

## Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

## Step: AIC=827.4

## salary ~ rank + degree + year + yd

<table>
<thead>
<tr>
<th>Model</th>
<th>Df</th>
<th>Sum of Sq</th>
<th>RSS</th>
<th>AIC</th>
<th>F value</th>
<th>Pr(&gt;F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>~ degree</td>
<td>1</td>
<td>6.68e+06</td>
<td>2.75e+08</td>
<td>825</td>
<td>1.15</td>
<td>0.29</td>
</tr>
<tr>
<td>~ yd</td>
<td>1</td>
<td>7.87e+06</td>
<td>2.76e+08</td>
<td>825</td>
<td>1.35</td>
<td>0.25</td>
</tr>
<tr>
<td>~&lt;none&gt;</td>
<td></td>
<td>2.68e+08</td>
<td>827</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>~ year</td>
<td>1</td>
<td>1.48e+08</td>
<td>4.16e+08</td>
<td>846</td>
<td>25.34</td>
<td>7.8e-06</td>
</tr>
<tr>
<td>~ rank</td>
<td>2</td>
<td>4.04e+08</td>
<td>6.72e+08</td>
<td>867</td>
<td>34.68</td>
<td>6.5e-10</td>
</tr>
</tbody>
</table>

## Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

## Step: AIC=824.7
9.2 Example: The Effect of Sex and Rank on Faculty Salary

```r
salary ~ rank + year + yd
##
Df Sum of Sq RSS AIC F value Pr(>F)
- yd 1 2.31e+06 2.77e+08 821 0.4 0.53
<none> 2.75e+08 825
- year 1 1.41e+08 4.16e+08 842 24.1 1.1e-05 ***
- rank 2 4.79e+08 7.53e+08 869 40.9 5.1e-11 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
Step: AIC=821.2
salary ~ rank + year
##
Df Sum of Sq RSS AIC F value Pr(>F)
<none> 2.77e+08 821
- year 1 1.62e+08 4.39e+08 841 28.1 2.9e-06 ***
- rank 2 6.32e+08 9.09e+08 875 54.8 4.1e-13 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The `add1()` function will indicate whether a variable from the “full” model should be added to the current model. In our case, our BIC-backward selected model appears adequate.

```
add1(lm.faculty.red.BIC, . ~ (sex + rank + degree + year + yd)^2, test="F")
```

Single term additions

```
## Model:
## salary ~ rank + year
##
## Df Sum of Sq RSS AIC F value Pr(>F)
## <none> 2.77e+08 813
## sex 1 2304648 2.75e+08 815 0.39 0.53
## degree 1 1127718 2.76e+08 815 0.19 0.66
## yd 1 2314414 2.75e+08 815 0.40 0.53
## rank:year 2 15215454 2.62e+08 814 1.34 0.27
```

Let’s look carefully at our resulting model.

```
# all are significant, stop.
# final model: salary ~ year + rank
lm.faculty.final <- lm.faculty.red.BIC

library(car)
Anova(lm.faculty.final, type=3)
## Anova Table (Type III tests)
##
## Response: salary
##
## Sum Sq Df F value Pr(>F)
## (Intercept) 4.42e+09 1 766.4 < 2e-16 ***
## rank 6.32e+08 2 54.8 4.1e-13 ***
## year 1.62e+08 1 28.1 2.9e-06 ***
## Residuals 2.77e+08 48
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

summary(lm.faculty.final)
```
Discussion of Response Models with Factors and Predictors

Call:
```
lm(formula = salary ~ rank + year, data = faculty)
```

Residuals:
```
             Min   1Q Median   3Q   Max
-3462 -1303  -299   783  9382
```

Coefficients:
```
            Estimate Std. Error t value Pr(>|t|)
(Intercept) 25657.8     926.8  27.68 < 2e-16 ***
rankAssoc   -5192.2     871.8  -5.96  2.9e-07 ***
rankAsst    -9454.5     905.8 -10.44  6.1e-14 ***
year         375.7      70.9   5.30  2.9e-06 ***
```

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 2400 on 48 degrees of freedom

Multiple R-squared: 0.845, Adjusted R-squared: 0.835

F-statistic: 87.1 on 3 and 48 DF, p-value: <2e-16

comparing lsmeans (may be unbalanced)
```
library(lsmeans)
```

compare levels of main effects
```
lsmeans(lm.faculty.final, list(pairwise ~ rank), adjust = "bonferroni")
```

$`rank lsmeans`
```
     rank lsmean     SE  df lower.CL upper.CL
Full   28468  582.3  48    27298    29639
Assoc  23276  642.3  48    21985    24567
Asst   19014  613.1  48    17781    20246
```

$`rank pairwise differences`
```
             estimate     SE  df t.ratio p.value
Full - Assoc   5192  871.8  48    5.966   0e+00
Full - Asst   9455  905.8  48   10.437   0e+00
Assoc - Asst  4262  882.9  48    4.828   4e-05
```

p values are adjusted using the bonferroni method for 3 tests

9.2.4 Discussion of the Salary Analysis

The selected model is a simple ANCOVA model with a rank effect and a linear effect due to years in rank. Note that the maximal model has 20 single df effects with an $R^2 = 0.89$ while the selected model has 3 single df effects with $R^2 = 0.84$.

Looking at the parameter estimates table, all of the single df effects in the selected model are significant. The baseline group is Full Professors, with rank=3. Predicted salaries for the different ranks are given by:

- **Full:** \(\hat{\text{salary}} = 25658 + 375.70 \text{ year} \)
- **Assoc:** \(\hat{\text{salary}} = 25658 - 5192 + 375.70 \text{ year} = 20466 + 375.70 \text{ year} \)
- **Assis:** \(\hat{\text{salary}} = 25658 - 9454 + 375.70 \text{ year} = 16204 + 375.70 \text{ year} \)
Do you remember how to interpret the \texttt{lsmeans}, and the p-values for comparing \texttt{lsmeans}?

You might be tempted to conclude that rank and years in rank are the only effects that are predictive of salaries, and that differences in salaries by sex are insignificant, once these effects have been taken into account. However, you must be careful because you have not done a diagnostic analysis. The following two issues are also important to consider.

A sex effect may exist even though there is insufficient evidence to support it based on these data. (Lack of power corrupts; and absolute lack of power corrupts absolutely!) If we are interested in the possibility of a sex effect, I think that we would do better by focusing on how large the effect might be, and whether it is important. A simple way to check is by constructing a confidence interval for the sex effect, based on a simple additive model that includes sex plus the effects that were selected as statistically significant, rank and year in rank. I am choosing this model because the omitted effects are hopefully small, and because the regression coefficient for a sex indicator is easy to interpret in an additive model. Other models might be considered for comparison. Summary output from this model is given below.

```
# add sex to the model
lm.faculty.final.sex <- update(lm.faculty.final, . ~ . + sex)
summary(lm.faculty.final.sex)
```

```
## Call:
## lm(formula = salary ~ rank + year + sex, data = faculty)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3286 -1312 -178 939 9003
##
## Coefficients:  
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 25390.7 1025.1 24.77 < 2e-16 ***
## rankAssoc -5109.9 887.1 -5.76 6.2e-07 ***
## rankAsst -9483.8 912.8 -10.39 9.2e-14 ***
## year 390.9 75.4 5.19 4.5e-06 ***
## sexFemale 524.1 834.7 0.63 0.53
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2420 on 47 degrees of freedom
## Multiple R-squared: 0.846, Adjusted R-squared: 0.833
## F-statistic: 64.6 on 4 and 47 DF, p-value: <2e-16
```

Men are the baseline group for the sex effect, so the predicted salaries for men are 524 dollars less than that for women, adjusting for rank and year. A rough 95\% CI for the sex differential is the estimated sex coefficient plus or minus two standard errors, or 524 ± 2 \times (835), or −2194 to 1146 dollars. The range of plausible values for the sex effect would appear to contain values of practical importance, so further analysis is warranted here.

Another concern, and potentially a more important issue, was raised by M. O. Finkelstein in a 1980 discussion in the \textit{Columbia Law Review} on the use of regression in discrimination cases: “…[a] variable may reflect a position or status bestowed by the employer, in which case if there is discrimination in the award of the position or status, the variable may be ‘tainted’.” Thus, if women are unfairly held back from promotion through the faculty ranks, then using faculty rank to adjust salary before comparing sexes may not be acceptable to the courts.
This suggests that an analysis comparing sexes but ignoring rank effects might be justifiable. What happens if this is done?

```r
lm.faculty.sex.yd <- lm(salary ~ sex + yd, data = faculty)
library(car)
Anova(lm.faculty.sex.yd, type=3)
#
## Anova Table (Type III tests)
##
## Response: salary
## Sum Sq Df F value Pr(>F)
## (Intercept) 4.28e+09 1 231.44 < 2e-16 ***
## sex 6.72e+07 1 3.64 0.062 .
## yd 7.66e+08 1 41.48 4.9e-08 ***
## Residuals 9.05e+08 49
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

summary(lm.faculty.sex.yd)
##
## Call:
## lm(formula = salary ~ sex + yd, data = faculty)
##
## Residuals:
## Min 1Q Median 3Q Max
## -9632 -2529 3 2298 13126
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 18355.2 1206.5 15.21 < 2e-16 ***
## sexFemale -2572.5 1349.1 -1.91 0.062 .
## yd 380.7 59.1 6.44 4.9e-08 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 4300 on 49 degrees of freedom
## Multiple R-squared: 0.493, Adjusted R-squared: 0.472
## F-statistic: 23.8 on 2 and 49 DF, p-value: 5.91e-08
```

Similar result as before, insufficient evidence between sexes (due to large proportion of variability in salary explained by yd [which I’m using in place of year since year is paired with rank]). However, rank and sex are (potentially) confounded. This data can not resolve this question. Instead, data on promotions would help resolve this issue.
Chapter 10

Automated Model Selection for Multiple Regression

Given data on a response variable Y and k predictors or binary variables X_1, X_2, \ldots, X_k, we wish to develop a regression model to predict Y. Assuming that the collection of variables is measured on the correct scale, and that the candidate list of effects includes all the important predictors or binary variables, the most general model is

$$ Y = \beta_0 + \beta_1 X_1 + \cdots + \beta_k X_k + \varepsilon. $$

In most problems one or more of the effects can be eliminated from the full model without loss of information. We want to identify the important effects, or equivalently, eliminate the effects that are not very useful for explaining the variation in Y.

We will study several automated non-hierarchical methods for model selection. Given a specific criterion for selecting a model, a method gives the best model. Before applying these methods, plot Y against each predictor to see whether transformations are needed. Although transformations of binary variables are not necessary, side-by-side boxplots of the response across the levels of a factor give useful information on the predictive ability of the factor. If a transformation of X_i is suggested, include the transformation along with the original X_i in the candidate list. Note that we can transform the predictors differently, for example, $\log(X_1)$ and $\sqrt{X_2}$. However, if several transformations are suggested for the response, then one should consider doing one analysis for each suggested response scale before deciding on the final scale.

Different criteria for selecting models lead to different “best models.” Given a collection of candidates for the best model, we make a choice of model on the basis of (1) a direct comparison of models, if possible (2) examination of model adequacy (residuals, influence, etc.) (3) simplicity — all things being equal, simpler models are preferred, and (4) scientific plausibility.

I view the various criteria as a means to generate interesting models for further consideration. I do not take any of them literally as best.

You should recognize that automated model selection methods should not replace scientific theory when building models! Automated methods are best suited for exploratory analyses, in situations where the researcher has little scientific information as a guide.

AIC/BIC were discussed in Section 3.2.1 for stepwise procedures and were used in examples in Chapter 9. In those examples, I included the corresponding F-tests in the ANOVA table as a criterion for dropping variables from a model. The next few sections cover these methods in more detail, then discuss other criteria and selections strategies, finishing with a few examples.
10.1 Forward Selection

In forward selection we add variables to the model one at a time. The steps in the procedure are:

1. Find the variable in the candidate list with the largest correlation (ignoring the sign) with Y. This variable gives a simple linear regression model with the largest R^2. Suppose this is X_1. Then fit the model

$$Y = \beta_0 + \beta_1 X_1 + \varepsilon$$

(10.1)

and test $H_0 : \beta_1 = 0$. If we reject H_0, go to step 2. Otherwise stop and conclude that no variables are important. A t-test can be used here, or the equivalent ANOVA F-test.

2. Find the remaining variable which when added to model (10.1) increases R^2 the most (or equivalently decreases Residual SS the most). Suppose this is X_2. Fit the model

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \varepsilon$$

(10.2)

and test $H_0 : \beta_2 = 0$. If we do not reject H_0, stop and use model (10.1) to predict Y. If we reject H_0, replace model (10.1) with (10.2) and repeat step 2 sequentially until no further variables are added to the model.

In forward selection we sequentially isolate the most important effect left in the pool, and check whether it is needed in the model. If it is needed we continue the process. Otherwise we stop.

The F-test default level for the tests on the individual effects is sometimes set as high as $\alpha = 0.50$ (SAS default). This may seem needlessly high. However, in many problems certain variables may be important only in the presence of other variables. If we force the forward selection to test at standard levels then the process will never get “going” when none of the variables is important on its own.

10.2 Backward Elimination

The backward elimination procedure (discussed earlier this semester) deletes unimportant variables, one at a time, starting from the full model. The steps is the procedure are:

1. Fit the full model

$$Y = \beta_0 + \beta_1 X_1 + \cdots + \beta_k X_k + \varepsilon.$$

(10.3)

2. Find the variable which when omitted from the full model (10.3) reduces R^2 the least, or equivalently, increases the Residual SS the least. This is the variable that gives the largest p-value for testing an individual regression coefficient $H_0 : \beta_j = 0$ for $j > 0$. Suppose this variable is X_k. If you reject H_0, stop and conclude that the full model is best. If you do not reject H_0, delete X_k from the full model, giving the new full model

$$Y = \beta_0 + \beta_1 X_1 + \cdots + \beta_{k-1} X_{k-1} + \varepsilon$$

to replace (10.3). Repeat steps 1 and 2 sequentially until no further variables can be deleted.

In backward elimination we isolate the least important effect left in the model, and check whether it is important. If not, delete it and repeat the process. Otherwise, stop. The default test level on the individual variables is sometimes set at $\alpha = 0.10$ (SAS default).
10.3 Stepwise Regression

Stepwise regression combines features of forward selection and backward elimination. A deficiency of forward selection is that variables can not be omitted from the model once they are selected. This is problematic because many variables that are initially important are not important once several other variables are included in the model. In stepwise regression, we add variables to the model as in forward regression, but include a backward elimination step every time a new variable is added. That is, every time we add a variable to the model we ask whether any of the variables added earlier can be omitted. If variables can be omitted, they are placed back into the candidate pool for consideration at the next step of the process. The process continues until no additional variables can be added, and none of the variables in the model can be excluded. The procedure can start from an empty model, a full model, or an intermediate model, depending on the software.

The p-values used for including and excluding variables in stepwise regression are usually taken to be equal (why is this reasonable?), and sometimes set at $\alpha = 0.15$ (SAS default).

10.3.1 Example: Indian systolic blood pressure

We revisit the example first introduced in Chapter 2. Anthropologists conducted a study to determine the long-term effects of an environmental change on systolic blood pressure. They measured the blood pressure and several other characteristics of 39 Indians who migrated from a very primitive environment high in the Andes into the mainstream of Peruvian society at a lower altitude. All of the Indians were males at least 21 years of age, and were born at a high altitude.

Let us illustrate the three model selection methods to build a regression model, using systolic blood pressure (sysbp) as the response, and seven candidate predictors: $\text{wt} =$ weight in kilos; $\text{ht} =$ height in mm; $\text{chin} =$ chin skin fold in mm; $\text{fore} =$ forearm skin fold in mm; $\text{calf} =$ calf skin fold in mm; $\text{pulse} =$ pulse rate-beats/min, and $\text{yrage} =$ fraction, which is the proportion of each individual’s lifetime spent in the new environment.

Below I generate simple summary statistics and plots. The plots do not suggest any apparent transformations of the response or the predictors, so we will analyze the data using the given scales.

```r
fn.data <- "http://statacumen.com/teach/ADA2/ADA2_notes_Ch02_indian.dat"
indian <- read.table(fn.data, header=TRUE)

# Description of variables
# id = individual id
# age = age in years   yrmig = years since migration
# wt = weight in kilos ht = height in mm
# chin = chin skin fold in mm fore = forearm skin fold in mm
# calf = calf skin fold in mm pulse = pulse rate-beats/min
# sysbp = systolic bp  diabp = diastolic bp

# Create the "fraction of their life" variable
# yrage = years since migration divided by age
indian$yrage <- indian$yrmig / indian$age

# correlation matrix and associated p-values testing "H0: rho == 0"
library(Hmisc)
i.cor <- rcorr(as.matrix(indian[,c("sysbp", "wt", "ht", "chin", "fore", "calf", "pulse", "yrage")]))
# print correlations with the response to 3 significant digits
signif(i.cor$r[1, ], 3)
```
```
## sysbp  wt  ht  chin  fore  calf  pulse  yrage
## 1.000 0.521 0.219 0.170 0.272 0.251 0.133 -0.276

# scatterplots
library(ggplot2)
p1 <- ggplot(indian, aes(x = wt, y = sysbp)) + geom_point(size=2)
p2 <- ggplot(indian, aes(x = ht, y = sysbp)) + geom_point(size=2)
p3 <- ggplot(indian, aes(x = chin, y = sysbp)) + geom_point(size=2)
p4 <- ggplot(indian, aes(x = fore, y = sysbp)) + geom_point(size=2)
p5 <- ggplot(indian, aes(x = calf, y = sysbp)) + geom_point(size=2)
p6 <- ggplot(indian, aes(x = pulse, y = sysbp)) + geom_point(size=2)
p7 <- ggplot(indian, aes(x = yrage, y = sysbp)) + geom_point(size=2)

library(gridExtra)
grid.arrange(p1, p2, p3, p4, p5, p6, p7, ncol=3, main = "Scatterplots of response sysbp with each predictor variable")
```
The `step()` function provides the forward, backward, and stepwise procedures based on AIC or BIC, and provides corresponding F-tests.

```r
## step() function specification
## The first two arguments of step(object, scope, ...) are
## object = a fitted model object.
## scope = a formula giving the terms to be considered for adding or dropping
## default is AIC
## for BIC, include k = log(nrow(data.frame name))
## test="F" includes additional information
## for parameter estimate tests that we're familiar with
```
Forward selection output The output for the forward selection method is below. BIC is our selection criterion, though similar decisions are made as if using F-tests.

Step 1 Variable wt = weight is entered first because it has the highest correlation with $sysbp$ = sys bp. The corresponding F-value is the square of the t-statistic for testing the significance of the weight predictor in this simple linear regression model.

Step 2 Adding $yrage$ = fraction to the simple linear regression model with weight as a predictor increases R^2 the most, or equivalently, decreases Residual SS (RSS) the most.

Step 3 The last table has "<none>" as the first row indicating that the current model (no change to current model) is the best under the current selection criterion.

```r
# start with an empty model (just the intercept 1)
lm.indian.empty <- lm(sysbp ~ 1, data = indian)

# Forward selection, BIC with F-tests
lm.indian.forward.red.BIC <- step(lm.indian.empty, sysbp ~ wt + ht + chin + fore + calf + pulse + yrange, direction = "forward", test = "F", k = log(nrow(indian)))

## Start:  AIC=203.4
## sysbp ~ 1
##
## Df Sum of Sq RSS AIC F value Pr(>F)
## + wt 1 1775 4756 195 13.81 0.00067 ***
## <none> 6531 203
## + yrange 1 498 6033 204 3.05 0.08881 .
## + fore 1 484 6047 204 2.96 0.09356 .
## + calf 1 411 6121 204 2.48 0.12357
## + ht 1 314 6218 205 1.87 0.18018
## + chin 1 189 6342 206 1.10 0.30027
## + pulse 1 115 6417 206 0.66 0.42113
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Step:  AIC=194.7
## sysbp ~ wt
##
## Df Sum of Sq RSS AIC F value Pr(>F)
## + yrange 1 1315 3441 186 13.75 0.0007 ***
## <none> 4756 195
## + chin 1 144 4612 197 1.12 0.2967
## + calf 1 17 4739 198 0.13 0.7240
## + pulse 1 6 4750 198 0.05 0.8309
## + ht 1 2 4754 198 0.02 0.9024
## + fore 1 1 4755 198 0.01 0.9257
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Step:  AIC=185.7
## sysbp ~ wt + yrange
##
## Df Sum of Sq RSS AIC F value Pr(>F)
```

Backward selection output

The output for the backward elimination method is below. BIC is our selection criterion, though similar decisions are made as if using \(F \)-tests.

Step 0 The full model has 7 predictors so \(\text{REG df} = 7 \). The \(F \)-test in the full model ANOVA table \((F = 4.91 \) with \(p\)-value=0.0008) tests the hypothesis that the regression coefficient for each predictor variable is zero. This test is highly significant, indicating that one or more of the predictors is important in the model.

The \(t \)-value column gives the \(t \)-statistic for testing the significance of the individual predictors in the full model conditional on the other variables being in the model.
Automated Model Selection for Multiple Regression

| | Estimate | Std. Error | t value | Pr(>|t|) |
|------------------|----------|------------|---------|---------|
| (Intercept) | 106.4577 | 53.9130 | 1.97 | 0.0573 |
| wt | 1.7109 | 0.3866 | 4.43 | 0.0001 *** |
| ht | -0.0453 | 0.0395 | -1.15 | 0.2593 |
| chin | -1.1572 | 0.8461 | -1.37 | 0.1812 |
| fore | -0.7018 | 1.3499 | -0.52 | 0.6068 |
| calf | 0.1036 | 0.6117 | 0.17 | 0.8666 |
| pulse | 0.0749 | 0.1957 | 0.38 | 0.7047 |
| yrage | -29.3181 | 7.8684 | -3.73 | 0.0007 *** |

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 9.99 on 31 degrees of freedom
Multiple R-squared: 0.526, Adjusted R-squared: 0.419
F-statistic: 4.91 on 7 and 31 DF, p-value: 0.000808

The least important variable in the full model, as judged by the p-value, is `calf` = calf skin fold. This variable, upon omission, reduces R^2 the least, or equivalently, increases the Residual SS the least. So `calf` is the first to be omitted from the model.

Step 1 After deleting `calf`, the six predictor model is fitted. At least one of the predictors left is important, as judged by the overall F-test p-value. The least important predictor left is `pulse` = pulse rate.

Backward selection, BIC with F-tests

```r
lm.indian.backward.red.BIC <- step(lm.indian.full, direction = "backward", test = "F", k = log(nrow(indian)))
```

```r
# Start: AIC=199.9
# sysbp ~ wt + ht + chin + fore + calf + pulse + yrage
## Df Sum of Sq RSS AIC F value Pr(>F)
## <none> 3096 200
## - calf 1 3 3099 196 0.03 0.86664
## - pulse 1 15 3111 196 0.15 0.70470
## - fore 1 27 3123 197 0.27 0.60681
## - ht 1 132 3228 198 1.32 0.25933
## - chin 1 187 3283 198 1.87 0.18124
## - yrage 1 1387 4483 211 13.88 0.00078 ***
## - wt 1 1956 5053 215 19.59 0.00011 ***
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Step: AIC=196.3
# sysbp ~ wt + ht + chin + fore + pulse + yrage
## Df Sum of Sq RSS AIC F value Pr(>F)
## <none> 3099 196
## - pulse 1 13 3113 193 0.14 0.71302
## - fore 1 27 3126 193 0.28 0.60120
## - ht 1 130 3229 194 1.34 0.25601
## - chin 1 184 3283 195 1.90 0.17764
## - yrage 1 1448 4547 208 14.95 0.00051 ***
## - wt 1 1954 5053 212 20.17 8.7e-05 ***
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```
Step: AIC=192.8
sysbp ~ wt + ht + chin + fore + yrage
##
Df Sum of Sq RSS AIC F value Pr(>F)
- fore 1 18 3130 189 0.19 0.66701
- ht 1 131 3244 191 1.39 0.24681
- chin 1 198 3311 192 2.10 0.15651
<none> 3113 193
- yrage 1 1450 4563 204 15.37 0.00042 ***
- wt 1 1984 5096 208 21.03 6.2e-05 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Step: AIC=189.3
sysbp ~ wt + ht + chin + yrage
##
Df Sum of Sq RSS AIC F value Pr(>F)
- ht 1 114 3244 187 1.23 0.27453
- chin 1 287 3418 189 3.12 0.08635 .
<none> 3130 189
- yrage 1 1446 4576 200 15.70 0.00036 ***
- wt 1 2264 5394 207 24.59 1.9e-05 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Step: AIC=187.1
sysbp ~ wt + chin + yrage
##
Df Sum of Sq RSS AIC F value Pr(>F)
- chin 1 197 3441 186 2.13 0.15341
<none> 3244 187
- yrage 1 1368 4612 197 14.76 7e-04 ***
- wt 1 2515 5759 206 27.1 8e-06 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Step: AIC=185.7
sysbp ~ wt + yrage
##
Df Sum of Sq RSS AIC F value Pr(>F)
<none> 3441 186
- yrage 1 1315 4756 195 13.8 7e-04 ***
- wt 1 2592 6033 204 27.1 8e-06 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

summary(lm.indian.backward.red.BIC)

Call:
lm(formula = sysbp ~ wt + yrage, data = indian)
##
Residuals:
Min 1Q Median 3Q Max
-18.433 -7.307 0.896 5.728 23.982
In the final table we are unable to drop yrage or wt from the model.

Stepwise selection output The output for the stepwise selection is given below.

Variables are listed in the output tables in order that best improves the AIC/BIC criterion. In the stepwise case, BIC will decrease (improve) by considering variables to drop or add (indicated in the first column by − and +). Rather than printing a small table at each step of the `step()` procedure, we use `lm.XXX$anova` to print a summary of the drop/add choices made.

```r
# Stepwise (both) selection, BIC with F-tests, starting with intermediate model
# (this is a purposefully chosen "opposite" model,
#  from the forward and backward methods this model
#  includes all the variables dropped and none kept)
lm.indian.intermediate <- lm(sysbp ~ ht + fore + calf + pulse, data = indian)
# option: trace = 0 does not print each step of the selection
lm.indian.both.red.BIC <- step(lm.indian.intermediate
, sysbp ~ wt + ht + chin + fore + calf + pulse + yrage
, direction = "both", test = "F", k = log(nrow(indian)), trace = 0)
# the anova object provides a summary of the selection steps in order
lm.indian.both.red.BIC$anova

# Step Df Deviance Resid. Df Resid. Dev AIC
# 1 NA NA 34 5651 212.4
# 2 - pulse 1 2.874 35 5654 208.7
# 3 - calf 1 21.844 36 5676 205.2
# 4 + wt -1 925.198 35 4751 202.0
# 5 + yrage -1 1439.707 34 3311 181.5
# 6 - ht 1 79.871 35 3391 185.7
# 7 - fore 1 50.548 36 3441 185.7

summary(lm.indian.both.red.BIC)

# Call:
# lm(formula = sysbp ~ wt + yrage, data = indian)
#
# Residuals:
#      Min       1Q     Median       3Q      Max
# -18.433    -7.307      0.896     5.728    23.982
#
# Coefficients:
# Estimate Std. Error t value Pr(>|t|)
# (Intercept) 60.896  14.281   4.260  0.00014 ***
# wt         1.217   0.234   5.210   8e-06 ***
```
Summary of three section methods

All three methods using BIC choose the same final model, \(\text{sysbp} = \beta_0 + \beta_1 \text{wt} + \beta_2 \text{yrage} \). Using the AIC criterion, you will find different results.

10.4 Other Model Selection Procedures

10.4.1 \(R^2\) Criterion

\(R^2\) is the proportion of variation explained by the model over the grand mean, and we wish to maximize this. A substantial increase in \(R^2\) is usually observed when an “important” effect is added to a regression model. With the \(R^2\) criterion, variables are added to the model until further additions give inconsequential increases in \(R^2\). The \(R^2\) criterion is not well-defined in the sense of producing a single best model. All other things being equal, I prefer the simpler of two models with similar values of \(R^2\). If several models with similar complexity have similar \(R^2\)s, then there may be no good reason, at this stage of the analysis, to prefer one over the rest.

10.4.2 Adjusted-\(R^2\) Criterion, maximize

The adjusted-\(R^2\) criterion gives a way to compare \(R^2\) across models with different numbers of variables, and we want to maximize this. This eliminates some of the difficulty with calibrating \(R^2\), which increases even when unimportant predictors are added to a model. For a model with \(p\) variables and an intercept, the adjusted-\(R^2\) is defined by

\[
\bar{R}^2 = 1 - \frac{n - 1}{n - p - 1} (1 - R^2),
\]

where \(n\) is the sample size.

There are four properties of \(\bar{R}^2\) worth mentioning:

1. \(\bar{R}^2 \leq R^2\),
2. if two models have the same number of variables, then the model with the larger \(R^2\) has the larger \(\bar{R}^2\),
3. if two models have the same \(R^2\), then the model with fewer variables has the larger adjusted-\(R^2\). Put another way, \(\bar{R}^2\) penalizes complex models with many variables. And
4. \(\bar{R}^2\) can be less than zero for models that explain little of the variation in \(Y\).
The adjusted R^2 is easier to calibrate than R^2 because it tends to decrease when unimportant variables are added to a model. The model with the maximum R^2 is judged best by this criterion. As I noted before, I do not take any of the criteria literally, and would also choose other models with \bar{R}^2 near the maximum value for further consideration.

10.4.3 Mallows’ C_p Criterion, minimize

Mallows’ C_p measures the adequacy of predictions from a model, relative to those obtained from the full model, and we want to minimize C_p. Mallows’ C_p statistic is defined for a given model with p variables by

$$C_p = \frac{\text{Residual SS}}{\hat{\sigma}^2_{\text{FULL}}} - \text{Residual df} + (p + 1)$$

where $\hat{\sigma}^2_{\text{FULL}}$ is the Residual MS from the full model with k variables X_1, X_2, \ldots, X_k.

If all the important effects from the candidate list are included in the model, then the difference between the first two terms of C_p should be approximately zero. Thus, if the model under consideration includes all the important variables from the candidate list, then C_p should be approximately $p + 1$ (the number of variables in model plus one), or less. If important variables from the candidate list are excluded, C_p will tend to be much greater than $p + 1$.

Two important properties of C_p are

1. the full model has $C_p = p + 1$, where $p = k$, and

2. if two models have the same number of variables, then the model with the larger R^2 has the smaller C_p.

Models with $C_p \approx p + 1$, or less, merit further consideration. As with R^2 and \bar{R}^2, I prefer simpler models that satisfy this condition. The “best” model by this criterion has the minimum C_p.

10.5 Illustration with Peru Indian data

R^2 Criterion

The leaps package provides best subsets with other selection criteria.
library(leaps)

First, fit the full model
lm.indian.full <- lm(sysbp ~ wt + ht + chin + fore + calf + pulse + yrage, data = indian)

Second, create the design matrix which leap uses as argument
using model.matrix(lm.XXX) as input to leaps()

R^2 -- for each model size, report best subset of size 5
leaps.r2 <- leaps(x = model.matrix(lm.indian.full), y = indian$sysbp,
 method = 'r2',
 int = FALSE, nbest = 5, names = colnames(model.matrix(lm.indian.full)))
str(leaps.r2)
Illustration with Peru Indian data

List of 4

$ which: logi [1:36, 1:8] FALSE TRUE FALSE FALSE FALSE TRUE ...
..- attr(*, "dimnames")=List of 2
.. ..$: chr [1:36] "1" "1" "1" "1" ...
.. ..$: chr [1:8] "(Intercept)" "wt" "ht" "chin" ...
$ label: chr [1:8] "(Intercept)" "wt" "ht" "chin" ...
$ size : num [1:36] 1 1 1 1 2 2 2 2 2 2 ...
$ r2 : num [1:36] 0.99 0.99 0.989 0.976 0.845 ...

plot model R^2 vs size of model
plot(leaps.r2$size, leaps.r2$r2, main = "R2")
report the best model (indicate which terms are in the model)
best.model.r2 <- leaps.r2$which[which((leaps.r2$r2 == max(leaps.r2$r2))),]
these are the variable names for the best model
names(best.model.r2)[best.model.r2]
[1] "(Intercept)" "wt" "ht" "chin"
[5] "fore" "calf" "pulse" "yrage"

Adjusted-R^2 Criterion, maximize

adj-R^2 -- for each model size, report best subset of size 5
leaps.adjr2 <- leaps(x = model.matrix(lm.indian.full), y = indian$sysbp
 , method = 'adjr2'
 , int = FALSE, nbest = 5, names = colnames(model.matrix(lm.indian.full)))
plot model R^2 vs size of model
plot(leaps.adjr2$size, leaps.adjr2$adjr2, main = "Adj-R2")
report the best model (indicate which terms are in the model)
best.model.adjr2 <- leaps.adjr2$which[which((leaps.adjr2$adjr2 == max(leaps.adjr2$adjr2))),]
these are the variable names for the best model
names(best.model.adjr2)[best.model.adjr2]
[1] "(Intercept)" "wt" "ht" "chin"
[5] "yrage"
Mallows’ C_p Criterion, minimize

```r
# Cp -- for each model size, report best subset of size 3
leaps.Cp <- leaps(x = model.matrix(lm.indian.full), y = indian$sysbp
    , method = 'Cp'
    , int = FALSE, nbest = 3, names = colnames(model.matrix(lm.indian.full)))

# plot model $R^2$ vs size of model
plot(leaps.Cp$size, leaps.Cp$Cp, main = "Cp")
lines(leaps.Cp$size, leaps.Cp$size) # adds the line for Cp = p

# report the best model (indicate which terms are in the model)

# these are the variable names for the best model
names(best.model.Cp)[best.model.Cp]

## [1] "(Intercept)" "wt" "yrage"
```
All together The function below takes `regsubsets()` output and formats it into a table.

```r
# best subset, returns results sorted by BIC
f.bestsubset <- function(form, dat, nbest = 5){
  library(leaps)
  bs <- regsubsets(form, data=dat, nvmax=30, nbest=nbest, method="exhaustive");
  bs2 <- cbind(summary(bs)$which, (rowSums(summary(bs)$which)-1)
    , summary(bs)$rss, summary(bs)$rsq
    , summary(bs)$adjr2, summary(bs)$cp, summary(bs)$bic);
  cn <- colnames(bs2);
  cn[(dim(bs2)[2]-5):dim(bs2)[2]] <- c("SIZE", "rss", "r2", "adjr2", "cp", "bic");
  colnames(bs2) <- cn;
  ind <- sort.int(summary(bs)$bic, index.return=TRUE); bs2 <- bs2[ind$ix,];
  return(bs2);
}
# perform on our model
i.best <- f.bestsubset(formula(sysbp ~ wt + ht + chin + fore + calf + pulse + yrage)
  , indian)
```

```r
## (Intercept) wt ht chin fore calf pulse yrage SIZE rss r2 adjr2 cp bic
## 2 1 1 0 0 0 0 0 0 1 2 3441 0.47311 0.44384 1.453 -13.999
## 3 1 1 0 1 0 0 0 0 1 3 3244 0.50333 0.46075 1.477 -12.639
## 3 1 1 0 1 0 0 0 0 1 3 3391 0.48085 0.43635 2.947 -10.912
## 3 1 1 0 0 1 0 0 0 1 3 3411 0.47773 0.43297 3.151 -10.679
## 3 1 1 1 0 0 0 0 0 1 3 3418 0.47767 0.43189 3.215 -10.505
## 3 1 1 0 0 0 0 0 1 1 3 3435 0.47401 0.42892 3.394 -10.402
## 4 1 1 1 1 0 0 0 0 1 4 3130 0.52071 0.46433 2.340 -10.365
## 4 1 1 1 0 1 0 0 0 1 4 3130 0.52071 0.46433 2.340 -10.365
## 5 1 1 1 1 1 0 0 0 1 4 3113 0.52344 0.44935 3.750 -8.978
## 5 1 1 1 1 0 0 1 0 1 4 3131 0.49308 0.43344 4.147 -8.179
## 5 1 1 1 1 1 0 1 0 1 4 3131 0.49308 0.43344 4.147 -8.179
## 6 1 1 1 1 0 0 1 0 1 5 3113 0.52344 0.45123 4.162 -6.924
## 6 1 1 1 1 0 0 1 1 1 5 3126 0.52135 0.44882 4.299 -6.753
## 6 1 1 1 1 0 1 0 0 1 5 3128 0.52104 0.44847 4.319 -6.728
## 6 1 1 1 1 1 0 0 0 1 5 3229 0.50564 0.43074 5.326 -5.494
## 6 1 1 1 0 1 0 1 1 1 5 3232 0.50517 0.43020 5.356 -5.457
## 6 1 1 0 1 0 0 0 0 0 1 4 4756 0.27182 0.25214 12.615 -5.044
## 6 1 1 1 0 0 0 0 1 1 6 3099 0.52548 0.43651 6.029 -3.428
## 6 1 1 1 1 1 0 1 0 1 6 3111 0.52368 0.43437 6.146 -3.280
```
10.5.1 R^2, \bar{R}^2, and C_p Summary for Peru Indian Data

Discussion of R^2 results:

1. The single predictor model with the highest value of R^2 has $wt =$ weight as a predictor: $R^2 = 0.272$. All the other single predictor models have $R^2 < 0.10$.

2. The two predictor model with the highest value of R^2 has weight and $yrage =$ fraction as predictors: $R^2 = 0.473$. No other two predictor model has R^2 close to this.

3. All of the best three predictor models include weight and fraction as predictors. However, the increase in R^2 achieved by adding a third predictor is minimal.

4. None of the more complex models with four or more predictors provides a significant increase in R^2.

A good model using the R^2 criterion has two predictors, weight and $yrage$. The same conclusion is reached with \bar{R}^2, albeit the model with maximum \bar{R}^2 includes wt (weight), ht (height), $chin$ (chin skin fold), and $yrage$ (fraction) as predictors.

Discussion of C_p results:

1. None of the single predictor models is adequate. Each has $C_p \gg 1 + 1 = 2$, the target value.

2. The only adequate two predictor model has $wt =$ weight and $yrage =$ fraction as predictors: $C_p = 1.45 < 2 + 1 = 3$. This is the minimum C_p model.

3. Every model with weight and fraction is adequate. Every model that excludes either weight or fraction is inadequate: $C_p \gg p + 1$.

According to C_p, any reasonable model must include both weight and fraction as predictors. Based on simplicity, I would select the model with these two predictors as a starting point. I can always add predictors if subsequent analysis suggests this is necessary!
10.5.2 Peru Indian Data Summary

The model selection procedures suggest three models that warrant further consideration.

<table>
<thead>
<tr>
<th>Predictors</th>
<th>Methods suggesting model</th>
</tr>
</thead>
<tbody>
<tr>
<td>wt, yrage</td>
<td>BIC via stepwise, forward, and backward elimination, and C_p</td>
</tr>
<tr>
<td>wt, yrage, chin</td>
<td>AIC via stepwise and backward selection</td>
</tr>
<tr>
<td>wt, yrage, chin, ht</td>
<td>AIC via forward selection, Adj-R2</td>
</tr>
</tbody>
</table>

I will give three reasons why I feel that the simpler model is preferable at this point:

1. It was suggested by 4 of the 5 methods (ignoring R^2).

2. Forward selection often chooses predictors that are not important, even when the significance level for inclusion is reduced from the default $\alpha = 0.50$ level.

3. The AIC/BIC forward and backward elimination outputs suggest that neither chin skin fold nor height is significant at any of the standard levels of significance used in practice. Look at the third and fourth steps of forward selection to see this.

Using a mechanical approach, we are led to a model with weight and yrage as predictors of systolic blood pressure. At this point we should closely examine this model. We did this earlier this semester and found that observation 1 (the individual with the largest systolic blood pressure) was fitted poorly by the model and potentially influential.

As noted earlier this semester, model selection methods can be highly influenced by outliers and influential cases. Thus, we should hold out case 1, and re-evaluate the various procedures to see whether case 1 unduly influenced the models selected. I will just note (not shown) that the selection methods point to the same model when case 1 is held out. After deleting case 1, there are no large residuals, extremely influential points, or any gross abnormalities in plots.

Both analyses suggest that the “best model” for predicting systolic blood pressure is

$$\text{sysbp} = \beta_0 + \beta_1 \text{wt} + \beta_2 \text{yrage} + \varepsilon.$$

Should case 1 be deleted? I have not fully explored this issue, but I will note that eliminating this case does have a significant impact on the least squares estimates of the regression coefficients, and on predicted values. What do you think?

10.6 Example: Oxygen Uptake

An experiment was conducted to model oxygen uptake ($o2up$), in milligrams of oxygen per minute, from five chemical measurements: biological oxygen demand (bod), total Kjeldahl nitrogen (tkn), total solids (ts), total volatile solids (tvs), which is a component of ts, and chemical oxygen demand (cod), each measured in milligrams per liter. The data were collected on samples of dairy wastes kept in suspension in water in a laboratory for 220 days. All observations were on the same sample over time. We desire an equation relating $o2up$ to the other variables. The goal is to find variables that should be further studied with the eventual goal of developing a prediction equation (day should not be considered as a predictor).

We are interested in developing a regression model with $o2up$, or some function of $o2up$, as a response. The researchers believe that the predictor variables are more likely to be linearly related
to $\log_{10}(o2up)$ rather than $o2up$, so $\log_{10}(o2up)$ was included in the data set. As a first step, we should plot $o2up$ against the different predictors, and see whether the relationship between $o2up$ and the individual predictors is roughly linear. If not, we will consider appropriate transformations of the response and/or predictors.

```r
fn.data <- "http://statacumen.com/teach/ADA2/ADA2_notes_Ch10_oxygen.dat"
oxygen <- read.table(fn.data, header=TRUE)

<table>
<thead>
<tr>
<th>day</th>
<th>bod</th>
<th>tkn</th>
<th>ts</th>
<th>tvs</th>
<th>cod</th>
<th>o2up</th>
<th>logup</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>1125</td>
<td>232</td>
<td>7160</td>
<td>8905</td>
<td>36.00</td>
<td>1.56</td>
</tr>
<tr>
<td>2</td>
<td>7</td>
<td>920</td>
<td>268</td>
<td>8804</td>
<td>7388</td>
<td>7.90</td>
<td>0.90</td>
</tr>
<tr>
<td>3</td>
<td>15</td>
<td>835</td>
<td>271</td>
<td>8108</td>
<td>5348</td>
<td>5.60</td>
<td>0.75</td>
</tr>
<tr>
<td>4</td>
<td>22</td>
<td>1000</td>
<td>237</td>
<td>6370</td>
<td>8056</td>
<td>5.20</td>
<td>0.72</td>
</tr>
<tr>
<td>5</td>
<td>29</td>
<td>1150</td>
<td>192</td>
<td>6441</td>
<td>6960</td>
<td>2.00</td>
<td>0.30</td>
</tr>
<tr>
<td>6</td>
<td>37</td>
<td>990</td>
<td>202</td>
<td>5154</td>
<td>5690</td>
<td>2.30</td>
<td>0.36</td>
</tr>
<tr>
<td>7</td>
<td>44</td>
<td>840</td>
<td>184</td>
<td>5896</td>
<td>6932</td>
<td>1.30</td>
<td>0.11</td>
</tr>
<tr>
<td>8</td>
<td>58</td>
<td>650</td>
<td>200</td>
<td>5336</td>
<td>5400</td>
<td>1.30</td>
<td>0.11</td>
</tr>
<tr>
<td>9</td>
<td>65</td>
<td>640</td>
<td>180</td>
<td>5041</td>
<td>3177</td>
<td>0.60</td>
<td>−0.22</td>
</tr>
<tr>
<td>10</td>
<td>72</td>
<td>583</td>
<td>165</td>
<td>5012</td>
<td>4461</td>
<td>0.70</td>
<td>−0.15</td>
</tr>
<tr>
<td>11</td>
<td>80</td>
<td>570</td>
<td>151</td>
<td>4825</td>
<td>3901</td>
<td>1.00</td>
<td>0.00</td>
</tr>
<tr>
<td>12</td>
<td>86</td>
<td>570</td>
<td>171</td>
<td>4391</td>
<td>5002</td>
<td>1.00</td>
<td>0.00</td>
</tr>
<tr>
<td>13</td>
<td>93</td>
<td>510</td>
<td>243</td>
<td>4320</td>
<td>4665</td>
<td>0.80</td>
<td>−0.10</td>
</tr>
<tr>
<td>14</td>
<td>100</td>
<td>555</td>
<td>147</td>
<td>3709</td>
<td>4642</td>
<td>0.60</td>
<td>−0.22</td>
</tr>
<tr>
<td>15</td>
<td>107</td>
<td>460</td>
<td>286</td>
<td>3969</td>
<td>4840</td>
<td>0.40</td>
<td>−0.40</td>
</tr>
<tr>
<td>16</td>
<td>122</td>
<td>275</td>
<td>198</td>
<td>3558</td>
<td>4479</td>
<td>0.70</td>
<td>−0.15</td>
</tr>
<tr>
<td>17</td>
<td>129</td>
<td>510</td>
<td>196</td>
<td>4361</td>
<td>4200</td>
<td>0.60</td>
<td>−0.22</td>
</tr>
<tr>
<td>18</td>
<td>151</td>
<td>165</td>
<td>210</td>
<td>3301</td>
<td>3410</td>
<td>0.40</td>
<td>−0.40</td>
</tr>
<tr>
<td>19</td>
<td>171</td>
<td>244</td>
<td>327</td>
<td>2964</td>
<td>3360</td>
<td>0.30</td>
<td>−0.52</td>
</tr>
<tr>
<td>20</td>
<td>220</td>
<td>79</td>
<td>334</td>
<td>2777</td>
<td>2599</td>
<td>0.90</td>
<td>−0.05</td>
</tr>
</tbody>
</table>
```

The plots showed an exponential relationship between $o2up$ and the predictors. To shorten the output, only one plot is given. An exponential relationship can often be approximately linearized by transforming $o2up$ to the $\log_{10}(o2up)$ scale suggested by the researchers. The extreme skewness in the marginal distribution of $o2up$ also gives an indication that a transformation might be needed.

```r
# scatterplots
library(ggplot2)
p1 <- ggplot(oxygen, aes(x = bod, y = o2up)) + geom_point(size=2)
p2 <- ggplot(oxygen, aes(x = tkn, y = o2up)) + geom_point(size=2)
p3 <- ggplot(oxygen, aes(x = ts, y = o2up)) + geom_point(size=2)
p4 <- ggplot(oxygen, aes(x = tvs, y = o2up)) + geom_point(size=2)
p5 <- ggplot(oxygen, aes(x = cod, y = o2up)) + geom_point(size=2)

library(gridExtra)
grid.arrange(p1, p2, p3, p4, p5, nrow=2,
              main = "Scatterplots of response o2up with each predictor variable")
```
After transformation, several plots show a roughly linear relationship. A sensible next step would be to build a regression model using log(o2up) as the response variable.

```r
# scatterplots
library(ggplot2)
p1 <- ggplot(oxygen, aes(x = bod, y = logup)) + geom_point(size=2)
p2 <- ggplot(oxygen, aes(x = tkn, y = logup)) + geom_point(size=2)
p3 <- ggplot(oxygen, aes(x = ts , y = logup)) + geom_point(size=2)
p4 <- ggplot(oxygen, aes(x = tvs, y = logup)) + geom_point(size=2)
p5 <- ggplot(oxygen, aes(x = cod, y = logup)) + geom_point(size=2)

library(gridExtra)
grid.arrange(p1, p2, p3, p4, p5, nrow=2
, main = "Scatterplots of response logup with each predictor variable")
```
Correlation between response and each predictor.

```r
# correlation matrix and associated p-values testing "H0: rho == 0"
library(Hmisc)
o.cor <- rcorr(as.matrix(oxygen[,c("logup", "bod", "tkn", "ts", "tvs", "cod")]))
# print correlations with the response to 3 significant digits
signif(o.cor$r[1,], 3)
## logup  bod  tkn  ts  tvs  cod
## 1.000  0.774  0.091  0.835  0.711  0.832
##  1.000  0.774  0.091  0.835  0.711  0.832
```

I used several of the model selection procedures to select out predictors. The model selection criteria below point to a more careful analysis of the model with `ts` and `cod` as predictors. This model has the minimum C_p and is selected by the backward and stepwise procedures. Furthermore, no other model has a substantially higher R^2 or \bar{R}^2. The fit of the model will not likely be improved substantially by adding any of the remaining three effects to this model.

```r
# perform on our model
o.best <- f.bestsubset(formula(logup ~ bod + tkn + ts + tvs + cod),
                       , oxygen, nbest = 3)
opt <- options(); # saving old options
options(width=90) # setting command window output text width wider
o.best
```

```r
## (Intercept) bod tkn ts tvs cod SIZE rss r2 adjr2 cp bic
## 2  1  0  0  1  0  1  2 1.0850  0.7857  0.7605  1.739  -21.82
## 3  1  0  1  1  0  1  3 0.9871  0.8050  0.7685  2.319  -20.72
## 3  1  0  0  1  1  1  3 1.0634  0.7900  0.7506  3.424  -19.23
## 3  1  1  0  1  0  1  3 1.0644  0.7898  0.7504  3.439  -19.21
## 4  1  0  1  1  1  1  4 0.9653  0.8094  0.7585  4.001  -18.17
## 1  1  0  0  1  0  0  1 1.5370  0.6965  0.6796  5.273  -17.77
## 2  1  0  0  0  1  1  2 1.3287  0.7376  0.7067  5.273  -17.77
```
Ozone Uptake

These comments must be taken with a grain of salt because we have not critically assessed the underlying assumptions (linearity, normality, independence), nor have we considered whether the data contain influential points or outliers.

```r
options(op); # reset (all) initial options

lm.oxygen.final <- lm(logup ~ ts + cod, data = oxygen)
summary(lm.oxygen.final)
```

```
##
## Call:
## lm(formula = logup ~ ts + cod, data = oxygen)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.3764 -0.0924 -0.0423 0.0626 0.5983
##
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)
## (Intercept) -1.37e+00  1.97e-01  -6.96    2.3e-06 ***
## ts          1.49e-04  5.49e-05   2.72    0.015    *
## cod         1.41e-04  5.32e-05   2.66    0.016    *
## ---
## Signif. codes:  < 0.001 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.253 on 17 degrees of freedom
## Multiple R-squared: 0.786, Adjusted R-squared: 0.76
## F-statistic: 31.2 on 2 and 17 DF, p-value: 2.06e-06
```

The p-values for testing the importance of the individual predictors are small, indicating that both predictors are important. However, two observations (1 and 20) are poorly fitted by the model (both have $r_i > 2$) and are individually most influential (largest D_is). Recall that this experiment was conducted over 220 days, so these observations were the first and last data points collected. We have little information about the experiment, but it is reasonable to conjecture that the experiment may not have reached a steady state until the second time point, and that the experiment was ended when the experimental material dissipated. The end points of the experiment may not be typical of conditions under which we are interested in modelling oxygen uptake. A sensible strategy here is to delete these points and redo the entire analysis to see whether our model changes noticeably.
Further, the partial residual plot for both `ts` and `cod` clearly highlights outlying cases 1 and 20.

```r
library(car)
avPlots(lm.oxygen.final, id.n=3)
```
10.6 Example: Oxygen Uptake

10.6.1 Redo analysis excluding first and last observations

For more completeness, we exclude the end observations and repeat the model selection steps. Summaries from the model selection are provided.

The model selection criteria again suggest ts and cod as predictors. After deleting observations 1 and 20 the R^2 for this two predictor model jumps from 0.786 to 0.892. Also note that the LS coefficients change noticeably after these observations are deleted.

```r
# exclude observations 1 and 20
oxxygen2 <- oxygen[-c(1,20),]

Correlation between response and each predictor.

```

```r
# correlation matrix and associated p-values testing "H0: rho == 0"
library(Hmisc)
o.cor <- rcorr(as.matrix(oxygen2[,c("logup", "bod", "tkn", "ts", "tvs", "cod")]))
# print correlations with the response to 3 significant digits
signif(o.cor$r[1,], 3)
## logup bod tkn ts tvs cod
## 1.000 0.813 0.116 0.921 0.717 0.806
```

Below is the model with ts and cod as predictors, after omitting the end observations. Both predictors are significant at the 0.05 level. Furthermore, there do not appear to be any extreme outliers. The QQ-plot, and the plot of studentized residuals against predicted values do not show any extreme abnormalities.

```r
lm.oxygen2.final <- lm(logup ~ ts + cod, data = oxygen2)
summary(lm.oxygen2.final)
```

Below is the model with ts and cod as predictors, after omitting the end observations. Both predictors are significant at the 0.05 level. Furthermore, there do not appear to be any extreme outliers. The QQ-plot, and the plot of studentized residuals against predicted values do not show any extreme abnormalities.
Coefficients:
| | Estimate | Std. Error | t value | Pr(>|t|) |
|-------------|----------|------------|---------|----------|
| (Intercept) | -1.34e+00| 1.34e-01 | -9.98 | 5.2e-08 *** |
| ts | 1.85e-04 | 3.18e-05 | 5.82 | 3.4e-05 *** |
| cod | 8.64e-05 | 3.52e-05 | 2.46 | 0.027 * |

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.144 on 15 degrees of freedom
Multiple R-squared: 0.892, Adjusted R-squared: 0.878
F-statistic: 62.2 on 2 and 15 DF, p-value: 5.51e-08
library(car)
avPlots(lm.oxygen2.final, id.n=3)

Let us recall that the researcher’s primary goal was to identify important predictors of \(o_2\text{up}\). Regardless of whether we are inclined to include the end observations in the analysis or not, it is reasonable to conclude that \(t\) and \(c\) are useful for explaining the variation in \(\log_{10}(o_2\text{up})\). If these data were the final experiment, I might be inclined to eliminate the end observations and use the following equation to predict oxygen uptake:

\[
\log_{10}(o_2\text{up}) = -1.335302 + 0.000185 \times t + 0.000086 \times c.
\]
Chapter 11

Logistic Regression

Logistic regression analysis is used for predicting the outcome of a categorical dependent variable based on one or more predictor variables. The probabilities describing the possible outcomes of a single trial are modeled, as a function of the explanatory (predictor) variables, using a logistic function. Logistic regression is frequently used to refer to the problem in which the dependent variable is binary — that is, the number of available categories is two — and problems with more than two categories are referred to as multinomial logistic regression or, if the multiple categories are ordered, as ordered logistic regression.

Logistic regression measures the relationship between a categorical dependent variable and usually (but not necessarily) one or more continuous independent variables, by converting the dependent variable to probability scores. As such it treats the same set of problems as does probit regression using similar techniques.

11.1 Generalized linear model variance and link families

The generalized linear model (GLM) is a flexible generalization of ordinary linear regression that allows for response variables that have other than a normal distribution. The GLM generalizes linear regression by allowing the linear model to be related to the response variable via a link function and by allowing the magnitude of the variance of each measurement to be a function of its predicted value.

In R, the basic tool for fitting generalized linear models is the `glm()` function, which has the following general structure:

```
glm(formula, family, data, weights, subset, ...)  
```

where “...” stands for additional options. The key parameter here is `family`, which is a simple way of specifying a choice of variance and link functions. Some choices of family are listed in the table. As can be seen, each of the first five choices has an associated variance function (for binomial the binomial variance $\mu(1 - \mu)$), and one or more choices of link functions (for binomial the logit, probit, or complementary log-log).
As long as you want the default link, all you have to specify is the family name. If you want an alternative link, you must add a link argument. For example to do probits you use:

```r
glm(formula, family = binomial(link = probit))
```

The last family on the list, quasi, is there to allow fitting user-defined models by maximum quasi-likelihood.

The rest of this chapter concerns logistic regression with a binary response variable.

11.2 Example: Age of Menarche in Warsaw

The data\(^1\) below are from a study conducted by Milicer and Szczotka on pre-teen and teenage girls in Warsaw, Poland in 1965. The subjects were classified into 25 age categories. The number of girls in each group (Total) and the number that reached menarche (Menarche) at the time of the study were recorded. The age for a group corresponds to the midpoint for the age interval.

```r
# menarche dataset is available in MASS package
rm(menarche)
library(MASS)
# these frequencies look better in the table as integers
menarche$Total <- as.integer(menarche$Total)
menarche$Menarche <- as.integer(menarche$Menarche)
str(menarche)
## 'data.frame': 25 obs. of 3 variables:
## $ Age    : num 9.21 10.21 10.58 10.83 11.08 ...
## $ Total  : int 376 200 93 120 90 88 105 111 100 93 ...
## $ Menarche: int 0 0 0 2 2 5 10 17 16 29 ...
# create estimated proportion of girls reaching menarche for each age group
menarche$p.hat <- menarche$Menarche / menarche$Total
```

The researchers were curious about how the proportion of girls that reached menarche (\hat{p} = Menarche/Total) varied with age. One could perform a test of homogeneity (Multinomial goodness-of-fit test) by arranging the data as a 2-by-25 contingency table with columns indexed by age and two rows: ROW1 = Menarche, and ROW2 = number that have not reached menarche = (Total – Menarche). A more powerful approach treats these as regression data, using the proportion of girls reaching menarche as the response and age as a predictor.

A plot of the observed proportion \hat{p} of girls that have reached menarche shows that the proportion increases as age increases, but that the relationship is nonlinear. The observed proportions, which are bounded between zero and one, have a lazy S-shape (a sigmoidal function) when plotted against age. The change in the observed proportions for a given change in age is much smaller when the proportion is near 0 or 1 than when the proportion is near 1/2. This phenomenon is common with regression data where the response is a proportion.

The trend is nonlinear so linear regression is inappropriate. A sensible alternative might be to transform the response or the predictor to achieve near linearity. A common transformation of response proportions following a sigmoidal curve is to the logit scale $\hat{\mu} = \log_e(\hat{p} / (1 - \hat{p}))$. This transformation is the basis for the logistic regression model. The natural logarithm (base e) is traditionally used in logistic regression.

The logit transformation is undefined when $\hat{p} = 0$ or $\hat{p} = 1$. To overcome this problem, researchers use the empirical logits, defined by $\log_e((\hat{p} + 0.5/n) / (1 - \hat{p} + 0.5/n))$, where n is the sample size or the number of observations on which \hat{p} is based.

A plot of the empirical logits against age is roughly linear, which supports a logistic transformation for the response.

```r
library(ggplot2)
p <- ggplot(menarche, aes(x = Age, y = p.hat))
p <- p + geom_point()
p <- p + labs(title = "Observed probability of girls reaching menarche, Warsaw, Poland in 1965")
print(p)
```
Simple logistic regression model

The simple logistic regression model expresses the population proportion p of individuals with a given attribute (called the probability of success) as a function of a single predictor variable X. The model assumes that p is related to X through

\[
\log \left(\frac{p}{1 - p} \right) = \beta_0 + \beta_1 X
\]

or, equivalently, as

\[
p = \frac{\exp(\beta_0 + \beta_1 X)}{1 + \exp(\beta_0 + \beta_1 X)}.
\]

The logistic regression model is a **binary response model**, where the response for each case falls into one of two exclusive and exhaustive categories, success (cases with the attribute of interest) and failure (cases without the attribute of interest).

The odds of success are $p/(1 - p)$. For example, when $p = 1/2$ the odds of success are 1 (or 1 to 1). When $p = 0.9$ the odds of success are 9 (or 9 to 1). The logistic model assumes that the log-odds of success is linearly related to X. Graphs of the logistic model relating p to X are given below. The sign of the slope refers to the sign of β_1.

I should write $p = p(X)$ to emphasize that p is the proportion of all individuals with score X that have the attribute of interest. In the menarche data, $p = p(X)$ is the population proportion of girls at age X that have reached menarche.
The data in a logistic regression problem are often given in summarized or aggregate form:

\[
\begin{array}{ccc}
X & n & y \\
X_1 & n_1 & y_1 \\
X_2 & n_2 & y_2 \\
\vdots & \vdots & \vdots \\
X_m & n_m & y_m \\
\end{array}
\]

where \(y_i \) is the number of individuals with the attribute of interest among \(n_i \) randomly selected or representative individuals with predictor variable value \(X_i \). For raw data on individual cases, \(y_i = 1 \) or 0, depending on whether the case at \(X_i \) is a success or failure, and the sample size column \(n \) is omitted with raw data.

For logistic regression, a plot of the sample proportions \(\hat{p}_i = y_i/n_i \) against \(X_i \) should be roughly sigmoidal, and a plot of the empirical logits against \(X_i \) should be roughly linear. If not, then some other model is probably appropriate. I find the second plot easier to calibrate, but neither plot is very informative when the sample sizes are small, say 1 or 2. (Why?)

There are a variety of other binary response models that are used in practice. The probit regression model or the complementary log-log regression model might be appropriate when the logistic model does fit the data.

The following section describes the standard MLE strategy for estimating the logistic regression parameters.

11.3.1 Estimating Regression Parameters via LS of empirical logits

There are two unknown population parameters in the logistic regression model

\[
\log \left(\frac{p}{1-p} \right) = \beta_0 + \beta_1 X.
\]

A simple way to estimate \(\beta_0 \) and \(\beta_1 \) is by least squares (LS), using the empirical logits as responses and the \(X_i \)s as the predictor values. (We will discuss a better way in the next section.)

Below we use standard regression to calculate the LS fit between the empirical logits and age.
```r
lm.menarche.e.a <- lm(emp.logit ~ Age, data = menarche)
# LS coefficients
coeff(lm.menarche.e.a)
## (Intercept)     Age
##   -22.028  1.676
```

The LS estimates for the menarche data are \(b_0 = -22.03 \) and \(b_1 = 1.68 \), which gives the fitted relationship

\[
\log \left(\frac{\hat{p}}{1 - \hat{p}} \right) = -22.03 + 1.68 \text{ Age}
\]

or

\[
\hat{p} = \frac{\exp(-22.03 + 1.68 \text{ Age})}{1 + \exp(-22.03 + 1.68 \text{ Age})},
\]

where \(\hat{p} \) is the predicted proportion (under the model) of girls having reached menarche at the given age. I used \(\hat{p} \) to identify a predicted probability, in contrast to \(\hat{p} \) which is the observed proportion at a given age.

The power of the logistic model versus the contingency table analysis discussed earlier is that the model gives estimates for the population proportion reaching menarche at all ages within the observed age range. The observed proportions allow you to estimate only the population proportions at the observed ages.

11.3.2 Maximum Likelihood Estimation for Logistic Regression Model

There are better ways to fit the logistic regression model than LS which assumes that the responses are normally distributed with constant variance. A deficiency of the LS fit to the logistic model is that the observed counts \(y_i \) have a Binomial distribution under random sampling. The Binomial distribution is a discrete probability model associated with counting the number of successes in a fixed size sample, and other equivalent experiments such as counting the number of heads in repeated flips of a coin. The distribution of the empirical logits depend on the \(y_i \)s so they are not normal (but are approximately normal in large samples), and are extremely skewed when the sample sizes \(n_i \) are small. The response variability depends on the population proportions, and is not roughly constant when the observed proportions or the sample sizes vary appreciably across groups.

The differences in variability among the empirical logits can be accounted for using **weighted least squares** (WLS) when the sample sizes are large. An alternative approach called maximum likelihood uses the exact Binomial distribution of the responses \(y_i \) to generate optimal estimates of the regression coefficients. Software for maximum likelihood estimation is widely available, so LS and WLS methods are not really needed.

In **maximum likelihood estimation** (MLE), the regression coefficients are estimated iteratively by minimizing the **deviance** function (also called the likelihood ratio chi-squared statistic)

\[
D = 2 \sum_{i=1}^{m} \left\{ y_i \log \left(\frac{y_i}{n_i p_i} \right) + (n_i - y_i) \log \left(\frac{n_i - y_i}{n_i - n_i p_i} \right) \right\}
\]

over all possible values of \(\beta_0 \) and \(\beta_1 \), where the \(p_i \)s satisfy the logistic model

\[
\log \left(\frac{p_i}{1 - p_i} \right) = \beta_0 + \beta_1 X_i.
\]
The ML method also gives standard errors and significance tests for the regression estimates. The deviance is an analog of the residual sums of squares in linear regression. The choices for β_0 and β_1 that minimize the deviance are the parameter values that make the observed and fitted proportions as close together as possible in a “likelihood sense”.

Suppose that b_0 and b_1 are the MLEs of β_0 and β_1. The deviance evaluated at the MLEs,

$$D = 2 \sum_{i=1}^{m} \left\{ y_i \log \left(\frac{y_i}{n_i \hat{p}_i} \right) + (n_i - y_i) \log \left(\frac{n_i - y_i}{n_i - n_i \hat{p}_i} \right) \right\},$$

where the fitted probabilities \hat{p}_i satisfy

$$\log \left(\frac{\hat{p}_i}{1 - \hat{p}_i} \right) = b_0 + b_1 X_i,$$

is used to test the adequacy of the model. The deviance is small when the data fits the model, that is, when the observed and fitted proportions are close together. Large values of D occur when one or more of the observed and fitted proportions are far apart, which suggests that the model is inappropriate.

If the logistic model holds, then D has a chi-squared distribution with $m - r$ degrees of freedom, where m is the the number of groups and r (here 2) is the number of estimated regression parameters. A p-value for the deviance is given by the area under the chi-squared curve to the right of D. A small p-value indicates that the data does not fit the model.

Alternatively, the fit of the model can be evaluated using the chi-squared approximation to the Pearson X^2 statistic:

$$X^2 = \sum_{i=1}^{m} \left\{ \frac{(y_i - n_i \hat{p}_i)^2}{n_i \hat{p}_i(1 - \hat{p}_i)} + \frac{(n_i - y_i) - n_i (1 - \hat{p}_i))^2}{n_i(1 - \hat{p}_i)} \right\} = \sum_{i=1}^{m} \frac{(y_i - n_i \hat{p}_i)^2}{n_i \hat{p}_i(1 - \hat{p}_i)}.$$

11.3.3 Fitting the Logistic Model by Maximum Likelihood, Menarche

```r
# For our summarized data (with frequencies and totals for each age)
# The left-hand side of our formula binds two columns together with cbind():
# the columns are the number of "successes" and "failures".
# For logistic regression with logit link we specify family = binomial,
# where logit is the default link function for the binomial family.
glm.m.a <- glm(cbind(Menarche, Total - Menarche) ~ Age, family = binomial, menarche)

The glm statement creates an object which we can use to create the fitted probabilities and 95% CIs for the population proportions at the ages in menarche. The fitted probabilities and the limits are stored in columns labeled fitted.values, fit.lower, and fit.upper, respectively.

```
This printed summary information is easily interpreted. For example, the estimated population proportion of girls aged 15.08 (more precisely, among girls in the age interval with midpoint 15.08) that have reached menarche is 0.967. You are 95% confident that the population proportion is between 0.958 and 0.975. A variety of other summaries and diagnostics can be produced.

<table>
<thead>
<tr>
<th>Age</th>
<th>Total</th>
<th>Menarche</th>
<th>p.hat</th>
<th>emp.logit</th>
<th>fitted.values</th>
<th>fit</th>
<th>se.fit</th>
<th>fit.upper</th>
<th>fit.lower</th>
</tr>
</thead>
<tbody>
<tr>
<td>21</td>
<td>15.08</td>
<td>122.00</td>
<td>0.96</td>
<td>3.06</td>
<td>0.97</td>
<td>0.14</td>
<td>0.97</td>
<td>0.96</td>
<td>0.96</td>
</tr>
</tbody>
</table>

The summary table gives MLEs and standard errors for the regression parameters. The z-value column is the parameter estimate divided by its standard error. The p-values are used to test whether the corresponding parameters of the logistic model are zero.

```
summary(glm.m.a)
```

```
##
## Call:  
## glm(formula = cbind(Menarche, Total - Menarche) ~ Age, family = binomial,  
## data = menarche)
##
## Deviance Residuals:  
##       Min        1Q  Median        3Q       Max  
## -2.03600 -0.99499 -0.49010  0.77824  1.36679  
##
## Coefficients:  
## Estimate Std. Error z value Pr(>|z|)  
## (Intercept) -21.2260   0.7711  -27.54  <2e-16 ***  
## Age          1.6319    0.0598   27.73  <2e-16 ***  
## ---  
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1  
```

The null deviance was 3693.884 on 24 degrees of freedom. The residual deviance was 26.703 on 23 degrees of freedom.
The deviance statistic is $D = 26.70$ on $25 - 2 = 23$ df. The large p-value for D suggests no gross deficiencies with the logistic model. The observed and fitted proportions (\texttt{p.hat} and \texttt{fitted.values} in the output table above are reasonably close at each observed age. Also, \texttt{emp.logit} and \texttt{fit} are close. This is consistent with D being fairly small. The data fits the logistic regression model reasonably well.

The MLEs $b_0 = -21.23$ and $b_1 = 1.63$ for the intercept and slope are close to the LS estimates of $b_{LS0} = -22.03$ and $b_{LS1} = 1.68$, respectively from page 243. The two estimation methods give similar predicted probabilities here. The MLE of the predicted probabilities satisfy

$$
\log \left(\frac{\hat{p}}{1 - \hat{p}} \right) = -21.23 + 1.63 \text{ Age}
$$

or

$$
\hat{p} = \frac{\exp(-21.23 + 1.63 \text{ Age})}{1 + \exp(-21.23 + 1.63 \text{ Age})}.
$$
If the model holds, then a slope of $\beta_1 = 0$ implies that p does not depend on AGE, i.e., the proportion of girls that have reached menarche is identical across age groups. The Wald p-value for the slope is < 0.0001, which leads to rejecting $H_0 : \beta_1 = 0$ at any of the usual test levels. The proportion of girls that have reached menarche is not constant across age groups. Again, the power of the model is that it gives you a simple way to quantify the effect of age on the proportion reaching menarche. This is more appealing than testing homogeneity across age groups followed by multiple comparisons.

Wald tests can be performed to test the global null hypothesis, that all non-intercept βs are equal to zero. This is the logistic regression analog of the overall model F-test in ANOVA and regression. The only predictor is AGE, so the implied test is that the slope of the regression line is zero. The Wald test statistic and p-value reported here are identical to the Wald test and p-value for the AGE effect given in the parameter estimates table. The Wald test can also be used to test specific contrasts between parameters.

```r
# Testing Global Null Hypothesis
library(aod)
coef(glm.m.a)
## (Intercept)  Age
##  -21.226 1.632
# specify which coefficients to test = 0 (Terms = 2:4 would be terms 2, 3, and 4)
wald.test(b = coef(glm.m.a), Sigma = vcov(glm.m.a), Terms = 2:2)
# Wald test:
#  ---
# Chi-squared test:
#  X2 = 766.3, df = 1, P(> X2) = 0.0
```
11.4 Example: Leukemia white blood cell types

Feigl and Zelen\(^2\) reported the survival time in weeks and the white cell blood count (WBC) at time of diagnosis for 33 patients who eventually died of acute leukemia. Each person was classified as AG+ or AG−, indicating the presence or absence of a certain morphological characteristic in the white cells. Four variables are given in the data set: WBC, a binary factor or *indicator variable* AG (1 for AG+, 0 for AG−), NTOTAL (the number of patients with the given combination of AG and WBC), and NRES (the number of NTOTAL that survived at least one year from the time of diagnosis).

The researchers are interested in modelling the probability \(p\) of surviving at least one year as a function of WBC and AG. They believe that WBC should be transformed to a log scale, given the skewness in the WBC values.

\[^2\]Feigl, P., Zelen, M. (1965) Estimation of exponential survival probabilities with concomitant information. Biometrics 21, 826–838. Survival times are given for 33 patients who died from acute myelogenous leukaemia. Also measured was the patient’s white blood cell count at the time of diagnosis. The patients were also factored into 2 groups according to the presence or absence of a morphologic characteristic of white blood cells. Patients termed AG positive were identified by the presence of Auer rods and/or significant granulation of the leukaemic cells in the bone marrow at the time of diagnosis.
As an initial step in the analysis, consider the following model:

\[
\log \left(\frac{p}{1 - p} \right) = \beta_0 + \beta_1 \text{LWBC} + \beta_2 \text{AG},
\]

where LWBC = log(WBC). The model is best understood by separating the AG+ and AG− cases. For AG− individuals, AG=0 so the model reduces to

\[
\log \left(\frac{p}{1 - p} \right) = \beta_0 + \beta_1 \text{LWBC} + \beta_2 \cdot 0 = \beta_0 + \beta_1 \text{LWBC}.
\]

For AG+ individuals, AG=1 and the model implies

\[
\log \left(\frac{p}{1 - p} \right) = \beta_0 + \beta_1 \text{LWBC} + \beta_2 \cdot 1 = (\beta_0 + \beta_2) + \beta_1 \text{LWBC}.
\]

The model without AG (i.e., \(\beta_2 = 0 \)) is a simple logistic model where the log-odds of surviving one year is linearly related to LWBC, and is independent of AG. The reduced model with \(\beta_2 = 0 \) implies that there is no effect of the AG level on the survival probability once LWBC has been taken into account.

Including the binary predictor AG in the model implies that there is a linear relationship between the log-odds of surviving one year and LWBC, with a constant slope for the two AG levels. This model includes an effect for the AG morphological factor, but more general models are possible. A natural extension would be to include a product or interaction effect, a point that I will return to momentarily.

The parameters are easily interpreted: \(\beta_0 \) and \(\beta_0 + \beta_2 \) are intercepts for the population logistic regression lines for AG− and AG+, respectively. The lines have a common slope, \(\beta_1 \). The \(\beta_2 \)
coefficient for the AG indicator is the difference between intercepts for the AG+ and AG− regression lines. A picture of the assumed relationship is given below for $\beta_1 < 0$. The population regression lines are parallel on the logit scale only, but the order between AG groups is preserved on the probability scale.

![Graph showing logit and probability scales with IAG=0 and IAG=1]

Before looking at output for the equal slopes model, note that the data set has 30 distinct AG and LWBC combinations, or 30 “groups” or samples. Only two samples have more than 1 observation. The majority of the observed proportions surviving at least one year (number surviving \geq 1 year/group sample size) are 0 (i.e., 0/1) or 1 (i.e., 1/1). This sparseness of the data makes it difficult to graphically assess the suitability of the logistic model (because the estimated proportions are almost all 0 or 1). Although significance tests on the regression coefficients do not require large group sizes, the chi-squared approximation to the deviance statistic is suspect in sparse data settings. With small group sizes as we have here, most researchers would not interpret the p-value for D literally. Instead, they would use the p-values to informally check the fit of the model. Diagnostics would be used to highlight problems with the model.

```r
glm.i.l <- glm(cbind(nres, ntotal - nres) ~ ag + lwbc, family = binomial, leuk)
# Test residual deviance for lack-of-fit (if > 0.10, little-to-no lack-of-fit)
dev.p.val <- 1 - pchisq(glm.i.l$deviance, glm.i.l$df.residual)
dev.p.val
## [1] 0.6843
```

The large p-value for D indicates that there are no gross deficiencies with the model. Recall that the Testing Global Null Hypothesis gives p-values for testing the hypothesis that the regression coefficients are zero for each predictor in the model. The two predictors are LWBC and AG, so the small p-values indicate that LWBC or AG, or both, are important predictors of survival. The p-values in the estimates table suggest that LWBC and AG are both important. If either predictor was insignificant, I would consider refitting the model omitting the least significant effect, as in regression.
Testing Global Null Hypothesis

```r
library(aod)
coef(glm.i.l)
```

`(Intercept) ag1 lwbc
5.543 2.520 -1.109

```r
# specify which coefficients to test = 0 (Terms = 2:3 is for terms 2 and 3)
wald.test(b = coef(glm.i.l), Sigma = vcov(glm.i.l), Terms = 2:3)
```

Wald test:

Chi-squared test:
X2 = 8.2, df = 2, P(> X2) = 0.017

Given that the model fits reasonably well, a test of \(H_0 : \beta_2 = 0 \) might be a primary interest here. This checks whether the regression lines are identical for the two AG levels, which is a test for whether AG affects the survival probability, after taking LWBC into account. This test is rejected at any of the usual significance levels, suggesting that the AG level affects the survival probability (assuming a very specific model).

```r
summary(glm.i.l)
```

Call:
`glm(formula = cbind(nres, ntotal - nres) ~ ag + lwbc, family = binomial, data = leuk)`

Deviance Residuals:
Min 1Q Median 3Q Max
-1.660 -0.659 -0.278 0.644 1.713

Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) 5.543 3.022 1.83 0.067 .
ag1 2.520 1.091 2.31 0.021 *
lwbc -1.109 0.461 -2.41 0.016 *

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 38.191 on 29 degrees of freedom
Residual deviance: 23.014 on 27 degrees of freedom
AIC: 30.64

Number of Fisher Scoring iterations: 5

A plot of the predicted survival probabilities as a function of LWBC, using AG as the plotting symbol, indicates that the probability of surviving at least one year from the time of diagnosis is a decreasing function of LWBC. For a given LWBC the survival probability is greater for AG+ patients than for AG− patients. This tendency is consistent with the observed proportions, which show little information about the exact form of the trend.

```r
# put the fitted values in the data.frame
leuk$fitted.values <- glm.i.l$fitted.values
fit <- predict(glm.i.l, data.frame(lwbc = leuk$lwbc, ag = leuk$ag), type = "link", se.fit = TRUE)
```
leuk$fit <- fit$fit
leuk$se.fit <- fit$se.fit
CI for fitted values
leuk <- within(leuk, {
 fit.lower = exp(fit - 1.96 * se.fit) / (1 + exp(fit - 1.96 * se.fit))
 fit.upper = exp(fit + 1.96 * se.fit) / (1 + exp(fit + 1.96 * se.fit))
})
#round(leuk, 3)

library(ggplot2)
p <- ggplot(leuk, aes(x = lwbc, y = p.hat, colour = ag, fill = ag))
predicted curve and point-wise 95% CI
p <- p + geom_ribbon(aes(x = lwbc, ymin = fit.lower, ymax = fit.upper), alpha = 0.2)
p <- p + geom_line(aes(x = lwbc, y = fitted.values))
fitted values
p <- p + geom_point(aes(y = fitted.values), size=2)
observed values
p <- p + geom_point(size = 2, alpha = 0.5)
p <- p + labs(title = "Observed and predicted probability of 1+ year survival")
print(p)
The estimated survival probabilities satisfy

$$\log \left(\frac{\hat{p}}{1 - \hat{p}} \right) = 5.54 - 1.11 \text{ LWBC} + 2.52 \text{ AG}. $$

For AG− individuals with AG=0, this reduces to

$$\log \left(\frac{\hat{p}}{1 - \hat{p}} \right) = 5.54 - 1.11 \text{ LWBC},$$

or equivalently,

$$\hat{p} = \frac{\exp(5.54 - 1.11 \text{ LWBC})}{1 + \exp(5.54 - 1.11 \text{ LWBC})}. $$

For AG+ individuals with AG=1,

$$\log \left(\frac{\hat{p}}{1 - \hat{p}} \right) = 5.54 - 1.11 \text{ LWBC} + 2.52(1) = 8.06 - 1.11 \text{ LWBC},$$

or

$$\hat{p} = \frac{\exp(8.06 - 1.11 \text{ LWBC})}{1 + \exp(8.06 - 1.11 \text{ LWBC})}. $$

Using the logit scale, the difference between AG+ and AG− individuals in the estimated log-odds of surviving at least one year, at a fixed but arbitrary LWBC, is the estimated AG regression coefficient

$$(8.06 - 1.11 \text{ LWBC}) - (5.54 - 1.11 \text{ LWBC}) = 2.52.$$
Using properties of exponential functions, the odds that an AG+ patient lives at least one year is \(\exp(2.52) = 12.42 \) times larger than the odds that an AG− patient lives at least one year, regardless of LWBC.

This summary, and a CI for the AG odds ratio, is given in the **Odds Ratio** table. Similarly, the estimated odds ratio of 0.33 for LWBC implies that the odds of surviving at least one year is reduced by a factor of 3 for each unit increase of LWBC.

We can use the `confint` function to obtain confidence intervals for the coefficient estimates. Note that for logistic models, confidence intervals are based on the profiled log-likelihood function.

```r
## CIs using profiled log-likelihood
confint(glm.i.l)
## Waiting for profiling to be done...
## 2.5 % 97.5 %
## (Intercept) 0.1596 12.452
## ag1 0.5993 5.015
## lwbc -2.2072 -0.332
```

We can also get CIs based on just the standard errors by using the default method.

```r
## CIs using standard errors
confint.default(glm.i.l)
## 2.5 % 97.5 %
## (Intercept) -0.3804 11.4671
## ag1 0.3819 4.6572
## lwbc -2.0122 -0.2053
```

You can also exponentiate the coefficients and confidence interval bounds and interpret them as odds-ratios.

```r
## coefficients and 95% CI
cbind(OR = coef(glm.i.l), confint(glm.i.l))
## Waiting for profiling to be done...
## OR 2.5 % 97.5 %
## (Intercept) 5.543 0.1596 12.452
## ag1 2.520 0.5993 5.015
## lwbc 1.109 -2.2072 -0.332
## odds ratios and 95% CI
exp(cbind(OR = coef(glm.i.l), confint(glm.i.l)))
## Waiting for profiling to be done...
## OR 2.5 % 97.5 %
## (Intercept) 255.53 1.173 2.559e+05
## ag1 12.42 1.821 1.506e+02
## lwbc 0.33 0.110 7.175e-01
```

Although the equal slopes model appears to fit well, a more general model might fit better. A natural generalization here would be to add an **interaction**, or product term, AG × LWBC to the model. The logistic model with an AG effect and the AG × LWBC interaction is equivalent to fitting separate logistic regression lines to the two AG groups. This interaction model provides an easy way to test whether the slopes are equal across AG levels. I will note that the interaction term is not needed here.
11.5 Example: The UNM Trauma Data

The data to be analyzed here were collected on 3132 patients admitted to The University of New Mexico Trauma Center between the years 1991 and 1994. For each patient, the attending physician recorded their age, their revised trauma score (RTS), their injury severity score (ISS), whether their injuries were blunt (i.e., the result of a car crash: BP=0) or penetrating (i.e., gunshot/knife wounds: BP=1), and whether they eventually survived their injuries (SURV=0 if not, SURV=1 if survived). Approximately 10% of patients admitted to the UNM Trauma Center eventually die from their injuries.

The ISS is an overall index of a patient’s injuries, based on the approximately 1300 injuries cataloged in the Abbreviated Injury Scale. The ISS can take on values from 0 for a patient with no injuries to 75 for a patient with 3 or more life threatening injuries. The ISS is the standard injury index used by trauma centers throughout the U.S. The RTS is an index of physiologic injury, and is constructed as a weighted average of an incoming patient’s systolic blood pressure, respiratory rate, and Glasgow Coma Scale. The RTS can take on values from 0 for a patient with no vital signs to 7.84 for a patient with normal vital signs.

Champion et al. (1981) proposed a logistic regression model to estimate the probability of a patient’s survival as a function of RTS, the injury severity score ISS, and the patient’s age, which is used as a surrogate for physiologic reserve. Subsequent survival models included the binary effect BP as a means to differentiate between blunt and penetrating injuries.

We will develop a logistic model for predicting survival from ISS, AGE, BP, and RTS, and nine body regions. Data on the number of severe injuries in each of the nine body regions is also included in the database, so we will also assess whether these features have any predictive power. The following labels were used to identify the number of severe injuries in the nine regions: AS = head, BS = face, CS = neck, DS = thorax, ES = abdomen, FS = spine, GS = upper extremities, HS = lower extremities, and JS = skin.

```r
# Example: The UNM Trauma Data
trauma <- read.table("http://statacumen.com/teach/ADA2/ADA2_notes_Ch11_trauma.dat", header = TRUE)
```

```r
# Variables
# surv = survival (1 if survived, 0 if died)
# rts = revised trauma score (range: 0 no vital signs to 7.84 normal vital signs)
# iss = injury severity score (0 no injuries to 75 for 3 or more life threatening injuries)
# bp = blunt or penetrating injuries (e.g., car crash BP=0 vs gunshot/knife wounds BP=1)
# Severe injuries: add the severe injuries 3--6 to make summary variables
trauma <- within(trauma, {
  as = a3 + a4 + a5 + a6 # as = head
  bs = b3 + b4 + b5 + b6 # bs = face
  cs = c3 + c4 + c5 + c6 # cs = neck
  ds = d3 + d4 + d5 + d6 # ds = thorax
  es = e3 + e4 + e5 + e6 # es = abdomen
  fs = f3 + f4 + f5 + f6 # fs = spine
  gs = g3 + g4 + g5 + g6 # gs = upper extremities
  hs = h3 + h4 + h5 + h6 # hs = lower extremities
  js = j3 + j4 + j5 + j6 # js = skin
})
```

```r
# keep only columns of interest
names(trauma)
```
11.5 Example: The UNM Trauma Data

```
trauma <- subset(trauma, select = c(id, surv, as:js, iss:prob))
head(trauma)
```

```
## id surv as bs cs ds es fs gs hs js iss iciss bp rts age prob
## 1 1238385 1 0 0 0 0 0 0 13 0.8613 0 7.841 13 0.9910
## 2 1238393 1 0 0 0 0 0 0 5 0.9422 0 7.841 23 0.9947
## 3 1238898 1 0 0 0 0 0 0 13 0.7251 0 7.841 43 0.9947
## 4 1239516 1 1 0 0 0 0 0 16 1.0000 0 5.967 17 0.9616
## 5 1239961 1 1 0 0 0 0 0 9 0.9347 0 4.804 20 0.9338
## 6 1240266 1 0 0 0 0 0 0 13 0.9005 0 7.841 32 0.9947
```

I made side-by-side boxplots of the distributions of ISS, AGE, RTS, and AS through JS for the survivors and non-survivors. In several body regions the number of injuries is limited, so these boxplots are not very enlightening. Survivors tend to have lower ISS scores, tend to be slightly younger, tend to have higher RTS scores, and tend to have fewer severe head (AS) and abdomen injuries (ES) than non-survivors. The importance of the effects individually towards predicting survival is directly related to the separation between the survivors and non-survivors scores.

```
# Create boxplots for each variable by survival
library(reshape2)
trauma.long <- melt(trauma, id.vars = c("id", "surv", "prob"))

# Plot the data using ggplot
library(ggplot2)
p <- ggplot(trauma.long, aes(x = factor(surv), y = value))
# boxplot, size=.75 to stand out behind CI
p <- p + geom_boxplot(size = 0.75, alpha = 0.5)
# points for observed data
p <- p + geom_point(position = position_jitter(w = 0.05, h = 0), alpha = 0.1)
# diamond at mean for each group
p <- p + stat_summary(fun.y = mean, geom = "point", shape = 18, size = 6,
                      alpha = 0.75, colour = "red")
# confidence limits based on normal distribution
p <- p + stat_summary(fun.data = "mean_cl_normal", geom = "errorbar",
                      width = .2, alpha = 0.8)
p <- p + facet_wrap( ~ variable, scales = "free_y", ncol = 4)
p <- p + labs(title = "Boxplots of variables by survival")
print(p)
```
Selecting Predictors in the Trauma Data

The same automated methods for model building are available for the `glm()` procedure, including backward elimination, forward selection, and stepwise methods, among others. Below we perform a stepwise selection using AIC starting at the full model, starting with a full model having 13 effects: ISS, BP, RTS, AGE, and AS–JS. Revisit Chapter 10 for more information.

In our previous logistic regression analyses, the cases in the data set were pre-aggregated into groups of observations having identical levels of the predictor variables. The numbers of cases in the success category and the group sample sizes were specified in the model statement, along with the
names of the predictors. The trauma data set, which is not reproduced here, is raw data consisting of one record per patient (i.e., 3132 lines). The logistic model is fitted to data on individual cases by specifying the binary response variable (SURV) with successes and $1 - \text{SURV}$ failures with the predictors on the right-hand side of the formula. Keep in mind that we are defining the logistic model to model the success category, so we are modeling the probability of surviving.

As an aside, there are two easy ways to model the probability of dying (which we don’t do below). The first is to swap the order the response is specified in the formula: `cbind(1 - surv, surv)`. The second is to convert a model for the log-odds of surviving to a model for the log-odds of dying by simply changing the sign of each regression coefficient in the model.

I only included the summary table from the backward elimination, and information on the fit of the selected model.

```r
glm.tr <- glm(cbind(surv, 1 - surv) ~ as + bs + cs + ds + es + gs + hs + js + iss + rts + age + bp,
              family = binomial, trauma)

# option: trace = 0 doesn't show each step of the automated selection
glm.tr.red.AIC <- step(glm.tr, direction="both", trace = 0)

# the anova object provides a summary of the selection steps in order
glm.tr.red.AIC$anova

## Step Df Deviance Resid. Df Resid. Dev AIC
## 1 NA NA 3118 869.4 897.4
## 2 - as 1 0.04912 3119 869.5 895.5
## 3 - bs 1 0.12243 3120 869.6 893.6
## 4 - fs 1 0.15243 3121 869.8 891.8
## 5 - cs 1 0.78703 3122 870.5 890.5
## 6 - ds 1 0.81690 3123 871.4 889.4
## 7 - gs 1 1.18273 3124 872.5 888.5
## 8 - hs 1 1.17941 3125 873.7 887.7
## 9 - js 1 1.71204 3126 875.4 887.4
```

The final model includes effects for ES (number of severe abdominal injuries), ISS, RTS, AGE, and BP. All of the effects in the selected model are significant at the 5% level.

```r
summary(glm.tr.red.AIC)

## Call:
## glm(formula = cbind(surv, 1 - surv) ~ es + iss + rts + age +
##     bp, family = binomial, data = trauma)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -3.155 0.099 0.143 0.232 3.445
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 0.35584 0.44294 0.80 0.422
## es -0.46132 0.11010 -4.19 2.8e-05 ***
## iss -0.05692 0.00741 -7.68 1.6e-14 ***
## rts 0.84314 0.05534 15.24 < 2e-16 ***
## age -0.04971 0.00529 -9.39 < 2e-16 ***
## bp -0.63514 0.24960 -2.54 0.011 *
## --
```
The p-value for D is large, indicating no gross deficiencies with the selected model.

Letting p be the probability of survival, the estimated survival probability is given by

$$\log \left(\frac{\hat{p}}{1 - \hat{p}} \right) = 0.3558 - 0.4613 \text{ ES} - 0.6351 \text{ BP} - 0.0569 \text{ ISS} + 0.8431 \text{ RTS} - 0.0497 \text{ AGE}. $$

Let us interpret the sign of the coefficients, and the odds ratios, in terms of the impact that individual predictors have on the survival probability.

coefficients and 95% CI

```r
cbind(OR = coef(glm.tr.red.AIC), confint(glm.tr.red.AIC))
```

odds ratios and 95% CI

```r
exp(cbind(OR = coef(glm.tr.red.AIC), confint(glm.tr.red.AIC)))
```

11.5.2 Checking Predictions for the Trauma Model

To assess the ability of the selected model to accurately predict survival, assume that the two types of errors (a false positive prediction of survival, and a false negative prediction) have equal costs. Under this assumption, the optimal classification rule is to predict survival for an individual with an estimated survival probability of 0.50 or larger.

In the below script, a table is generated that gives classifications for cutoff probabilities $\text{thresh}=0.0,0.1,\ldots,1.0$ based on the selected model. While I do not do this below, it is common to use the
jackknife method for assessing classification accuracy. To implement the jackknife method, each observation is temporarily held out and the selected model is fitted to the remaining (3131) cases. This leads to an estimated survival probability for the case, which is compared to the actual result. The results are summarized in terms of total number of correct and incorrect classifications for each possible outcome. In the table below, the columns labeled **Event** (a survival) and **Non-Event** (a death) refer to the classification of observations, and not to the actual outcomes. The columns labeled **Correct** and **Incorrect** identify whether the classifications are accurate.

<table>
<thead>
<tr>
<th>Thresh</th>
<th>Cor.Event</th>
<th>Cor.NonEv</th>
<th>Inc.Event</th>
<th>Inc.NonEv</th>
<th>Cor.All</th>
<th>Sens</th>
<th>Spec</th>
<th>Fal.P</th>
<th>Fal.N</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>2865</td>
<td>0</td>
<td>267</td>
<td>0</td>
<td>91.5</td>
<td>100.0</td>
<td>0.0</td>
<td>8.5</td>
<td>NaN</td>
</tr>
<tr>
<td>1.1</td>
<td>2861</td>
<td>79</td>
<td>188</td>
<td>4</td>
<td>93.9</td>
<td>99.9</td>
<td>29.6</td>
<td>6.2</td>
<td>4.8</td>
</tr>
<tr>
<td>1.2</td>
<td>2856</td>
<td>105</td>
<td>162</td>
<td>9</td>
<td>94.5</td>
<td>99.7</td>
<td>39.3</td>
<td>5.4</td>
<td>7.9</td>
</tr>
<tr>
<td>1.3</td>
<td>2848</td>
<td>118</td>
<td>149</td>
<td>17</td>
<td>94.7</td>
<td>99.4</td>
<td>44.2</td>
<td>5.0</td>
<td>12.6</td>
</tr>
</tbody>
</table>

```r
# thresholds for classification given model proportion predictions for each observation
thresh <- seq(0.0, 1.0, by=0.1)

# predicted probabilities
Yhat <- fitted(glm.tr.red.AIC)

# Name: lower (0) = NonEvent, higher (1) = Event
YObs <- cut(trauma$surv, breaks=c(-Inf, mean(trauma$surv), Inf), labels=c("NonEvent", "Event"))

classify.table <- data.frame(Thresh = rep(NA, length(thresh)),
                           Cor.Event = rep(NA, length(thresh)),
                           Cor.NonEv = rep(NA, length(thresh)),
                           Inc.Event = rep(NA, length(thresh)),
                           Inc.NonEv = rep(NA, length(thresh)),
                           Cor.All = rep(NA, length(thresh)),
                           Sens = rep(NA, length(thresh)),
                           Spec = rep(NA, length(thresh)),
                           Fal.P = rep(NA, length(thresh)),
                           Fal.N = rep(NA, length(thresh)))

for (i.thresh in 1:length(thresh)) {
    # choose a threshold for dichotomizing according to predicted probability
    YhatPred <- cut(Yhat, breaks=c(-Inf, thresh[i.thresh], Inf), labels=c("NonEvent", "Event"))

    # contingency table and marginal sums
    cTab <- table(YhatPred, YObs)
    addmargins(cTab)

    # Classification Table
    classify.table$Thresh[i.thresh] <- thresh[i.thresh]    # Prob.Level
    classify.table$Cor.Event[i.thresh] <- cTab[2,2]        # Correct.Event
    classify.table$Cor.NonEv[i.thresh] <- cTab[1,1]        # Correct.NonEvent
    classify.table$Inc.Event[i.thresh] <- cTab[2,1]        # Incorrect.Event
    classify.table$Inc.NonEv[i.thresh] <- cTab[1,2]        # Incorrect.NonEvent
    classify.table$Cor.All[i.thresh] <- 100 * sum(diag(cTab)) / sum(cTab)    # Correct.Overall
    classify.table$Sens[i.thresh] <- 100 * cTab[2,2] / sum(cTab[,2])    # Sensitivity
    classify.table$Spec[i.thresh] <- 100 * cTab[1,1] / sum(cTab[,1])    # Specificity
    classify.table$Fal.P[i.thresh] <- 100 * cTab[2,1] / sum(cTab[,2])    # False.Pos
    classify.table$Fal.N[i.thresh] <- 100 * cTab[1,2] / sum(cTab[,1])    # False.Neg
}

round(classify.table, 1)
```
The data set has 2865 survivors and 267 people that died. Using a 0.50 cutoff, 2825 of the survivors would be correctly identified, and 40 misclassified. Similarly, 139 of the patients that died would be correctly classified and 128 would not. The overall percentage of cases correctly classified is \((2825 + 139) / 3132 = 94.6\)%. The sensitivity is the percentage of survivors that are correctly classified, \(2825 / (2825 + 40) = 98.6\)%.

The specificity is the percentage of patients that died that are correctly classified, \(139 / (139 + 128) = 52.1\)%.

The false positive rate, which is the % of those predicted to survive that did not, is \(128 / (128 + 2825) = 4.3\)%.

The false negative rate, which is the % of those predicted to die that did not is \(40 / (40 + 139) = 22.5\)%.

```r
# Thresh = 0.5 classification table
YhatPred <- cut(Yhat, breaks=c(-Inf, 0.5, Inf), labels=c("NonEvent", "Event"))
# contingency table and marginal sums
cTab <- table(YhatPred, YObs)
addmargins(cTab)
## YObs
## YhatPred NonEvent Event Sum
## NonEvent 139 40 179
## Event 128 2825 2953
## Sum 267 2865 3132

round(subset(classify.table, Thresh == 0.5), 1)
## Thresh Cor.Event Cor.NonEv Inc.Event Inc.NonEv Cor.All Sens Spec Fal.P Fal.N
## 6 0.5 2825 139 128 40 94.6 98.6 52.1 4.3 22.3
```

The misclassification rate seems small, but you should remember that approximately 10% of patients admitted to UNM eventually die from their injuries. Given this historical information only, you could achieve a 10% misclassification rate by completely ignoring the data and classifying each admitted patient as a survivor. Using the data reduces the misclassification rate by about 50% (from 10% down to 4.4%), which is an important reduction in this problem.

11.6 Historical Example: O-Ring Data

The table below presents data from Dalal, Fowlkes, and Hoadley (1989) on field O-ring failures in the 23 pre-Challenger space shuttle launches. Temperature at lift-off and O-ring joint pressure are predictors. The binary version of the data views each flight as an independent trial. The result of a trial \((y)\) is a 1 if at least one field O-ring failure occurred on the flight and a 0 if all six O-rings functioned properly. A regression for the binary data would model the probability that any O-ring failed as a function of temperature and pressure. The binomial version of these data is also presented. It views the six field O-rings on each flight as independent trials. A regression for the binomial data would model the probability that a particular O-ring on a given flight failed as a function of temperature and pressure. The two regressions model different probabilities. The Challenger explosion occurred during a takeoff at 31 degrees Fahrenheit.

<table>
<thead>
<tr>
<th>#</th>
<th>Thresh</th>
<th>5</th>
<th>0.4</th>
<th>2837</th>
<th>125</th>
<th>142</th>
<th>28</th>
<th>94.6</th>
<th>99.0</th>
<th>46.8</th>
<th>4.8</th>
<th>18.3</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>0.5</td>
<td>2825</td>
<td>139</td>
<td>128</td>
<td>40</td>
<td>94.6</td>
<td>98.6</td>
<td>52.1</td>
<td>4.3</td>
<td>22.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>0.6</td>
<td>2805</td>
<td>157</td>
<td>110</td>
<td>60</td>
<td>94.6</td>
<td>97.9</td>
<td>58.8</td>
<td>3.8</td>
<td>27.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>0.7</td>
<td>2774</td>
<td>174</td>
<td>93</td>
<td>91</td>
<td>94.1</td>
<td>96.8</td>
<td>65.2</td>
<td>3.2</td>
<td>34.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>0.8</td>
<td>2727</td>
<td>196</td>
<td>71</td>
<td>138</td>
<td>93.3</td>
<td>95.2</td>
<td>73.4</td>
<td>2.5</td>
<td>41.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>0.9</td>
<td>2627</td>
<td>229</td>
<td>38</td>
<td>238</td>
<td>91.2</td>
<td>91.7</td>
<td>85.8</td>
<td>1.4</td>
<td>51.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>1.0</td>
<td>0</td>
<td>267</td>
<td>0</td>
<td>2865</td>
<td>8.5</td>
<td>0.0</td>
<td>100.0</td>
<td>NaN</td>
<td>91.5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The table below presents data from Dalal, Fowlkes, and Hoadley (1989) on field O-ring failures in the 23 pre-Challenger space shuttle launches. Temperature at lift-off and O-ring joint pressure are predictors. The binary version of the data views each flight as an independent trial. The result of a trial \((y)\) is a 1 if at least one field O-ring failure occurred on the flight and a 0 if all six O-rings functioned properly. A regression for the binary data would model the probability that any O-ring failed as a function of temperature and pressure. The binomial version of these data is also presented. It views the six field O-rings on each flight as independent trials. A regression for the binomial data would model the probability that a particular O-ring on a given flight failed as a function of temperature and pressure. The two regressions model different probabilities. The Challenger explosion occurred during a takeoff at 31 degrees Fahrenheit.
Example: Shuttle O-ring data

```r
shuttle <- read.csv("http://statacumen.com/teach/ADA2/ADA2_notes_Ch11_shuttle.csv")
```

<table>
<thead>
<tr>
<th>case</th>
<th>flight</th>
<th>y</th>
<th>six</th>
<th>temp</th>
<th>pressure</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>14</td>
<td>1</td>
<td>2</td>
<td>53</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>9</td>
<td>1</td>
<td>1</td>
<td>57</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>23</td>
<td>1</td>
<td>1</td>
<td>58</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>10</td>
<td>1</td>
<td>1</td>
<td>63</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>66</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>67</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>13</td>
<td>0</td>
<td>0</td>
<td>67</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>15</td>
<td>0</td>
<td>0</td>
<td>67</td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>68</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>69</td>
</tr>
<tr>
<td>11</td>
<td>11</td>
<td>8</td>
<td>0</td>
<td>0</td>
<td>70</td>
</tr>
<tr>
<td>12</td>
<td>12</td>
<td>17</td>
<td>0</td>
<td>0</td>
<td>70</td>
</tr>
<tr>
<td>13</td>
<td>13</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>70</td>
</tr>
<tr>
<td>14</td>
<td>14</td>
<td>11</td>
<td>1</td>
<td>1</td>
<td>70</td>
</tr>
<tr>
<td>15</td>
<td>15</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>72</td>
</tr>
<tr>
<td>16</td>
<td>16</td>
<td>7</td>
<td>0</td>
<td>0</td>
<td>73</td>
</tr>
<tr>
<td>17</td>
<td>17</td>
<td>16</td>
<td>0</td>
<td>0</td>
<td>75</td>
</tr>
<tr>
<td>18</td>
<td>18</td>
<td>21</td>
<td>1</td>
<td>2</td>
<td>75</td>
</tr>
<tr>
<td>19</td>
<td>19</td>
<td>19</td>
<td>0</td>
<td>0</td>
<td>76</td>
</tr>
<tr>
<td>20</td>
<td>20</td>
<td>22</td>
<td>0</td>
<td>0</td>
<td>76</td>
</tr>
<tr>
<td>21</td>
<td>21</td>
<td>12</td>
<td>0</td>
<td>0</td>
<td>78</td>
</tr>
<tr>
<td>22</td>
<td>22</td>
<td>20</td>
<td>0</td>
<td>0</td>
<td>79</td>
</tr>
<tr>
<td>23</td>
<td>23</td>
<td>18</td>
<td>0</td>
<td>0</td>
<td>81</td>
</tr>
</tbody>
</table>

The regression model for the binomial data (i.e., six trials per launch) is suspect on substantive grounds. The binomial model makes no allowance for an effect due to having the six O-rings on the same flight. If these data were measurements rather than counts, they would almost certainly be treated as dependent repeated measures. If interest is focused on whether one or more O-rings failed, the simplest, most direct data are the binary data.

Consider fitting a logistic regression model using temperature and pressure as predictors. Let \(p_i \) be the probability that any O-ring fails in case \(i \) and model this as

\[
\log \left(\frac{p_i}{1 - p_i} \right) = \beta_0 + \beta_1 \text{Temp}_i + \beta_2 \text{Pressure}_i.
\]

Logistic histogram plots of the data show a clear marginal relationship of failure with temp but not with pressure. We still need to assess the model with both variables together.
We fit the logistic model below using $Y = 1$ if at least one O-ring failed, and 0 otherwise. We are modelling the chance of one or more O-ring failures as a function of temperature and pressure.

The D goodness-of-fit statistic suggest no gross deviations from the model. Furthermore, the test of $H_0 : \beta_1 = \beta_2 = 0$ (no regression effects) based on the Wald test has a p-value of 0.1, which suggests that neither temperature or pressure, or both, are useful predictors of the probability of O-ring failure. The z-test test p-values for testing $H_0 : \beta_1 = 0$ and $H_0 : \beta_2 = 0$ individually are 0.037 and 0.576, respectively, which indicates pressure is not important (when added last to the model), but that temperature is important. This conclusion might be anticipated by looking at data plots above.

```r
glm.sh <- glm(cbind(y, 1 - y) ~ temp + pressure, family = binomial, shuttle)
# Test residual deviance for lack-of-fit (if > 0.10, little-to-no lack-of-fit)
dev.p.val <- 1 - pchisq(glm.sh$deviance, glm.sh$df.residual)
dev.p.val
## [1] 0.4589

# Testing Global Null Hypothesis
library(aod)
coef(glm.sh)
## (Intercept) temp pressure
## 16.385319 -0.263404 0.005178
# specify which coefficients to test = 0 (Terms = 2:3 is for terms 2 and 3)
wald.test(b = coef(glm.sh), Sigma = vcov(glm.sh), Terms = 2:3)
## Wald test:
## -----------
##
## Chi-squared test:
## X2 = 4.6, df = 2, P(> X2) = 0.1

# Model summary
summary(glm.sh)
##
## Call:
## glm(formula = cbind(y, 1 - y) ~ temp + pressure, family = binomial,
A reasonable next step would be to refit the model, after omitting pressure as a predictor. The target model is now

$$\log \left( \frac{p_i}{1 - p_i} \right) = \beta_0 + \beta_1 \text{Temp}_i.$$
## AIC: 24.32
##
## Number of Fisher Scoring iterations: 5

Our conclusions on the overall fit of the model and the significance of the effect of temperature on the probability of O-ring failure are consistent with the results for two predictor model. The model estimates the log-odds of (at least one) O-ring failure to be

$$\log \left( \frac{\hat{p}}{1 - \hat{p}} \right) = 15.043 - 0.2322 \text{ Temp}. $$

The estimated probability of (at least one) O-ring failure is

$$\hat{p} = \frac{\exp(15.043 - 0.2322 \text{ Temp})}{1 + \exp(15.043 - 0.2322 \text{ Temp})}.$$  

This is an decreasing function of temperature.

The *Challenger* was set to launch on a morning where the predicted temperature at lift-off was 31 degrees. Given that temperature appears to affect the probability of O-ring failure (a point that NASA missed), what can/should we say about the potential for O-ring failure?

Clearly, the launch temperature is outside the region for which data were available. Thus, we really have no prior information about what is likely to occur. If we assume the logistic model holds, and we can extrapolate back to 31 degrees, what is the estimated probability of O-ring failure?

The following gives the answer this question. I augmented the original data set to obtain predicted probabilities for temperatures not observed in the data set. Note that the fitted model to data with missing observations gives the same model fit because *glm()* excludes observations with missing values. Predictions are then made for all temperatures in the dataset and the resulting table and plot are reported.

```r
append values to dataset for which we wish to make predictions
shuttle.pred <- data.frame(case = rep(NA, 5), flight = rep(NA, 5), y = rep(NA, 5), six = rep(NA, 5), temp = c(31, 35, 40, 45, 50), pressure = rep(NA, 5))
shuttle <- rbind(shuttle.pred, shuttle)

fit model
glm.sh <- glm(cbind(y, 1 - y) ~ temp, family = binomial, shuttle)
Note: same model fit as before since glm() does not use missing values
round(summary(glm.sh)$coefficients, 3)
Estimate Std. Error z value Pr(>|z|)
(Intercept) 15.043 7.379 2.039 0.041
temp -0.232 0.108 -2.145 0.032

put the fitted values in the data.frame
shuttle$fitted.values <- c(rep(NA, 5), glm.sh$fitted.values)

predict() uses all the temp values in dataset, including appended values
fit <- predict(glm.sh, data.frame(temp = shuttle$temp), type = "link", se.fit = TRUE)
shuttle$fit <- fit$fit
```
shuttle$se.fit <- fit$se.fit  
# CI for fitted values
shuttle <- within(shuttle, {
  # added "fitted" to make predictions at appended temp values
  fitted = exp(fit) / (1 + exp(fit))
  fit.lower = exp(fit - 1.96 * se.fit) / (1 + exp(fit - 1.96 * se.fit))
  fit.upper = exp(fit + 1.96 * se.fit) / (1 + exp(fit + 1.96 * se.fit))
})

<table>
<thead>
<tr>
<th>case</th>
<th>flight</th>
<th>y</th>
<th>six</th>
<th>temp</th>
<th>pressure</th>
<th>fitted.values</th>
<th>fit</th>
<th>se.fit</th>
<th>fit.upper</th>
<th>fit.lower</th>
<th>fitted</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>31.00</td>
<td>7.85</td>
<td>4.04</td>
<td>1.00</td>
<td>0.48</td>
<td>1.00</td>
<td>0.48</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>35.00</td>
<td>6.92</td>
<td>3.61</td>
<td>1.00</td>
<td>0.46</td>
<td>1.00</td>
<td>0.46</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>40.00</td>
<td>5.76</td>
<td>3.08</td>
<td>1.00</td>
<td>0.43</td>
<td>1.00</td>
<td>0.43</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>45.00</td>
<td>4.60</td>
<td>2.55</td>
<td>1.00</td>
<td>0.40</td>
<td>0.99</td>
<td>0.40</td>
<td>0.99</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>50.00</td>
<td>3.43</td>
<td>2.02</td>
<td>1.00</td>
<td>0.37</td>
<td>0.97</td>
<td>0.37</td>
<td>0.97</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>1.00</td>
<td>14.00</td>
<td>1.00</td>
<td>2.00</td>
<td>53.00</td>
<td>50.00</td>
<td>50.00</td>
<td>0.94</td>
<td>2.74</td>
<td>1.71</td>
<td>1.00</td>
</tr>
<tr>
<td>7</td>
<td>2.00</td>
<td>9.00</td>
<td>1.00</td>
<td>1.00</td>
<td>57.00</td>
<td>50.00</td>
<td>50.00</td>
<td>0.86</td>
<td>1.81</td>
<td>1.31</td>
<td>0.99</td>
</tr>
<tr>
<td>8</td>
<td>3.00</td>
<td>23.00</td>
<td>1.00</td>
<td>1.00</td>
<td>58.00</td>
<td>200.00</td>
<td>200.00</td>
<td>0.83</td>
<td>1.58</td>
<td>1.21</td>
<td>0.98</td>
</tr>
<tr>
<td>9</td>
<td>4.00</td>
<td>10.00</td>
<td>1.00</td>
<td>1.00</td>
<td>63.00</td>
<td>50.00</td>
<td>50.00</td>
<td>0.60</td>
<td>0.42</td>
<td>0.77</td>
<td>0.87</td>
</tr>
<tr>
<td>10</td>
<td>5.00</td>
<td>1.00</td>
<td>0.00</td>
<td>0.00</td>
<td>66.00</td>
<td>200.00</td>
<td>200.00</td>
<td>0.43</td>
<td>-0.28</td>
<td>0.59</td>
<td>0.71</td>
</tr>
<tr>
<td>11</td>
<td>6.00</td>
<td>5.00</td>
<td>0.00</td>
<td>0.00</td>
<td>67.00</td>
<td>50.00</td>
<td>50.00</td>
<td>0.38</td>
<td>-0.51</td>
<td>0.56</td>
<td>0.64</td>
</tr>
<tr>
<td>12</td>
<td>7.00</td>
<td>13.00</td>
<td>0.00</td>
<td>0.00</td>
<td>67.00</td>
<td>200.00</td>
<td>200.00</td>
<td>0.38</td>
<td>-0.51</td>
<td>0.56</td>
<td>0.64</td>
</tr>
<tr>
<td>13</td>
<td>8.00</td>
<td>15.00</td>
<td>0.00</td>
<td>0.00</td>
<td>67.00</td>
<td>50.00</td>
<td>50.00</td>
<td>0.38</td>
<td>-0.51</td>
<td>0.56</td>
<td>0.64</td>
</tr>
<tr>
<td>14</td>
<td>9.00</td>
<td>4.00</td>
<td>0.00</td>
<td>0.00</td>
<td>68.00</td>
<td>200.00</td>
<td>200.00</td>
<td>0.32</td>
<td>-0.74</td>
<td>0.55</td>
<td>0.58</td>
</tr>
<tr>
<td>15</td>
<td>10.00</td>
<td>3.00</td>
<td>0.00</td>
<td>0.00</td>
<td>69.00</td>
<td>200.00</td>
<td>200.00</td>
<td>0.27</td>
<td>-0.98</td>
<td>0.56</td>
<td>0.53</td>
</tr>
<tr>
<td>16</td>
<td>11.00</td>
<td>8.00</td>
<td>0.00</td>
<td>0.00</td>
<td>70.00</td>
<td>50.00</td>
<td>50.00</td>
<td>0.23</td>
<td>-1.21</td>
<td>0.59</td>
<td>0.49</td>
</tr>
<tr>
<td>17</td>
<td>12.00</td>
<td>17.00</td>
<td>0.00</td>
<td>0.00</td>
<td>70.00</td>
<td>200.00</td>
<td>200.00</td>
<td>0.23</td>
<td>-1.21</td>
<td>0.59</td>
<td>0.49</td>
</tr>
<tr>
<td>18</td>
<td>13.00</td>
<td>2.00</td>
<td>1.00</td>
<td>1.00</td>
<td>70.00</td>
<td>200.00</td>
<td>200.00</td>
<td>0.23</td>
<td>-1.21</td>
<td>0.59</td>
<td>0.49</td>
</tr>
<tr>
<td>19</td>
<td>14.00</td>
<td>11.00</td>
<td>1.00</td>
<td>1.00</td>
<td>70.00</td>
<td>200.00</td>
<td>200.00</td>
<td>0.23</td>
<td>-1.21</td>
<td>0.59</td>
<td>0.49</td>
</tr>
<tr>
<td>20</td>
<td>15.00</td>
<td>6.00</td>
<td>0.00</td>
<td>0.00</td>
<td>72.00</td>
<td>200.00</td>
<td>200.00</td>
<td>0.16</td>
<td>-1.67</td>
<td>0.70</td>
<td>0.43</td>
</tr>
<tr>
<td>21</td>
<td>16.00</td>
<td>7.00</td>
<td>0.00</td>
<td>0.00</td>
<td>73.00</td>
<td>200.00</td>
<td>200.00</td>
<td>0.13</td>
<td>-1.90</td>
<td>0.78</td>
<td>0.40</td>
</tr>
<tr>
<td>22</td>
<td>17.00</td>
<td>16.00</td>
<td>0.00</td>
<td>0.00</td>
<td>75.00</td>
<td>100.00</td>
<td>100.00</td>
<td>0.09</td>
<td>-2.37</td>
<td>0.94</td>
<td>0.37</td>
</tr>
<tr>
<td>23</td>
<td>18.00</td>
<td>21.00</td>
<td>1.00</td>
<td>2.00</td>
<td>75.00</td>
<td>200.00</td>
<td>200.00</td>
<td>0.09</td>
<td>-2.37</td>
<td>0.94</td>
<td>0.37</td>
</tr>
<tr>
<td>24</td>
<td>19.00</td>
<td>19.00</td>
<td>0.00</td>
<td>0.00</td>
<td>76.00</td>
<td>200.00</td>
<td>200.00</td>
<td>0.07</td>
<td>-2.60</td>
<td>1.03</td>
<td>0.36</td>
</tr>
<tr>
<td>25</td>
<td>20.00</td>
<td>22.00</td>
<td>0.00</td>
<td>0.00</td>
<td>76.00</td>
<td>200.00</td>
<td>200.00</td>
<td>0.07</td>
<td>-2.60</td>
<td>1.03</td>
<td>0.36</td>
</tr>
<tr>
<td>26</td>
<td>21.00</td>
<td>12.00</td>
<td>0.00</td>
<td>0.00</td>
<td>78.00</td>
<td>200.00</td>
<td>200.00</td>
<td>0.04</td>
<td>-3.07</td>
<td>1.22</td>
<td>0.34</td>
</tr>
<tr>
<td>27</td>
<td>22.00</td>
<td>20.00</td>
<td>0.00</td>
<td>0.00</td>
<td>79.00</td>
<td>200.00</td>
<td>200.00</td>
<td>0.04</td>
<td>-3.30</td>
<td>1.32</td>
<td>0.33</td>
</tr>
<tr>
<td>28</td>
<td>23.00</td>
<td>15.00</td>
<td>0.00</td>
<td>0.00</td>
<td>81.00</td>
<td>200.00</td>
<td>200.00</td>
<td>0.02</td>
<td>-3.76</td>
<td>1.51</td>
<td>0.31</td>
</tr>
</tbody>
</table>

library(ggplot2)
p <- ggplot(shuttle, aes(x = temp, y = y))  
# predicted curve and point-wise 95% CI
p <- p + geom_ribbon(aes(x = temp, ymin = fit.lower, ymax = fit.upper), alpha = 0.2)
p <- p + geom_line(aes(x = temp, y = fitted), colour="red")  
# fitted values
p <- p + geom_point(aes(y = fitted.values), size=2, colour="red")  
# observed values
p <- p + geom_point(size = 2)
p <- p + ylab("Probability")
p <- p + labs(title = "Observed events and predicted probability of 1+ O-ring failures")
print(p)  
## Warning: Removed 5 rows containing missing values (geom_point).
## Warning: Removed 5 rows containing missing values (geom_point).
Observed events and predicted probability of 1+ O-ring failures
Part V

Multivariate Methods
Chapter 12

An Introduction to Multivariate Methods

Multivariate statistical methods are used to display, analyze, and describe data on two or more features or variables simultaneously. I will discuss multivariate methods for measurement data. Methods for multi-dimensional count data, or mixtures of counts and measurements are available, but are beyond the scope of what I can do here. I will give a brief overview of the type of problems where multivariate methods are appropriate.

Example: Turtle shells  Jolicouer and Mosimann provided data on the height, length, and width of the carapace (shell) for a sample of female painted turtles. Cluster analysis is used to identify which shells are similar on the three features. Principal component analysis is used to identify the linear combinations of the measurements that account for most of the variation in size and shape of the shells.

Cluster analysis and principal component analysis are primarily descriptive techniques.

Example: Fisher’s Iris data  Random samples of 50 flowers were selected from three iris species: Setosa, Virginica, and Versicolor. Four measurements were made on each flower: sepal length, sepal width, petal length, and petal width. Suppose the sample means on each feature are computed within the three species. Are the means on the four traits significantly different across species? This question can be answered using four separate one-way ANOVAs. A more powerful MANOVA (multivariate analysis of variance) method compares species on the four features simultaneously.

Discriminant analysis is a technique for comparing groups on multi-dimensional data. Discriminant analysis can be used with Fisher’s Iris data to find the linear combinations of the flower features that best distinguish species. The linear combinations are optimally selected, so insignificant differences on one or all features may be significant (or better yet, important) when the features are considered simultaneously! Furthermore, the discriminant analysis could be used to classify flowers into one of these three species when their species is unknown.

MANOVA, discriminant analysis, and classification are primarily inferential techniques.
12.1 Linear Combinations

Suppose data are collected on \( p \) measurements or features \( X_1, X_2, \ldots, X_p \). Most multivariate methods use linear combinations of the features as the basis for analysis. A linear combination has the form

\[
Y = a_1 X_1 + a_2 X_2 + \cdots + a_p X_p,
\]

where the coefficients \( a_1, a_2, \ldots, a_p \) are known constants. \( Y \) is evaluated for each observation in the data set, keeping the coefficients constant.

For example, three linear combinations of \( X_1, X_2, \ldots, X_p \) are:

\[
Y = 1X_1 + 0X_2 + 0X_3 + \cdots + 0X_p = X_1,
Y = \frac{1}{p}(X_1 + X_2 + \cdots + X_p), \text{ and}
Y = 2X_1 - 4X_2 + 55X_3 - 1954X_4 + \cdots + 44X_p.
\]

Vector and matrix notation are useful for representing and summarizing multivariate data. Before introducing this notation, let us try to understand linear combinations geometrically when \( p = 2 \).

Example: \(-45^\circ\) rotation A plot of data on two features \( X_1 \) and \( X_2 \) is given below. Also included is a plot for the two linear combinations

\[
Y_1 = \frac{1}{\sqrt{2}}(X_1 + X_2) \quad \text{and} \quad Y_2 = \frac{1}{\sqrt{2}}(X_2 - X_1).
\]

This transformation creates two (roughly) uncorrelated linear combinations \( Y_1 \) and \( Y_2 \) from two highly correlated features \( X_1 \) and \( X_2 \). The transformation corresponds to a rotation of the original coordinate axes by \(-45\) degrees. Each data point is then expressed relative to the new axes. The new features are uncorrelated!
The $\sqrt{2}$ divisor in $Y_1$ and $Y_2$ does not alter the interpretation of these linear combinations: $Y_1$ is essentially the sum of $X_1$ and $X_2$, whereas $Y_2$ is essentially the difference between $X_2$ and $X_1$.

**Example: Two groups**  The plot below shows data on two features $X_1$ and $X_2$ from two distinct groups.
If you compare the groups on $X_1$ and $X_2$ separately, you may find no significant differences because the groups overlap substantially on each feature. The plot on the right was obtained by rotating the coordinate axes $-\theta$ degrees, and then plotting the data relative to the new coordinate axes. The rotation corresponds to creating two linear combinations:

\[
Y_1 = \cos(\theta) X_1 + \sin(\theta) X_2 \\
Y_2 = -\sin(\theta) X_1 + \cos(\theta) X_2.
\]

The two groups differ substantially on $Y_2$. This linear combination is used with discriminant analysis and MANOVA to distinguish between the groups.

The linear combinations used in certain multivariate methods do not correspond to a rotation of the original coordinate axes. However, the pictures given above should provide some insight into the motivation for the creating linear combinations of two features. The ideas extend to three or more features, but are more difficult to represent visually.

### 12.2 Vector and Matrix Notation

A vector is a string of numbers or variables that is stored in either a row or in a column. For example, the collection $X_1, X_2, \ldots, X_p$ of features can be represented as a column-vector with $p$
rows, using the notation

\[ X = \begin{bmatrix} X_1 \\ X_2 \\ \vdots \\ X_p \end{bmatrix} \]

The entry in the \( j \)th row is \( X_j \). The transpose of \( X \), represented by \( X' \), is a row-vector with \( p \) columns: \( X' = (X_1, X_2, \ldots, X_p) \). The \( j \)th column of \( X' \) contains \( X_j \).

Suppose you collect data on \( p \) features \( X_1, X_2, \ldots, X_p \) for a sample of \( n \) individuals. The data for the \( i \)th individual can be represented as the column-vector:

\[ X_i = \begin{bmatrix} X_{i1} \\ X_{i2} \\ \vdots \\ X_{ip} \end{bmatrix} \]

or as the row-vector \( X'_i = (X_{i1}, X_{i2}, \ldots, X_{ip}) \). Here \( X_{ij} \) is the value on the \( j \)th variable. Two subscripts are needed for the data values. One subscript identifies the individual and the other subscript identifies the feature.

A matrix is a rectangular array of numbers or variables. A data set can be viewed as a matrix with \( n \) rows and \( p \) columns, where \( n \) is the sample size. Each row contains data for a given individual:

\[ \begin{bmatrix} X_{11} & X_{12} & \cdots & X_{1p} \\ X_{21} & X_{22} & \cdots & X_{2p} \\ \vdots & \vdots & \ddots & \vdots \\ X_{n1} & X_{n2} & \cdots & X_{np} \end{bmatrix} \]

Vector and matrix notation are used for summarizing multivariate data. For example, the sample mean vector is

\[ \bar{X} = \begin{bmatrix} \bar{X}_1 \\ \bar{X}_2 \\ \vdots \\ \bar{X}_p \end{bmatrix} \]

where \( \bar{X}_j \) is the sample average on the \( j \)th feature. Using matrix algebra, \( \bar{X} \) is defined using a familiar formula:

\[ \bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i. \]

This mathematical operation is well-defined because vectors are added elementwise.

The sample variances and covariances on the \( p \) variables can be grouped together in a \( p \times p \) sample variance-covariance matrix \( S \) (i.e., \( p \) rows and \( p \) columns)

\[ S = \begin{bmatrix} s_{11} & s_{12} & \cdots & s_{1p} \\ s_{21} & s_{22} & \cdots & s_{2p} \\ \vdots & \vdots & \ddots & \vdots \\ s_{p1} & s_{p2} & \cdots & s_{pp} \end{bmatrix} \]
where

\[ s_{ii} = \frac{1}{n-1} \sum_{k=1}^{n} (X_{ki} - \bar{X}_i)^2 \]

is the sample variance for the \( i^{th} \) feature, and

\[ s_{ij} = \frac{1}{n-1} \sum_{k=1}^{n} (X_{ki} - \bar{X}_i)(X_{kj} - \bar{X}_j) \]

is the sample covariance between the \( i^{th} \) and \( j^{th} \) features. The subscripts on the elements in \( S \) identify where the element is found in the matrix: \( s_{ij} \) is stored in the \( i^{th} \) row and the \( j^{th} \) column. The variances are found on the **main diagonal** of the matrix. The covariances are **off-diagonal** elements. \( S \) is symmetric, meaning that the elements above the main diagonal are a reflection of the entries below the main diagonal. More formally, \( s_{ij} = s_{ji} \).

Matrix algebra allows you to express \( S \) using a formula analogous to the sample variance for a single feature:

\[
S = \frac{1}{n-1} \sum_{k=1}^{n} (X_k - \bar{X})(X_k - \bar{X})'.
\]

Here \((X_k - \bar{X})(X_k - \bar{X})'\) is the matrix product of a column vector with \( p \) entries times a row vector with \( p \) entries. This matrix product is a \( p \times p \) matrix with \((X_{ki} - \bar{X}_i)(X_{kj} - \bar{X}_j)\) in the \( i^{th} \) row and \( j^{th} \) column. The matrix products are added up over all \( n \) observations and then divided by \( n - 1 \).

The interpretation of covariances is enhanced by standardizing them to give correlations. The **sample correlation matrix** is denoted by the \( p \times p \) symmetric matrix

\[
R = \begin{bmatrix}
    r_{11} & r_{12} & \cdots & r_{1p} \\
    r_{21} & r_{22} & \cdots & r_{2p} \\
    \vdots & \vdots & \ddots & \vdots \\
    r_{p1} & r_{p2} & \cdots & r_{pp}
\end{bmatrix}.
\]

The \( i^{th} \) row and \( j^{th} \) column element of \( R \) is the correlation between the \( i^{th} \) and \( j^{th} \) features. The diagonal elements are one: \( r_{ii} = 1 \). The off-diagonal elements satisfy

\[ r_{ij} = r_{ji} = \frac{s_{ij}}{\sqrt{s_{ii}s_{jj}}} . \]

In many applications the data are standardized to have mean 0 and variance 1 on each feature. The data are standardized through the so-called **Z-score transformation**: \((X_{ki} - \bar{X}_i)/s_{ii}\) which, on each feature, subtracts the mean from each observation and divides by the corresponding standard deviation. The sample variance-covariance matrix for the standardized data is the correlation matrix \( R \) for the raw data.

**Example:** Let \( X_1, X_2, \) and \( X_3 \) be the reaction times for three visual stimuli named A, B and C, respectively. Suppose you are given the following summaries based on a sample of 30 individuals:

\[
\bar{X} = \begin{bmatrix}
    4 \\
    5 \\
    4.7
\end{bmatrix} .
\]
12.3 Matrix Notation to Summarize Linear Combinations

Matrix algebra is useful for computing sample summaries for linear combinations of the features $X' = (X_1, X_2, \ldots, X_p)$ from the sample summaries on these features. For example, suppose you define the linear combination

$$Y_1 = a_1 X_1 + a_2 X_2 + \cdots + a_p X_p.$$ 

Using matrix algebra, $Y_1$ is the matrix product $Y_1 = a' X$, where $a' = (a_1, a_2, \ldots, a_p)$. The sample mean and variance of $Y_1$ are

$$\bar{Y} = a_1 \bar{X}_1 + a_2 \bar{X}_2 + \cdots + a_p \bar{X}_p = a' \bar{X}$$

and

$$s^2_{Y_1} = \sum_{ij} a_i a_j s_{ij} = a'Sa,$$

where $\bar{X}$ and $S$ are the sample mean vector and sample variance-covariance matrix for $X' = (X_1, X_2, \ldots, X_p)$.

Similarly, the sample covariance between $Y_1$ and $Y_2 = b' X = b_1 X_1 + b_2 X_2 + \cdots + b_p X_p$ is

$$s_{Y_1,Y_2} = \sum_{ij} a_i b_j s_{ij} = a'Sb = b'Sa.$$ 

**Example:** In the stimuli example, the total reaction time per individual is

$$Y = [1 \ 1 \ 1] \begin{bmatrix} X_1 \\ X_2 \\ X_3 \end{bmatrix} = X_1 + X_2 + X_3.$$

The mean reaction time is

$$\bar{Y} = [1 \ 1 \ 1]$$

$$\bar{X} = [1 \ 1 \ 1] \begin{bmatrix} 4 \\ 5 \\ 4.7 \end{bmatrix} = 4 + 5 + 4.7 = 13.7.$$
The variance of $Y$ is the sum of the elements in the variance-covariance matrix:

$$s_Y^2 = [1 \ 1 \ 1]S \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} = \sum_{ij} s_{ij} = 2.26 + 2.18 + \cdots + 2.47 = 18.65.$$
Chapter 13

Principal Component Analysis

Principal component analysis (PCA) is a multivariate technique for understanding variation, and for summarizing measurement data possibly through variable reduction. Principal components (the variables created in PCA) are sometimes used in addition to, or in place of, the original variables in certain analyses. I will illustrate the use and misuse of principal components in a series of examples.

Given data on \( p \) variables or features \( X_1, X_2, \ldots, X_p \), PCA uses a rotation of the original coordinate axes to produce a new set of \( p \) uncorrelated variables, called principal components, that are unit-length linear combinations of the original variables. A unit-length linear combination \( a_1X_1 + a_2X_2 + \cdots + a_pX_p \) has \( a_1^2 + a_2^2 + \cdots + a_p^2 = 1 \).

The principal components have the following properties. The first principal component \( \text{PRIN1} = a_{11}X_1 + a_{12}X_2 + \cdots + a_{1p}X_p \) has the largest variability among all unit-length linear combinations of the original variables. The second principal component \( \text{PRIN2} = a_{21}X_1 + a_{22}X_2 + \cdots + a_{2p}X_p \) has the largest variability among all unit-length linear combinations of \( X_1, X_2, \ldots, X_p \) that are uncorrelated with \( \text{PRIN1} \). In general, the \( j^{th} \) principal component \( \text{PRIN}j \) for \( j = 1, 2, \ldots, p \), has the largest variability among all unit-length linear combinations of the features that are uncorrelated with \( \text{PRIN1}, \text{PRIN2}, \ldots, \text{PRIN}(j-1) \). The last or \( p^{th} \) principal component \( \text{PRIN}p \) has the smallest variability among all unit-length linear combinations of the features.

I have described PCA on the raw or unstandardized data. This method is often called PCA on the sample covariance matrix, because the principal components are computed numerically using a singular value decomposition of the sample covariance matrix for the \( X_i \)s. The variances of the PCs are eigenvalues of the sample covariance matrix. The coefficients in the PCs are eigenvectors of the sample covariance matrix. The sum of the variances of the principal components is equal to the sum of the variances in the original features. An alternative method for PCA uses standardized data, which is often called PCA on the correlation matrix.

The ordered principal components are uncorrelated variables with progressively less variation. Principal components are often viewed as separate dimensions corresponding to the collection of features. The variability of each component divided by the total variability of the components is the proportion of the total variation in the data captured by each component. If data reduction
is your goal, then you might need only the first few principal components to capture most of the variability in the data. This issue will be returned to later.

The unit-length constraint on the coefficients in PCA is needed to make the maximization well-defined. Without this constraint, there does not exist a linear combination with maximum variation. For example, the variability of an arbitrary linear combination $a_1X_1 + a_2X_2 + \cdots + a_pX_p$ is increased by 100 when each coefficient is multiplied by 10!

The principal components are unique only up to a change of the sign for each coefficient. For example,

$$\text{PRIN1} = 0.2X_1 - 0.4X_2 + 0.4X_3 + 0.8X_4$$

and

$$\text{PRIN1} = -0.2X_1 + 0.4X_2 - 0.4X_3 - 0.8X_4$$

have the same variability, so either could play the role of the first principal component. This non-uniqueness does not have an important impact on the analysis.

### 13.1 Example: Temperature Data

The following temperature example includes mean monthly temperatures in January and July for 64 U.S. cities.

```r
The Temperature data file is in "fixed width format", an older data file format.
Each field is specified by column ranges.
Below I've provided numbers to help identify the column numbers
as well as the first three observations in the dataset.
123456789012345678901234
[14 char][5][5]
mobile 51.2 81.6
phoenix 51.2 91.2
little rock 39.5 81.4

fn.data <- "http://statacumen.com/teach/ADA2/ADA2_notes_Ch13_temperature.dat"
temp <- read.fwf(fn.data, widths = c(14, 5, 5))
the city names have trailing white space
str(temp)
'data.frame': 64 obs. of 3 variables:
##$ V1: Factor w/ 64 levels "albany",...: 39 48 33 56 21 27 64 62 31 36 ...
##$ V2: num 51.2 51.2 39.5 45.1 29.9 24.8 32 35.6 54.6 67.2 ...
##$ V3: num 81.6 91.2 81.4 75.2 73 72.7 75.8 78.7 81 82.3 ...
head(temp)
1 mobile 51.2 81.6
2 phoenix 51.2 91.2
3 little rock 39.5 81.4
4 sacramento 45.1 75.2
5 denver 29.9 73.0
6 hartford 24.8 72.7

remove that white space with strip.white=TRUE
temp <- read.fwf(fn.data, widths = c(14, 5, 5), strip.white = TRUE)
name columns
```
colnames(temp) <- c("city", "january", "july")
temp$id <- 1:nrow(temp)
str(temp)
## 'data.frame': 64 obs. of 4 variables:
## $ city : Factor w/ 64 levels "albany","albuquerque",...: 39 48 33 56 21 27 64 62 31 36 ...
## $ january: num 51.2 51.2 39.5 45.1 29.9 24.8 32 35.6 54.6 67.2 ...
## $ july : num 81.6 91.2 81.4 75.2 73 72.7 75.8 78.7 81 82.3 ...
## $ id : int 1 2 3 4 5 6 7 8 9 10 ...
head(temp)
## city january july id
## 1 mobile 51.2 81.6 1
## 2 phoenix 51.2 91.2 2
## 3 little rock 39.5 81.4 3
## 4 sacramento 45.1 75.2 4
## 5 denver 29.9 73.0 5
## 6 hartford 24.8 72.7 6

# plot original data
library(ggplot2)
p1 <- ggplot(temp, aes(x = january, y = july))
p1 <- p1 + geom_point() # points
p1 <- p1 + coord_fixed(ratio = 1) # makes 1 unit equal length on x- and y-axis
   # good idea since both are in the same units
p1 <- p1 + geom_text(aes(label = city), vjust = -0.5, alpha = 0.25) # city labels
p1 <- p1 + labs(title = "Mean temperature in Jan and July for selected cities")
print(p1)

The `princomp()` procedure is used for PCA. By default the principal components are computed based on the covariance matrix. The correlation matrix may also be used (it effectively z-scores the data first) with the `cor = TRUE` option. The **principal component scores** are the values of the principal components across cases. The principal component scores PRIN1, PRIN2, ..., PRINp are centered to have mean zero.
Output from a PCA on the covariance matrix is given. Two principal components are created because \( p = 2 \).

```r
perform PCA on covariance matrix
temp.pca <- princomp(~ january + july, data = temp)
standard deviation and proportion of variation for each component
summary(temp.pca)
Importance of components:
Comp.1 Comp.2
Standard deviation 12.322 3.00046
Proportion of Variance 0.944 0.05598
Cumulative Proportion 0.944 1.00000
coefficients for PCs
loadings(temp.pca)
##
Loadings:
Comp.1 Comp.2
january -0.939 0.343
july -0.343 -0.939
##
Comp.1 Comp.2
SS loadings 1.0 1.0
Proportion Var 0.5 0.5
Cumulative Var 0.5 1.0
scores are coordinates of each observation on PC scale
head(temp.pca$scores)
Comp.1 Comp.2
1 -20.000 0.9240
2 -23.291 -8.0942
3 -8.941 -2.8995
4 -12.076 4.8447
5 2.957 1.7000
6 7.851 0.2333
```

PCA is effectively doing a location shift (to the origin, zero) and a rotation of the data. When the correlation is used for PCA (instead of the covariance), it also performs a scaling so that the resulting PC scores have unit-variance in all directions.

```r
create small data.frame with endpoints of PC lines through data
line.scale <- c(35, 15) # length of PCA lines to draw
endpoints of lines to draw
temp.pca.line.endpoints <-
data.frame(PC = c(rep("PC1", 2), rep("PC2", 2)),
 x = c(temp.pca$center[1] - line.scale[1] * temp.pca$loadings[1, 1],
 temp.pca$center[1] + line.scale[1] * temp.pca$loadings[1, 1],
 temp.pca$center[1] - line.scale[2] * temp.pca$loadings[1, 2],
 temp.pca$center[1] + line.scale[2] * temp.pca$loadings[1, 2]),
 y = c(temp.pca$center[2] - line.scale[1] * temp.pca$loadings[2, 1],
 temp.pca$center[2] + line.scale[1] * temp.pca$loadings[2, 1],

temp.pca.line.endpoints
PC x y
```
# plot original data with PCA vectors overlayed
library(ggplot2)
p1 <- ggplot(temp, aes(x = january, y = july))
p1 <- p1 + geom_point()  # points
p1 <- p1 + coord_fixed(ratio = 1)  # makes 1 unit equal length on x- and y-axis
# good idea since both are in the same units
p1 <- p1 + geom_text(aes(label = id), vjust = -0.5, alpha = 0.25)  # city labels
# plot PC lines
p1 <- p1 + geom_path(data = subset(temp.pca.line.endpoints, PC == "PC1"), aes(x = x, y = y), alpha = 0.5)
P1 <- p1 + geom_path(data = subset(temp.pca.line.endpoints, PC == "PC2"), aes(x = x, y = y), alpha = 0.5)
# label lines
p1 <- p1 + annotate("text",
  x = temp.pca.line.endpoints$x[1],
  y = temp.pca.line.endpoints$y[1],
  label = as.character(temp.pca.line.endpoints$PC[1]),
  vjust = 0)
# size = 10)
P1 <- p1 + annotate("text",
  x = temp.pca.line.endpoints$x[3],
  y = temp.pca.line.endpoints$y[3],
  label = as.character(temp.pca.line.endpoints$PC[3]),
  hjust = 1)  #, size = 10)

p1 <- p1 + labs(title = "Mean temperature in Jan and July for selected cities")
print(p1)
p2 <- p2 + coord_fixed(ratio = 1) # makes 1 unit equal length on x- and y-axis
   # good idea since both are in the same units
p2 <- p2 + geom_text(aes(label = rownames(temp.pca$scores)), vjust = -0.5, alpha = 0.25) # city labels
   # plot PC lines
p2 <- p2 + geom_vline(xintercept = 0, alpha=0.5)
p2 <- p2 + geom_hline(yintercept = 0, alpha=0.5)
p2 <- p2 + labs(title = "Same, PC scores")
   #print(p2)

# plot PCA scores (data on (negative) PC-scale centered at 0)
library(ggplot2) # negative temp.pca$scores
p3 <- ggplot(as.data.frame(-temp.pca$scores), aes(x = Comp.1, y = Comp.2))
p3 <- p3 + geom_point() # points
p3 <- p3 + coord_fixed(ratio = 1) # makes 1 unit equal length on x- and y-axis
   # good idea since both are in the same units
p3 <- p3 + geom_text(aes(label = rownames(temp.pca$scores)), vjust = -0.5, alpha = 0.25) # city labels
   # plot PC lines
p3 <- p3 + geom_vline(xintercept = 0, alpha=0.5)
p3 <- p3 + geom_hline(yintercept = 0, alpha=0.5)
p3 <- p3 + labs(title = "Same, but negative PC scores match orientation of original data")
   #print(p3)

library(gridExtra)
grid.arrange(p2, p3, ncol=1, main="Temperature data and PC scores")
Some comments on the output:

1. You can visualize PCA when $p = 2$. In the temperature plot, the direction of maximal variability corresponds to the first PC axis. The PRIN1 score for each city is obtained by projecting the temperature pairs perpendicularly onto this axis. The direction of minimum variation corresponds to the second PC axis, which is perpendicular to the first PC axis. The PRIN2 score for each city is obtained by projecting the temperature pairs onto this axis.

2. The total variance is the sum of variances for the monthly temperatures: $163.38 = 137.18 + 26.20$.

```r
variance of data (on diagonals, covariance of off-diags)
var(temp[,c("january","july")])

january july
january 137.18 46.73
july 46.73 26.20

sum of variance
sum(diag(var(temp[,c("january","july")])))
```
3. The **eigenvalues of the covariance matrix** are variances for the PCs. The variability of

$$PRIN1 = +0.939 \ T_{\text{JAN}} + 0.343 \ T_{\text{JULY}}$$

is 154.236. The variability of

$$PRIN2 = -0.343 \ T_{\text{JAN}} + 0.939 \ T_{\text{JULY}}$$

is 9.146. The proportion of the total variability due to PRIN1 is $\frac{0.944}{163.38} = 0.944 = \frac{154.236}{163.38}$. The proportion of the total variability due to PRIN2 is $\frac{0.056}{163.38} = 0.056 = \frac{9.146}{163.38}$.

4. Almost all of the variability (94.4%) in the original temperatures is captured by the first PC. The second PC accounts for the remaining 5.6% of the total variability.

5. PRIN1 weights the January temperature about three times the July temperature. This is sensible because PRIN1 maximizes variation among linear combinations of the January and July temperatures. January temperatures are more variable, so they are weighted heavier in this linear combination.

6. The PCs PRIN1 and PRIN2 are standardized to have mean zero. This explains why some PRIN1 scores are negative, even though PRIN1 is a weighted average of the January and July temperatures, each of which is non-negative.
13.2 PCA on Correlation Matrix

The coefficients in the first principal component reflect the relative sizes of the feature variances. The features with large variances have larger coefficients or loadings. This might be considered a problem, because variability is scale dependent and the principal component analysis on the raw data does not take scale into account. For example, if you measure height in meters but then change height to centimeters, the variability increases by a factor of 100*100 = 10,000. This might have a dramatic effect on the PCA.

You might prefer to standardize the features when they are measured on different scales, or when the features have wildly different variances. The features are standardized to have mean zero and variance one by using the Z-score transformation: (Obs – Mean)/Std Dev. The PCA is then performed on the standardized data.

```r
the manual z-score and scale() match
all.equal(temp.z$january, as.vector(scale(temp.z$january)))
[1] TRUE
```
# scale() includes attributes for the mean() and sd() used for z-scoring

```r
str(temp.z)
'data.frame': 64 obs. of 4 variables:
$ city : Factor w/ 64 levels "albany","albuquerque",...: 39 48 33 56 21 27 64 62 31 36 ...
$ january: num 1.631 1.631 0.632 1.11 -0.187 ...
$ july : num [1:64, 1] 1.1701 3.0456 1.131 -0.0803 -0.5101 ...
..- attr(*, "scaled:center")= num 75.6
..- attr(*, "scaled:scale")= num 5.12
$ id : int 1 2 3 4 5 6 7 8 9 10 ...

head(temp.z)
city january july id
1 mobile 1.6311 1.17005 1
2 phoenix 1.6311 3.04555 2
3 little rock 0.6322 1.13098 3
4 sacramento 1.1103 -0.08028 4
5 denver -0.1874 -0.51009 5
6 hartford -0.6229 -0.56869 6
```

# z-scored data has mean 0 and variance 1

```r
colMeans(temp.z[,c("january","july")])
january 0.0000 0.7794
july 0.7794 1.0000
```

# the correlation is used to construct the PCs

```r
cor(temp.z[,c("january","july")])
january july
january 1.0000 0.7794
july 0.7794 1.0000
```

# Plot z-scored data

```r
temp.z.pca <- princomp(~ january + july, data = temp.z)
temp.z.pca.line.endpoints <-
data.frame(PC = c(rep("PC1", 2), rep("PC2", 2)),
 x = c(temp.z.pca$center[1] - line.scale[1] * temp.z.pca$loadings[1, 1],
 temp.z.pca$center[1] + line.scale[1] * temp.z.pca$loadings[1, 1],
 temp.z.pca$center[1] + line.scale[1] * temp.z.pca$loadings[1, 2],
 temp.z.pca$center[1] - line.scale[1] * temp.z.pca$loadings[1, 2]),
 y = c(temp.z.pca$center[2] - line.scale[1] * temp.z.pca$loadings[2, 1],
 temp.z.pca$center[2] + line.scale[1] * temp.z.pca$loadings[2, 1],

head(temp.z.pca.line.endpoints)
PC x y
1 PC1 2.121 2.121
2 PC1 -2.121 -2.121
3 PC2 -2.121 2.121
4 PC2 2.121 -2.121
```

# plot original data with PCA vectors overlayed

```
library(ggplot2)
p1 <- ggplot(temp.z, aes(x = january, y = july))
p1 <- p1 + geom_point() # points
p1 <- p1 + coord_fixed(ratio = 1) # makes 1 unit equal length on x- and y-axis
p1 <- p1 + geom_text(aes(label = id), vjust = -0.5, alpha = 0.25) # city labels
p1 <- p1 + geom_path(data = subset(temp.z.pca.line.endpoints, PC="PC1"), aes(x=x, y=y), alpha=0.5)
```
The covariance matrix computed from the standardized data is the correlation matrix. Thus, principal components based on the standardized data are computed from the correlation matrix. This is implemented by adding the `cor = TRUE` option on the `princomp()` procedure statement.

```
perform PCA on correlation matrix
temp.pca2 <- princomp(~ january + july, data = temp, cor = TRUE)
standard deviation and proportion of variation for each component
summary(temp.pca2)
Importance of components:
Comp.1 Comp.2
Standard deviation 1.3340 0.4696
Proportion of Variance 0.8897 0.1103
Cumulative Proportion 0.8897 1.0000
```

# coefficients for PCs
Principal Component Analysis

```r
loadings(temp.pca2)
##
Loadings:
Comp.1 Comp.2
january 0.707 -0.707
july 0.707 0.707
##
Comp.1 Comp.2
SS loadings 1.0 1.0
Proportion Var 0.5 0.5
Cumulative Var 0.5 1.0
#
scores are coordinates of each observation on PC scale
head(temp.pca2$scores
##
Comp.1 Comp.2
1 1.9964 -0.32862
2 3.3331 1.00804
3 1.2566 0.35547
4 0.7341 -0.84855
5 -0.4971 -0.22995
6 -0.8492 0.03861
```

This plot is the same except for the top/right scale around the biplot and the variance scale on the screeplot.

```
a couple built-in plots
par(mfrow=c(1,2))
biplot(temp.z.pca)
screepplot(temp.z.pca)
```

The standardized features are dimensionless, so the PCs are not influenced by the original units of measure, nor are they affected by the variability in the features. The only important factor is the correlation between the features, which is not changed by standardization.
The PCs from the correlation matrix are

\[ \text{PRIN1} = +0.707 \text{ JAN} + 0.707 \text{ JULY} \]

and

\[ \text{PRIN2} = -0.707 \text{ JAN} + 0.707 \text{ JULY}. \]

PCA is an exploratory tool, so neither a PCA on the covariance matrix nor a PCA on the correlation matrix is always the “right” method. I often do both and see which analysis is more informative.

### 13.3 Interpreting Principal Components

You should try to interpret the linear combinations created by multivariate techniques. The interpretations are usually non-trivial, and some degree of creativity is involved.

The coefficients or loadings in a principal component reflect the relative contribution of the features to the linear combination. Most researchers focus more on the signs of the coefficients than on the magnitude of the coefficients. The principal components are then interpreted as weighted averages or comparisons of weighted averages.

A weighted average is a linear combination of features with non-negative loadings. The simplest case of a weighted average is an arithmetic average, where each feature has the same coefficient.

The difference \( Z = X - Y \) is a comparison of \( X \) and \( Y \). The sign and magnitude of \( Z \) indicates which of \( X \) and \( Y \) is larger, and by how much. To see this, note that \( Z = 0 \) if and only if \( X = Y \), whereas \( Z < 0 \) when \( X < Y \) and \( Z > 0 \) when \( X > Y \).

In the temperature data, PRIN1 is a weighted average of January and July temperatures (signs of the loadings: JAN is + and JULY is +):

\[ \text{PRIN1} = +0.94 \text{ JAN} + 0.34 \text{ JULY}. \]

PRIN2 is a comparison of January and July temperatures (signs of the loadings: JAN is − and JULY is +):

\[ \text{PRIN2} = -0.34 \text{ JAN} + 0.94 \text{ JULY}. \]

Principal components often have positive and negative loadings when \( p \geq 3 \). To interpret the components, group the features with + and − signs together and then interpret the linear combination as a comparison of weighted averages.

You can often simplify the interpretation of principal components by mentally eliminating features from the linear combination that have relatively small (in magnitude) loadings or coefficients. This strategy does not carry over to all multivariate analyses, so I will be careful about this issue when necessary.

### 13.4 Example: Painted turtle shells

Jolicouer and Mosimann gave the length, width, and height in mm of the carapace (shell) for a sample of 24 female painted turtles. I perform a PCA on the original data and on the standardized data.
fn.data <- "http://statacumen.com/teach/ADA2/ADA2_notes_Ch13_shells.dat"
shells <- read.table(fn.data, header = TRUE)
str(shells)
## 'data.frame': 24 obs. of 3 variables:
## $ length: int 98 103 103 105 109 123 123 133 133 133 ... 
## $ width : int 81 84 86 86 88 92 95 99 102 102 ... 
## $ height: int 38 38 42 42 44 50 46 51 51 51 ... 
head(shells)
## length width height
## 1 98 81 38
## 2 103 84 38
## 3 103 86 42
## 4 105 86 42
## 5 109 88 44
## 6 123 92 50

# Scatterplot matrix
library(ggplot2)
suppressMessages(suppressWarnings(library(GGally)))
# put scatterplots on top so y axis is vertical
p <- ggpairs(shells, upper = list(continuous = "points")
, lower = list(continuous = "cor")
)
print(p)
# detach GGally package after use so reshape2 works (old reshape for GGally conflicts)
detach("package:GGally", unload=TRUE)
detach("package:reshape", unload=TRUE)

## 3D scatterplot
library(scatterplot3d)
par(mfrow=c(1,1))
with(shells, {
 scatterplot3d(x=length,
 , y=width
 , z=height
 , main="Shells 3D Scatterplot"
 , type = "h" # lines to the horizontal xy-plane
 , color="blue", pch=19, # filled blue circles
 # , highlight.3d = TRUE # makes color change with z-axis value
 })

### For a rotatable 3D plot, use plot3d() from the rgl library
# # This uses the R version of the OpenGL (Open Graphics Library)
# library(rgl)
# with(shells, { plot3d(x = length, y = width, z = height) })
13.4.1 PCA on shells covariance matrix

The plots show that the shell measurements are strongly positively correlated, which is not surprising. Let us perform a PCA on the covariance matrix and interpret the results.

```r
perform PCA on covariance matrix
shells.pca <- princomp(~ length + width + height, data = shells)

standard deviation and proportion of variation for each component
summary(shells.pca)
```

## Importance of components:

<table>
<thead>
<tr>
<th></th>
<th>Comp.1 Comp.2 Comp.3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard deviation</td>
<td>25.497 2.54708 1.653746</td>
</tr>
<tr>
<td>Proportion of Variance</td>
<td>0.986 0.00984 0.004148</td>
</tr>
<tr>
<td>Cumulative Proportion</td>
<td>0.986 0.99585 1.000000</td>
</tr>
</tbody>
</table>

# coefficients for PCs
loadings(shells.pca)

## Loadings:

<table>
<thead>
<tr>
<th></th>
<th>Comp.1 Comp.2 Comp.3</th>
</tr>
</thead>
<tbody>
<tr>
<td>length</td>
<td>0.814 0.555 -0.172</td>
</tr>
<tr>
<td>width</td>
<td>0.496 -0.818 -0.291</td>
</tr>
<tr>
<td>height</td>
<td>0.302 -0.151 0.941</td>
</tr>
</tbody>
</table>

# SS loadings

<table>
<thead>
<tr>
<th></th>
<th>Comp.1 Comp.2 Comp.3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.000</td>
<td>1.000 1.000</td>
</tr>
</tbody>
</table>

## Proportion Var

|        | 0.333 0.333 0.333 |

## Cumulative Var

|        | 0.333 0.667 1.000 |

The three principal components from the raw data are given below. Length and width are
grouped in PRIN3 because they have negative loadings.

\[
\begin{align*}
\text{PRIN1} & = 0.81 \text{ Length} + 0.50 \text{ Width} + 0.30 \text{ Height} \\
\text{PRIN2} & = -0.55 \text{ Length} + (0.82 \text{ Width} + 0.15 \text{ Height}) \\
\text{PRIN3} & = -(0.17 \text{ Length} + 0.29 \text{ Width}) + 0.94 \text{ Height}
\end{align*}
\]

PRIN1 is a weighted average of the carapace measurements, and can be viewed as an overall measure of shell size. Jolicouer and Mosimann interpreted the second and third principal components as measures of \textit{shape}, for they appear to be a comparison of length with an average of width and height, and a comparison of height with length and width, respectively.

Jolicouer and Mosimann argue that the size of female turtle shells can be characterized by PRIN1 with little loss of information because this linear combination accounts for 98.6% of the total variability in the measurements. The form of PRIN1 makes sense conceptually. The carapace measurements are positively correlated with each other, so larger lengths tend to occur with larger widths and heights. The primary way the shells vary is with regards to their overall size, as measured by a weighted average of length, width, and height.

**Question:** Can PRIN2 and PRIN3, which have relatively little variation, be used in any meaningful way? To think about this, suppose the variability in PRIN2 and PRIN3 was zero.

### 13.4.2 PCA on shells correlation matrix

For the analysis on the correlation matrix, add the \texttt{cor = TRUE} option.

```r
perform PCA on correlation matrix
shells.pca <- princomp(~ length + width + height, data = shells, cor = TRUE)
standard deviation and proportion of variation for each component
summary(shells.pca)
Importance of components:
Comp.1 Comp.2 Comp.3
Standard deviation 1.7146 0.18530 0.160820
Proportion of Variance 0.9799 0.01145 0.008621
Cumulative Proportion 0.9799 0.99138 1.000000
coefficients for PCs
loadings(shells.pca)
##
Loadings:
Comp.1 Comp.2 Comp.3
length -0.578 -0.137 0.804
width -0.577 -0.628 -0.522
height -0.577 0.766 -0.284
##
SS loadings 1.000 1.000 1.000
Proportion Var 0.333 0.333 0.333
Cumulative Var 0.333 0.667 1.000
```
13.5 Why is PCA a Sensible Variable Reduction Technique?

My description of PCA provides little insight into why principal components are reasonable summaries for variable reduction. Specifically, why does it make sense for researchers to consider the linear combination of the original features with the largest variance as the best single variable summary of the data?

There is an alternative description of PCA that provides more insight into this issue. For simplicity, consider the following data plot of two features, and the implied principal components. The PC scores for an observation are obtained by projecting the feature scores onto the axes of maximal and minimal variation, and then rotating the axes appropriately.

One can show mathematically that PRIN1 is the best (in some sense) linear combination of the two features to predict the original two features simultaneously. Intuitively, this is plausible. In a PCA, you know the direction for the axis of maximal variation. Given the value of PRIN1, you get a good prediction of the original feature scores by moving PRIN1 units along the axis of maximal variation in the feature space.
The LS line from regressing feature 2 on feature 1 gives the best prediction for feature 2 scores when the feature 1 score is known. Similarly, the LS line from regressing feature 1 on feature 2 gives the best prediction for feature 1 scores when the feature 2 score is known. PRIN1 is the best linear combination of features 1 and 2 to predict both features simultaneously. Note that feature 1 and feature 2 are linear combinations as well!

This idea generalizes. The first $k$ principal components give the best simultaneous prediction of the original $p$ features, among all possible choices of $k$ uncorrelated unit-length linear combinations of the features. Prediction of the original features improves as additional components are added, but the improvement is slight when the added principal components have little variability. Thus, summarizing the data using the principal components with maximum variation is a sensible strategy for data reduction.

13.5.1 A Warning on Using PCA as a Variable Reduction Technique

Some researchers view PCA as a “catchall” technique for reducing the number of variables that need to be considered in an analysis. They will replace the original variables with a small number of principal components that explain most of the variation in the original data and proceed with an analysis on the principal components.

This strategy is not always sensible, especially if a primary interest in the analysis is a comparison of heterogeneous groups. If the group structure was ignored in the PCA analysis, then the linear combinations retained by the researcher may contain little information for distinguishing among groups. For example, consider the following data plot on two features and two groups, and the implied principal components.
Although PRIN1 explains most of the variability in the two features (ignoring the groups), little of the total variation is due to group differences. If the researcher reduced the two features to the first principal component, he would be throwing away most of the information for distinguishing between the groups. PRIN2 accounts for little of the total variation in the features, but most of the variation in PRIN2 is due to group differences.

If a comparison of the two groups was the primary interest, then the researcher should use discriminant analysis instead. Although there is little gained by reducing two variables to one, this principle always applies in multivariate problems. In discriminant analysis, a stepwise selection of variables can be implemented to eliminate features that have no information for distinguishing among groups. This is data reduction as it should be practiced — with a final goal in mind.

Variable reduction using PCA followed by group comparisons might be fruitful if you are fortunate enough to have the directions with large variation correspond to the directions of group differences. For example, in the plot below, the first principal component is a linear combination of the features that distinguishes between the groups. A comparison of the groups based on the first principal component will lead to similar conclusions as a discriminant analysis.
There is nothing unreasonable about using principal components in a comparison of groups, provided you recognize that the principal component scores with the largest variability need not be informative for group comparisons!

In summary, PCA should be used to summarize the variation within a homogeneous group, and should not, in general, be used as a data reduction tool prior to a comparison across groups. The same concern applies to using PCA for identifying groups of similar objects (use cluster analysis instead), or when factor analysis is used prior to a group comparison.

### 13.5.2 PCA is Used for Multivariate Outlier Detection

An outlier in a multidimensional data set has atypical readings on one or on several features simultaneously. These observations can often be found in univariate plots of the lead principal component scores, even when outliers are not extreme in any individual feature.
13.6 Example: Sparrows, for Class Discussion

After a severe storm in 1898, a number of sparrows were taken to the biological laboratory at the University of Rhode Island. H. Bumbus\(^1\) measured several morphological characteristics on each bird. The data here correspond to five measurements on a sample of 49 females. The measurements are the total length, alar extent, beak-head length, humerus length, and length of keel of sternum.

Let us look at the output, paying careful attention to the interpretations of the principal components (zeroing out small loadings). How many components seem sufficient to capture the total variation in the morphological measurements?

```r
fn.data <- "http://statacumen.com/teach/ADA2/ADA2_notes_Ch13_sparrows.dat"
sparrows <- read.table(fn.data, header = TRUE)
str(sparrows)
'data.frame': 49 obs. of 5 variables:
$ Total : int 156 153 155 157 164 158 161 157 158 155 ...
$ Alar : int 245 240 243 238 248 240 246 235 244 236 ...
$ BeakHead: num 31.6 31 31.5 30.9 32.7 31.3 32.3 31.5 31.4 30.3 ...
$ Humerus : num 18.5 18.4 18.6 18.4 19.1 18.6 19.3 18.1 18.5 18.5 ...
$ Keel : num 20.5 20.6 20.3 20.2 21.2 22 21.8 19.8 21.6 20.1 ...
head(sparrows)
Total Alar BeakHead Humerus Keel
1 156 245 31.6 18.5 20.5
2 153 240 31.0 18.4 20.6
3 155 243 31.5 18.6 20.3
4 157 238 30.9 18.4 20.2
5 164 248 32.7 19.1 21.2
6 158 240 31.3 18.6 22.0

Scatterplot matrix
library(ggplot2)
suppressMessages(suppressWarnings(library(GGally)))
put scatterplots on top so y axis is vertical
p <- ggpairs(sparrows, upper = list(continuous = "points"),
 lower = list(continuous = "cor"))
```

Let us look at the output, paying careful attention to the interpretations of the principal components (zeroing out small loadings). How many components seem sufficient to capture the total variation in the morphological measurements?
\[\texttt{print(p)}\]

\# detach GGally package after use so reshape2 works (old reshape for GGally conflicts)
detach("package:GGally", unload=TRUE)
detach("package:reshape", unload=TRUE)

\# perform PCA on covariance matrix
\texttt{sparrows.pca <- \texttt{princomp( ~ Total + Alar + BeakHead + Humerus + Keel}}
\texttt{, data = sparrows)}
\# standard deviation and proportion of variation for each component
summary(sparrows.pca)
## Importance of components:
## Comp.1 Comp.2 Comp.3 Comp.4 Comp.5
## Standard deviation 5.8829 2.1281 0.78469 0.552957 0.275613
## Proportion of Variance 0.8623 0.1128 0.01534 0.007618 0.001893
## Cumulative Proportion 0.8623 0.9751 0.99049 0.998107 1.000000
# coefficients for PCs
# loadings(sparrows.pca) # print method for loadings() uses cutoff = 0.1 by default
print(loadings(sparrows.pca), cutoff = 0) # to show all values
##
## Loadings:
## Comp.1 Comp.2 Comp.3 Comp.4 Comp.5
## Total -0.536 0.828 0.157 0.039 -0.018
## Alar -0.829 -0.551 0.058 0.069 0.040
## BeakHead -0.096 0.034 -0.241 -0.897 0.357
## Humerus -0.074 -0.015 -0.205 -0.306 -0.927
## Keel -0.101 0.100 -0.934 0.310 0.110
##
## Comp.1 Comp.2 Comp.3 Comp.4 Comp.5
## SS loadings 1.0 1.0 1.0 1.0 1.0
## Proportion Var 0.2 0.2 0.2 0.2 0.2
## Cumulative Var 0.2 0.4 0.6 0.8 1.0
# perform PCA on correlation matrix
sparrows.pca <- princomp(~ Total + Alar + BeakHead + Humerus + Keel
, data = sparrows, cor = TRUE)
# standard deviation and proportion of variation for each component
summary(sparrows.pca)
## Importance of components:
## Comp.1 Comp.2 Comp.3 Comp.4 Comp.5
## Standard deviation 1.9026 0.7268 0.62139 0.54902 0.4056
## Proportion of Variance 0.7239 0.1056 0.07723 0.06029 0.0329
## Cumulative Proportion 0.7239 0.8296 0.90682 0.96710 1.0000
# coefficients for PCs
#loadings(sparrows.pca)
print(loadings(sparrows.pca), cutoff = 0) # to show all values
##
## Loadings:
## Comp.1 Comp.2 Comp.3 Comp.4 Comp.5
## Total 0.452 0.058 0.689 0.422 -0.375
## Alar 0.461 -0.301 0.345 -0.545 0.530
## BeakHead 0.450 -0.326 -0.453 0.607 0.342
## Humerus 0.470 -0.189 -0.409 -0.390 -0.651
## Keel 0.399 0.874 -0.184 -0.073 0.194
##
## Comp.1 Comp.2 Comp.3 Comp.4 Comp.5
## SS loadings 1.0 1.0 1.0 1.0 1.0
## Proportion Var 0.2 0.2 0.2 0.2 0.2
## Cumulative Var 0.2 0.4 0.6 0.8 1.0
# a couple built-in plots
par(mfrow=c(1,2))
biplot(sparrows.pca)
13.7 PCA for Variable Reduction in Regression

I will outline an analysis where PCA was used to create predictors in a regression model. The data were selected from the Berkeley Guidance Study, a longitudinal monitoring of children born in Berkeley, California, between 1928 and 1929. The variables selected from the study are

- **ID** an identification number,
- **WT2** weight at age 2 in kg,
- **HT2** height at age 2 in cm,
- **WT9** weight at age 9,
- **HT9** height at age 9,
- **LG9** leg circumference at age 9 in cm,
- **ST9** a composite measure of strength at age 9 (higher is stronger),
- **WT18** weight at age 18,
- **HT18** height at age 18,
- **LG18** leg circumference at age 18,
- **ST18** a composite measure of strength at age 18, and
SOMA somatotype on a 7-point scale, as a measure of fatness (1=slender to 7=fat) determined using a photo taken at age 18.

Data on 26 boys are given below.

We are interested in building a regression model to predict somatotype (SOMA) from the other variables.

```r
library(ggplot2)
suppressMessages(suppressWarnings(library(GGally)))
p <- ggpairs(bgs)
print(p)
detach GGally package after use so reshape2 works (old reshape for GGally conflicts)
detach("package:GGally", unload=TRUE)
detach("package:reshape", unload=TRUE)
```
It is reasonable to expect that the characteristics measured over time, for example HT2, HT9, and HT18 are strongly correlated. Evidence supporting this hypothesis is given in the following output, which summarizes correlations within subsets of the predictors. Two of the three subsets include measures over time on the same characteristic.

```r
cor(bgs[,c("WT2", "WT9", "WT18")])
WT2 WT9 WT18
WT2 1.0000 0.5792 0.2159
WT9 0.5792 1.0000 0.7089
WT18 0.2159 0.7089 1.0000

cor(bgs[,c("HT2", "HT9", "HT18")])
HT2 HT9 HT18
HT2 1.0000 0.6070 0.2360
HT9 0.6070 1.0000 0.7760
HT18 0.2360 0.7760 1.0000
```
# HT2 1.0000 0.7758 0.6847  
# HT9 0.7758 1.0000 0.8645  
# HT18 0.6847 0.8645 1.0000  

```
cor(bgs[,c("LG9", "LG18", "ST9", "ST18")])
```

## LG9 LG18 ST9 ST18  
## LG9 1.0000 0.6645 0.5239 0.3441  
## LG18 0.6645 1.0000 0.2085 0.2845  
## ST9 0.5239 0.2085 1.0000 0.6596  
## ST18 0.3441 0.2845 0.6596 1.0000  

```r
go <- ggplot2
p1 <- ggplot(bgs, aes(x = WT2 , y = WT9)) + geom_point()
p2 <- ggplot(bgs, aes(x = WT2 , y = WT18)) + geom_point()
p3 <- ggplot(bgs, aes(x = WT9 , y = WT18)) + geom_point()
p4 <- ggplot(bgs, aes(x = HT2 , y = HT9)) + geom_point()
p5 <- ggplot(bgs, aes(x = HT2 , y = HT18)) + geom_point()
p6 <- ggplot(bgs, aes(x = HT9 , y = HT18)) + geom_point()
p7 <- ggplot(bgs, aes(x = LG9 , y = LG18)) + geom_point()
p8 <- ggplot(bgs, aes(x = ST9 , y = ST18)) + geom_point()
```

```
library(gridExtra)
ggrid.arrange(p1, p2, p3, p4, p5, p6, p7, p8, ncol=3, main="Selected BGS variables")
```
Strong correlation among predictors can cause collinearity problems in regression. The presence of collinearity makes the interpretation of regression effects more difficult, and can reek havoc with the numerical stability of certain algorithms used to compute least squares summaries. A natural way to avoid collinearity and improve interpretation of regression effects is to use uncorrelated linear combinations of the original predictors, such as principal components, to build a model.

The interpretation of regression effects changes when linear combinations of predictors are used in place of the original predictors. However, two models will be equivalent in the sense of giving identical fitted values when \( p \) linearly independent combinations of \( p \) predictors are used. The fitted model can be expressed in terms of the original predictors, or in terms of the linear combinations. Similarly, standardizing the original predictors does not change the significance of
individual regression effects nor does it change the interpretation of the model.

A reasonable strategy with the Berkeley data might be to find principal components for the
three height variables separately, the three weights separately, and so on. It may not make sense to
combine the four different types of measures (HT, WT, ST, and LG) together because the resulting
linear combinations would likely be uninterpretable.

Output from a PCA on the four sets of standardized measures is given below. Two sets (ST9,
ST18) and (LG9, LG18) have two predictors. The PCs on the strength and leg measures are
essentially the sum and difference between the two standardized features. The loadings have
magnitude $0.707 = (1/2)^{1/2}$ to satisfy the unit-length restriction.

Here are some comments on how I might use the PCA to build a regression model to predict
somatotype. First, I would not necessarily use the given PCS, but would instead use interpretable
linear combinations that were nearly identical to the PCs. For example, the first principal component
of the heights is roughly an unweighted average of the weights at ages 2, 9, and 18. I would
use $(WT2+WT9+WT18)/3$ instead. The overall sum of squared loadings is not important in
the regression analysis. Only the relative sizes are important. Following this idea, what linear
combinations of the heights are reasonable?

Second, you should not assume that principal components with low variance are unimportant
for predicting somatotype. Recall our earlier discussion on potential problems with ignoring low
variability components when group comparisons are the primary interest. The same problem is
possible here.

Feel free to explore these ideas at your leisure.

```r
WT
bgsWT.pca <- princomp(~ WT2 + WT9 + WT18, data = bgs, cor = TRUE)
summary(bgsWT.pca)
Importance of components:
Comp.1 Comp.2 Comp.3
Standard deviation 1.424 0.8882 0.42764
Proportion of Variance 0.676 0.2630 0.06096
Cumulative Proportion 0.676 0.9390 1.00000
print(loadings(bgsWT.pca), cutoff = 0)
Loadings:
Comp.1 Comp.2 Comp.3
WT2 -0.492 0.781 0.384
WT9 -0.665 -0.053 -0.745
WT18 -0.562 -0.622 0.545
SS loadings 1.000 1.000 1.000
Proportion Var 0.333 0.333 0.333
Cumulative Var 0.333 0.667 1.000

HT
bgsHT.pca <- princomp(~ HT2 + HT9 + HT18, data = bgs, cor = TRUE)
summary(bgsHT.pca)
Importance of components:
Comp.1 Comp.2 Comp.3
Standard deviation 1.5976 0.5724 0.34652
Proportion of Variance 0.8508 0.1092 0.04003
Cumulative Proportion 0.8508 0.9600 1.00000
```
```r
print(loadings(bgsHT.pca), cutoff = 0)
##
Loadings:
Comp.1 Comp.2 Comp.3
HT2 -0.554 0.800 0.231
HT9 -0.599 -0.190 -0.778
HT18 -0.578 -0.570 0.584
##
Comp.1 Comp.2 Comp.3
SS loadings 1.000 1.000 1.000
Proportion Var 0.333 0.333 0.333
Cumulative Var 0.333 0.667 1.000
LG
bgsLG.pca <- princomp(~LG9 + LG18, data = bgs, cor = TRUE)
summary(bgsLG.pca)
Importance of components:
Comp.1 Comp.2
Standard deviation 1.2901 0.5792
Proportion of Variance 0.8322 0.1678
Cumulative Proportion 0.8322 1.0000
print(loadings(bgsLG.pca), cutoff = 0)
##
Loadings:
Comp.1 Comp.2
LG9 -0.707 0.707
LG18 -0.707 -0.707
##
Comp.1 Comp.2
SS loadings 1.0 1.0
Proportion Var 0.5 0.5
Cumulative Var 0.5 1.0
ST
bgsST.pca <- princomp(~ST9 + ST18, data = bgs, cor = TRUE)
summary(bgsST.pca)
Importance of components:
Comp.1 Comp.2
Standard deviation 1.2883 0.5834
Proportion of Variance 0.8298 0.1702
Cumulative Proportion 0.8298 1.0000
print(loadings(bgsST.pca), cutoff = 0)
##
Loadings:
Comp.1 Comp.2
ST9 0.707 -0.707
ST18 0.707 0.707
##
Comp.1 Comp.2
SS loadings 1.0 1.0
Proportion Var 0.5 0.5
Cumulative Var 0.5 1.0
```
Chapter 14

Cluster Analysis

14.1 Introduction

Cluster analysis is an exploratory tool for locating and grouping observations that are similar to each other across features. Cluster analysis can also be used to group variables that are similar across observations.

Clustering or grouping is distinct from discriminant analysis and classification. In discrimination problems there are a given number of known groups to compare or distinguish. The aim in cluster analysis is to define groups based on similarities. The clusters are then examined for underlying characteristics that might help explain the grouping.

There are a variety of clustering algorithms\(^1\). I will discuss a simple (agglomerative) hierarchical clustering method for grouping observations. The method begins with each observation as an individual cluster or group. The two most similar observations are then grouped, giving one cluster with two observations. The remaining clusters have one observation. The clusters are then joined sequentially until one cluster is left.

14.1.1 Illustration

To illustrate the steps, suppose eight observations are collected on two features \(X_1\) and \(X_2\). A plot of the data is given below.

Step 1. Each observation is a cluster.

Step 2. Form a new cluster by grouping the two clusters that are most similar, or closest to each other. This leaves seven clusters.

Step 3. Form a new cluster by grouping the two clusters that are most similar, or closest to each other. This leaves six clusters.

Step 4–7. Continue the process of merging clusters one at a time.

Step 8. Merge (fuse or combine) the remaining two clusters.

Finally Use a tree or dendrogram to summarize the steps in the cluster formation.

\(^1\)http://cran.r-project.org/web/views/Cluster.html
# convert to a data.frame by reading the text table
intro <- read.table(text = "
x1  x2
4   8
6   6
10  11
11  8
17  5
19  3
20  11
21  2
",
header=TRUE)
str(intro)
## 'data.frame': 8 obs. of 2 variables:
## $ x1: int 4 6 10 11 17 19 20 21
## $ x2: int 8 6 11 8 5 3 11 2

# perform PCA on covariance matrix
intro.pca <- princomp(~ x1 + x2, data = intro)

# plot original data
library(ggplot2)
p1 <- ggplot(intro, aes(x = x1, y = x2))
p1 <- p1 + geom_point() # points
p1 <- p1 + geom_text(aes(label = 1:nrow(intro)), hjust = -0.5, alpha = 0.5) # labels
p1 <- p1 + labs(title = "Introductory example")
print(p1)

# plot PCA scores (data on PC-scale centered at 0)
library(ggplot2)
p2 <- ggplot(as.data.frame(intro.pca$scores), aes(x = Comp.1, y = Comp.2))
p2 <- p2 + geom_point() # points
p2 <- p2 + geom_text(aes(label = rownames(intro.pca$scores)), hjust = -0.5, alpha = 0.5) # labels
p2 <- p2 + labs(title = "Introductory example, PCA scores")
print(p2)

Here are the results of one distance measure, which will be discussed in more detail after the plots. The clustering algorithm order for average linkage is plotted here.
# create distance matrix between points
intro.dist <- dist(intro)
intro.hc.average <- hclust(intro.dist, method = "average")

op <- par(no.readonly = TRUE)  # save original plot options
par(mfrow = c(3, 2), mar = c(2, 2, 2.5, 1))  # margins are c(bottom, left, top, right)

library(cluster)
for (i.clus in 7:2) {
  clusplot(intro, cutree(intro.hc.average, k = i.clus)
    , color = TRUE, labels = 2, lines = 0
    , cex = 2, cex.txt = 1, col.txt = "gray20"
    , main = paste(i.clus, "clusters"), sub = NULL)
}

par(op)  # reset plot options
The order of clustering is summarized in the average linkage dendrogram on the right reading the tree from the bottom upwards.

```r
create distance matrix between points
intro.dist <- dist(intro)
intro.dist
#> [1,] 0.000 2.828 6.708 7.000 13.342 15.811 16.279
#> [2,] 2.828 0.000 6.403 5.385 9.220 9.434 8.062
#> [3,] 6.708 6.403 0.000 3.162 9.487 6.708 8.062
#> [4,] 7.000 5.385 3.162 0.000 9.434 9.487 16.000
#> [5,] 13.342 11.045 9.220 9.434 0.000 5.708 4.252
#> [6,] 15.811 13.342 12.042 9.434 5.708 0.000 12.042
#> [7,] 16.279 14.866 10.000 16.000 4.252 12.042 0.000
```
14.1.2 Distance measures

There are several accepted measures of distance between clusters. The **single linkage** distance is the minimum distance between points across two clusters. The **complete linkage** distance is the maximum distance between points across two clusters. The **average linkage** distance is the average distance between points across two clusters. In these three cases the distance between points is the Euclidean or “ruler” distance. The pictures below illustrate the measures.

Given a distance measure, the distance between each pair of clusters is evaluated at each step. The two clusters that are closest to each other are merged. The observations are usually standardized prior to clustering to eliminate the effect of different variability on the distance measure.
Different distance measures can produce different shape clusters.

**Single** uses the length of the shortest line between points in clusters.

Single linkage has the ability to produce and detect elongated and irregular clusters.

**Complete** uses the length of the longest line between points in clusters.

Complete linkage is biased towards producing clusters with roughly equal diameters.

**Average** uses the average length of all line between points in clusters.

Average linkage tends to produce clusters with similar variability.

You should try different distances to decide the most sensible measure for your problem.

### 14.2 Example: Mammal teeth

The table below gives the numbers of different types of teeth for 32 mammals. The columns, from left to right, give the numbers of (v1) top incisors, (v2) bottom incisors, (v3) top canines, (v4) bottom canines, (v5) top premolars, (v6) bottom premolars, (v7) top molars, (v8) bottom molars, respectively. A cluster analysis will be used to identify the mammals that have similar counts across the eight types of teeth.

```
Mammal teeth data
mammal = name
number of teeth
v1 = top incisors
v2 = bottom incisors
v3 = top canines
v4 = bottom canines
v5 = top premolars
v6 = bottom premolars
v7 = top molars
v8 = bottom molars

fn.data <- "http://statacumen.com/teach/ADA2/ADA2_notes_Ch14_teeth.dat"
teeth <- read.table(fn.data, header = TRUE)
str(teeth)
```
14.2 Example: Mammal teeth

---

```r
create distance matrix between points
teeth.dist <- dist(teeth[, -1])
number of clusters to identify with red boxes and ellipses
i.clus <- 8
create dendrogram
teeth.hc.average <- hclust(teeth.dist, method = "average")
plclust(teeth.hc.average, hang = -1 ,
 main = paste("Teeth with average linkage") # and", i.clus, "clusters")
 , labels = teeth[,1])
rect.hclust(teeth.hc.average, k = i.clus)

create PCA scores plot with ellipses
clusplot(teeth, cutree(teeth.hc.average, k = i.clus)
, color = TRUE, labels = 2, lines = 0
```

---

The program below produces cluster analysis summaries for the mammal teeth data.
Cluster analysis can be used to produce an “optimal” splitting of the data into a prespecified number of groups or clusters, with different algorithms usually giving different clusters. However, the important issue in many analyses revolves around identifying the number of clusters in the data. A simple empirical method is to continue grouping until the clusters being fused are relatively dissimilar, as measured by the normalized RMS between clusters. Experience with your data is needed to provide a reasonable stopping rule.

```r
NbClust provides methods for determining the number of clusters
library(NbClust)
str(teeth)
```

---

14.3 Identifying the Number of Clusters

Cluster analysis can be used to produce an “optimal” splitting of the data into a prespecified number of groups or clusters, with different algorithms usually giving different clusters. However, the important issue in many analyses revolves around identifying the number of clusters in the data. A simple empirical method is to continue grouping until the clusters being fused are relatively dissimilar, as measured by the normalized RMS between clusters. Experience with your data is needed to provide a reasonable stopping rule.

```r
NbClust provides methods for determining the number of clusters
library(NbClust)
str(teeth)
```

---

2There are thirty in this package: http://cran.r-project.org/web/packages/NbClust/NbClust.pdf
# Because the data type is "int" for integer, the routine fails

```r
NbClust(teeth[,-1], method = "average", index = "all")
```

## Error: system is computationally singular: reciprocal condition number = 1.51394e-16

# However, change the data type from integer to numeric and it works just fine!

```r
teeth.num <- as.numeric(as.matrix(teeth[,-1]))
NC.out <- NbClust(teeth.num, method = "average", index = "all")
```

## Warning: no non-missing arguments to max; returning -Inf

# [1] "*** : The Hubert index is a graphical method of determining the number of clusters. In the plot of Hubert index second differences (below), we look for a significant peak that corresponds to a significant increase of the value of the measure i.e the significant peak in Hubert index second differences plot.
## [1] "*** : The D index is a graphical method of determining the number of clusters. In the plot of D index, we seek the significant peak in Dindex second differences plot) that corresponds to a significant increase of the value of the measure.
## Warning: data length [51] is not a sub-multiple or multiple of the number of rows [2]
## [1] "All 256 observations were used."

# Most of the methods suggest 4 or 5 clusters, as do the plots

```r
NC.out$Best.nc
```

<table>
<thead>
<tr>
<th>index.KL</th>
<th>index.CH</th>
<th>index.Hartigan</th>
<th>index.CCC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number_clusters</td>
<td>5</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>Value_Index</td>
<td>Inf</td>
<td>Inf</td>
<td>Inf</td>
</tr>
<tr>
<td>index.Scott</td>
<td>index.Marriot</td>
<td>index.TrCovW</td>
<td>index.TraceW</td>
</tr>
<tr>
<td>Number_clusters</td>
<td>5</td>
<td>5</td>
<td>-Inf</td>
</tr>
<tr>
<td>Value_Index</td>
<td>7787</td>
<td>414</td>
<td>5</td>
</tr>
<tr>
<td>index.Friedman</td>
<td>index.Rubin</td>
<td>index.Cindex</td>
<td>index.DB</td>
</tr>
<tr>
<td>Number_clusters</td>
<td>8.721e+14</td>
<td>-9.811e+14</td>
<td>0</td>
</tr>
<tr>
<td>Value_Index</td>
<td>5.000e+00</td>
<td>6.000e+00</td>
<td>5</td>
</tr>
<tr>
<td>index.Silhouette</td>
<td>index.Duda</td>
<td>index.PseudoT2</td>
<td></td>
</tr>
<tr>
<td>Number_clusters</td>
<td>1</td>
<td>0.47</td>
<td>168.2</td>
</tr>
<tr>
<td>Value_Index</td>
<td>2</td>
<td>2.00</td>
<td>2.0</td>
</tr>
<tr>
<td>index.Beale</td>
<td>index.Ratkowsky</td>
<td>index.Ball</td>
<td></td>
</tr>
<tr>
<td>Number_clusters</td>
<td>0.38</td>
<td>0.47</td>
<td>61.83</td>
</tr>
<tr>
<td>Value_Index</td>
<td>3.00</td>
<td>3.00</td>
<td>3.00</td>
</tr>
<tr>
<td>index.PtBiserial</td>
<td>index.Frey</td>
<td>index.McClain</td>
<td>index.Dunn</td>
</tr>
<tr>
<td>Number_clusters</td>
<td>0.77</td>
<td>0.88</td>
<td>0</td>
</tr>
<tr>
<td>Value_Index</td>
<td>2.00</td>
<td>5.00</td>
<td>5</td>
</tr>
<tr>
<td>index.Hubert</td>
<td>index.SDindex</td>
<td>index.Dindex</td>
<td>index.SDbw</td>
</tr>
<tr>
<td>Number_clusters</td>
<td>0</td>
<td>Inf</td>
<td>0</td>
</tr>
<tr>
<td>Value_Index</td>
<td>2</td>
<td>0</td>
<td>5</td>
</tr>
</tbody>
</table>
There are several statistical methods for selecting the number of clusters. No method is best. They suggest using the cubic clustering criteria (ccc), a pseudo-$F$ statistic, and a pseudo-$t$ statistic. At a given step, the pseudo-$t$ statistic is the distance between the center of the two clusters to be merged, relative to the variability within these clusters. A large pseudo-$t$ statistic implies that the clusters to be joined are relatively dissimilar (i.e., much more variability between the clusters to be merged than within these clusters). The pseudo-$F$ statistic at a given step measures the variability among the centers of the current clusters relative to the variability within the clusters. A large pseudo-$F$ value implies that the clusters merged consist of fairly similar observations. As clusters are joined, the pseudo-$t$ statistic tends to increase, and the pseudo-$F$ statistic tends to decrease. The ccc is more difficult to describe.

The RSQ summary is also useful for determining the number of clusters. RSQ is a pseudo-$R^2$ statistic that measures the proportion of the total variation explained by the differences among the existing clusters at a given step. RSQ will typically decrease as the pseudo-$F$ statistic decreases.

A common recommendation on cluster selection is to choose a cluster size where the values of ccc and the pseudo-$F$ statistic are relatively high (compared to what you observe with other numbers of clusters), and where the pseudo-$t$ statistic is relatively low and increases substantially at the next proposed merger. For the mammal teeth data this corresponds to four clusters. Six clusters is a sensible second choice.

Let’s look at the results of 5 clusters.

```r
create distance matrix between points
teeth.dist <- dist(teeth[, -1])

number of clusters to identify with red boxes and ellipses
i.clus <- 5
```
# create dendrogram

teach.hc.average <- hclust(teach.dist, method = "average")

tclust(teach.hc.average, hang = -1
    , main = paste("Teeth with average linkage and", i.clus, "clusters")
    , labels = teach[,1])

rect.hclust(teach.hc.average, k = i.clus)

# create PCA scores plot with ellipses
clusplot(teach, cutree(teach.hc.average, k = i.clus)
    , color = TRUE, labels = 2, lines = 0
    , cex = 2, cex.txt = 1, col.txt = "gray20"
    , main = paste("Teeth PCA with average linkage and", i.clus, "clusters"), sub = NULL)
Teeth PCA with average linkage and 5 clusters

```r
print the observations in each cluster
for (i.cut in 1:i.clus) {
 print(paste("Cluster", i.cut, " ----------------------------- "))
 print(teeth[(cutree(teeth.hc.average, k = i.clus) == i.cut),])
}

[1] "Cluster 1 -----------------------------
mammal v1 v2 v3 v4 v5 v6 v7 v8
1 Brown_Bat 2 3 1 1 3 3 3 3
3 Silver_Hair_Bat 2 3 1 1 2 3 3 3
4 Pigmy_Bat 2 3 1 1 2 2 3 3
5 House_Bat 2 3 1 1 1 2 3 3
6 Red_Bat 1 3 1 1 2 2 3 3
[1] "Cluster 2 -----------------------------
mammal v1 v2 v3 v4 v5 v6 v7 v8
2 Mole 3 2 1 0 3 3 3 3
7 Pika 2 1 0 0 2 2 3 3
8 Rabbit 2 1 0 0 3 2 3 3
[1] "Cluster 3 -----------------------------
mammal v1 v2 v3 v4 v5 v6 v7 v8
9 Beaver 1 1 0 0 2 1 3 3
10 Groundhog 1 1 0 0 2 1 3 3
11 Gray_Squirrel 1 1 0 0 1 1 3 3
12 House_Mouse 1 1 0 0 0 0 3 3
13 Porcupine 1 1 0 0 1 1 3 3
[1] "Cluster 4 -----------------------------
mammal v1 v2 v3 v4 v5 v6 v7 v8
14 Wolf 3 3 1 1 4 4 2 3
15 Bear 3 3 1 1 4 4 2 3
```
14.4 Example: 1976 birth and death rates

Below are the 1976 crude birth and death rates in 74 countries. A data plot and output from a complete and single linkage cluster analyses are given.

```
fn.data <- "http://statacumen.com/teach/ADA2/ADA2_notes_Ch14_birthdeath.dat"
bd <- read.table(fn.data, header = TRUE)
str(bd)
```

```
'data.frame': 74 obs. of 3 variables:
$ country : Factor w/ 74 levels "afghan","algeria",..: 1 2 3 4 5 6 7 8 9 10 ...
$ birth : int 52 50 47 22 16 12 47 12 36 17 ...
$ death : int 30 16 23 10 8 13 19 12 10 10 ...
```
14.4.1 Complete linkage

```r
library(NbClust)
Change integer data type to numeric
bd.num <- as.numeric(as.matrix(bd[, -1]))
NC.out <- NbClust(bd.num, method = "complete", index = "all")
```

---

**1976 crude birth and death rates**

![Plot](image)
# most of the methods suggest 2 to 6 clusters, as do the plots
NC.out$Best.nc
## index.KL index.CH index.Hartigan index.CCC
## Number_clusters 2.000 15 5.0 2.00
## Value_Index 3.333 1781 209.2 20.76
## index.Scott index.Marriot index.TrCovW index.TraceW
## Number_clusters 4.00 6 -Inf 854.6
## Value_Index 86.79 9041 4 15.0
## index.Friedman index.Rubin index.Cindex index.DB
## Number_clusters 395.4 -131.5 0.23 0.43
## Value_Index 13.0 2.0 2.00 2.00
## index.Silhouette index.Duda index.PseudoT2
## Number_clusters 0.75 0.25 142
## Value_Index 2.00 2.00 2
## index.Beale index.Ratkowsky index.Ball
## Number_clusters 0.99 0.46 5166
## Value_Index 3.00 3.00 2
## index.PtBiserial index.Frey index.McClain index.Dunn
## Number_clusters 0.85 3.54 0.17 0.33
## Value_Index 3.00 2.00 13.00 0.00
## index.Hubert index.SDindex index.Dindex index.SDbw
## Number_clusters 0 0.32 0 0.31
## Value_Index 3 0.00 2 2.00

Let’s try 3 clusters based on the dendrogram plots below. First we’ll use complete linkage.

```r
create distance matrix between points
bd.dist <- dist(bd[, -1])

number of clusters to identify with red boxes and ellipses
i.clus <- 3

create dendrogram
bd.hc.complete <- hclust(bd.dist, method = "complete")
```
plclust(bd.hc.complete, hang = -1
, main = paste("Teeth with complete linkage and", i.clus, "clusters")
, labels = bd[,1])
rect.hclust(bd.hc.complete, k = i.clus)

# create PCA scores plot with ellipses
clusplot(bd, cutree(bd.hc.complete, k = i.clus)
, color = TRUE, labels = 2, lines = 0
, cex = 2, cex.txt = 1, col.txt = "gray20"
, main = paste("Birth/Death PCA with complete linkage and", i.clus, "clusters"), sub = NULL)

# create a column with group membership
bd$cut.comp <- factor(cutree(bd.hc.complete, k = i.clus))
# print the observations in each cluster
for (i.cut in 1:i.clus) {
  print(paste("Cluster", i.cut, " ----------------------------- "))
  print(bd[(cutree(bd.hc.complete, k = i.clus) == i.cut),])
}

## [1] "Cluster 1 ----------------------------- 
##   country birth death cut.comp
##   1  afghan  52   30      1
##   2  algeria  50   16      1
##   3  angola  47   23      1
##   7 banglades  47   19      1
##  12  cameroon  42   22      1
##  22  ethiopia  48   23      1
##  26   ghana  46   14      1
##  33   iraq  48   14      1
##  35 ivory_cst  48   23      1
##  37   kenya  50   14      1
##  40  madagascar  47   22      1
##  43  morocco  47   16      1
##  44 mozambique  45   18      1
##  45   nepal  46   20      1
##  47  nigeria  49   22      1
##  53  rhodesia  48   14      1
##  55  saudi_ar  49   19      1
##  59   sudan  49   17      1
##  62   syria  47   14      1
## 63 tanzania 47 17 1
## 67 uganda 48 17 1
## 70 upp_volta 50 28 1
## 72 vietnam 42 17 1
## 74 zaire 45 18 1

```
[1] "Cluster 2 -----------------------------
country birth death cut.comp
4 argentina 22 10 2
5 australia 16 8 2
6 austria 12 13 2
8 belguim 12 12 2
10 bulgaria 17 10 2
13 canada 17 7 2
14 chile 22 7 2
18 cuba 20 6 2
19 czechosla 19 11 2
23 france 14 11 2
24 german_dr 12 14 2
25 german_fr 10 12 2
27 greece 16 9 2
29 hungary 18 12 2
34 italy 14 10 2
36 japan 16 6 2
46 netherlan 13 8 2
51 poland 20 9 2
52 portugal 19 10 2
54 romania 19 10 2
57 spain 18 8 2
60 sweden 12 11 2
61 switzer 12 9 2
66 ussr 18 9 2
68 uk 12 12 2
69 usa 15 9 2
73 yugoslav 18 8 2

[1] "Cluster 3 -----------------------------
country birth death cut.comp
9 brazil 36 10 3
11 burma 38 15 3
15 china 31 11 3
16 taiwan 26 5 3
17 columbia 34 10 3
20 ecuador 42 11 3
21 egypt 39 13 3
28 guatamala 40 14 3
30 india 36 15 3
31 indonesia 38 16 3
32 iran 42 12 3
38 nkorea 43 12 3
39 skorea 26 6 3
41 malaysia 30 6 3
42 mexico 40 7 3
48 pakistan 44 14 3
49 peru 40 13 3
50 phillip 34 10 3
```
### 14.4.2 Single linkage

Now we’ll use single linkage to compare.

```r
library(NbClust)
Change integer data type to numeric
bd.num <- as.numeric(as.matrix(bd[, -1]))
NC.out <- NbClust(bd.num, method = "single", index = "all")
Warning: no non-missing arguments to mean; returning -Inf
[1] "*** : The Hubert index is a graphical method of determining the number of clusters. In the plot of Hubert index, we seek a significant knee that corresponds to a local maximum in the plot. The significant knee (the significant peak in Hubert index second differences plot) that corresponds to a significant increase of the value of the measure i.e the significant peak in Hubert index second differences plot.
[1] "*** : The D index is a graphical method of determining the number of clusters. In the plot of D index, we seek a significant knee (the significant peak in Dindex second differences plot) that corresponds to a significant increase of the value of the measure."
Warning: data length [51] is not a sub-multiple or multiple of the number of rows [2]
[1] "All 222 observations were used."
of the methods suggest 4 to 11 clusters, as do the plots
NC.out$Best.nc
index.KL index.CH index.Hartigan index.CCC
Number_clusters 7.000 11.0 5.0 2.00
Value_Index 8.594 342.3 473.9 13.78
```
## Cluster Analysis

<table>
<thead>
<tr>
<th>Index</th>
<th>Number_clusters</th>
<th>Value_Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scott index</td>
<td>6.0</td>
<td>4991</td>
</tr>
<tr>
<td>Marriot index</td>
<td>-Inf</td>
<td></td>
</tr>
<tr>
<td>TrCovW index</td>
<td>6.00</td>
<td></td>
</tr>
<tr>
<td>TraceW index</td>
<td>15.00</td>
<td></td>
</tr>
<tr>
<td>Friedman index</td>
<td>20.38</td>
<td>-12.06</td>
</tr>
<tr>
<td>Rubin index</td>
<td>0.19</td>
<td>0.34</td>
</tr>
<tr>
<td>C-index index</td>
<td>0.34</td>
<td>0.19</td>
</tr>
<tr>
<td>DB index</td>
<td>0.74</td>
<td>53.71</td>
</tr>
<tr>
<td>Beale index</td>
<td>2.00</td>
<td>2.00</td>
</tr>
<tr>
<td>Ratkowsky index</td>
<td>0.37</td>
<td>3.00</td>
</tr>
<tr>
<td>Ball index</td>
<td>0.35</td>
<td>2</td>
</tr>
<tr>
<td>PtBiserial index</td>
<td>0.85</td>
<td>4.08</td>
</tr>
<tr>
<td>Frey index</td>
<td>0.05</td>
<td>0.51</td>
</tr>
<tr>
<td>McClain index</td>
<td>0.19</td>
<td>0.12</td>
</tr>
<tr>
<td>Dunn index</td>
<td>0.34</td>
<td>0.14</td>
</tr>
<tr>
<td>Hubert index</td>
<td>0.74</td>
<td>2.00</td>
</tr>
<tr>
<td>SD index</td>
<td>0.51</td>
<td>0.5</td>
</tr>
<tr>
<td>D-index index</td>
<td>0.00</td>
<td>0.5</td>
</tr>
<tr>
<td>SDbw index</td>
<td>0.12</td>
<td>0.0</td>
</tr>
</tbody>
</table>

# create distance matrix between points
bd.dist <- dist(bd[, -1])

# number of clusters to identify with red boxes and ellipses
i.clus <- 3

# create dendrogram
bd.hc.single <- hclust(bd.dist, method = "single")
plclust(bd.hc.single, hang = -1)
  , main = paste("Teeth with single linkage and", i.clus, "clusters")
  , labels = bd[,1])
rect.hclust(bd.hc.single, k = i.clus)

# create PCA scores plot with ellipses
clusplot(bd, cutree(bd.hc.single, k = i.clus)
  , col = TRUE, labels = 2, lines = 0
  , cex = 2, cex.txt = 1, col.txt = "gray20"
  , main = paste("Birth/Death PCA with single linkage and", i.clus, "clusters"), sub = NULL)

# create a column with group membership
bd$cut.sing <- factor(cutree(bd.hc.single, k = i.clus))

---

*Note: The code provided is a snippet and may not run as is, as it is part of a larger program.*
14.4 Example: 1976 birth and death rates

Teeth with single linkage and 3 clusters

Birth/Death PCA with single linkage and 3 clusters
```r
print the observations in each cluster
for (i.cut in 1:i.clus) {
 print(paste("Cluster", i.cut, " ----------------------------- "))
 print(bd[(cutree(bd.hc.single, k = i.clus) == i.cut),])
}

[1] "Cluster 1 ----------------------------- ":
country birth death cut.comp cut.sing
1 afghan 52 30 1 1
70 upp_volta 50 28 1 1

[1] "Cluster 2 ----------------------------- ":
country birth death cut.comp cut.sing
2 algeria 50 16 1 2
3 angola 47 23 1 2
7 banglades 47 19 1 2
9 brazil 36 10 3 2
##11 burma 38 15 3 2
##12 cameroon 42 22 1 2
##15 china 31 11 3 2
##17 columbia 34 10 3 2
##20 ecuador 42 11 3 2
##21 egypt 39 13 3 2
##22 ethiopia 48 23 1 2
##26 ghana 46 14 1 2
##28 guatamala 40 14 3 2
##30 india 36 15 3 2
##31 indonesia 38 16 3 2
##32 iran 42 12 3 2
##33 iraq 48 14 1 2
##35 ivory_cst 48 23 1 2
##37 kenya 50 14 1 2
##38 nkorea 43 12 3 2
##40 madagasca 47 22 1 2
##42 mexico 40 7 3 2
##43 morocco 47 16 1 2
##44 mozambique 45 18 1 2
##45 nepal 46 20 1 2
##47 nigeria 49 22 1 2
##48 pakistan 44 14 3 2
##49 peru 40 13 3 2
##50 phillip 34 10 3 2
##53 rhodesia 48 14 1 2
##55 saudi_ar 49 19 1 2
##56 sth_afrika 36 12 3 2
##59 sudan 49 17 1 2
##62 syria 47 14 1 2
##63 tanzania 47 17 1 2
##64 thailand 34 10 3 2
##65 turkey 34 12 3 2
##67 uganda 48 17 1 2
##71 venez 36 6 3 2
##72 vietnam 42 17 1 2
##74 zaire 45 18 1 2

[1] "Cluster 3 ----------------------------- ":
country birth death cut.comp cut.sing
```
14.4 Example: 1976 birth and death rates

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>#</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>argentina</td>
<td>22</td>
<td>10</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>australia</td>
<td>16</td>
<td>8</td>
<td>2</td>
</tr>
<tr>
<td>6</td>
<td>austria</td>
<td>12</td>
<td>13</td>
<td>2</td>
</tr>
<tr>
<td>8</td>
<td>belgium</td>
<td>12</td>
<td>12</td>
<td>2</td>
</tr>
<tr>
<td>10</td>
<td>bulgaria</td>
<td>17</td>
<td>10</td>
<td>2</td>
</tr>
<tr>
<td>13</td>
<td>canada</td>
<td>17</td>
<td>7</td>
<td>2</td>
</tr>
<tr>
<td>14</td>
<td>chile</td>
<td>22</td>
<td>7</td>
<td>2</td>
</tr>
<tr>
<td>16</td>
<td>taiwan</td>
<td>26</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>18</td>
<td>cuba</td>
<td>20</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>19</td>
<td>czechosla</td>
<td>19</td>
<td>11</td>
<td>2</td>
</tr>
<tr>
<td>23</td>
<td>france</td>
<td>14</td>
<td>11</td>
<td>2</td>
</tr>
<tr>
<td>24</td>
<td>german_dr</td>
<td>12</td>
<td>14</td>
<td>2</td>
</tr>
<tr>
<td>25</td>
<td>german_fr</td>
<td>10</td>
<td>12</td>
<td>2</td>
</tr>
<tr>
<td>27</td>
<td>greece</td>
<td>16</td>
<td>9</td>
<td>2</td>
</tr>
<tr>
<td>29</td>
<td>hungary</td>
<td>18</td>
<td>12</td>
<td>2</td>
</tr>
<tr>
<td>34</td>
<td>italy</td>
<td>14</td>
<td>10</td>
<td>2</td>
</tr>
<tr>
<td>36</td>
<td>japan</td>
<td>16</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>39</td>
<td>skorea</td>
<td>26</td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>41</td>
<td>malaysia</td>
<td>30</td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>46</td>
<td>netherlan</td>
<td>13</td>
<td>8</td>
<td>2</td>
</tr>
<tr>
<td>51</td>
<td>poland</td>
<td>20</td>
<td>9</td>
<td>2</td>
</tr>
<tr>
<td>52</td>
<td>portugal</td>
<td>19</td>
<td>10</td>
<td>2</td>
</tr>
<tr>
<td>54</td>
<td>romania</td>
<td>19</td>
<td>10</td>
<td>2</td>
</tr>
<tr>
<td>57</td>
<td>spain</td>
<td>18</td>
<td>8</td>
<td>2</td>
</tr>
<tr>
<td>58</td>
<td>sri_lanka</td>
<td>26</td>
<td>9</td>
<td>3</td>
</tr>
<tr>
<td>60</td>
<td>sweden</td>
<td>12</td>
<td>11</td>
<td>2</td>
</tr>
<tr>
<td>61</td>
<td>switzerland</td>
<td>12</td>
<td>9</td>
<td>2</td>
</tr>
<tr>
<td>66</td>
<td>ussr</td>
<td>18</td>
<td>9</td>
<td>2</td>
</tr>
<tr>
<td>68</td>
<td>uk</td>
<td>12</td>
<td>12</td>
<td>2</td>
</tr>
<tr>
<td>69</td>
<td>usa</td>
<td>15</td>
<td>9</td>
<td>2</td>
</tr>
<tr>
<td>73</td>
<td>yugoslav</td>
<td>18</td>
<td>8</td>
<td>2</td>
</tr>
</tbody>
</table>

# plot original data
library(ggplot2)
p1 <- ggplot(bd, aes(x = birth, y = death, colour = cut.sing, shape = cut.sing))
p1 <- p1 + geom_point(size = 2) # points
p1 <- p1 + geom_text(aes(label = country), hjust = -0.1, alpha = 0.2) # labels
p1 <- p1 + coord_fixed(ratio = 1) # makes 1 unit equal length on x- and y-axis
p1 <- p1 + labs(title = "1976 crude birth and death rates, single linkage")
print(p1)
The two methods suggest three clusters. Complete linkage also suggests 14 clusters, but the clusters were unappealing so this analysis will not be presented here.

The three clusters generated by the two methods are very different. The same tendency was observed using average linkage and Ward’s method.

An important point to recognize is that different clustering algorithms may agree on the number of clusters, but they may not agree on the composition of the clusters.
Chapter 15
Multivariate Analysis of Variance

Jolicour and Mosimann studied the relationship between the size and shape of painted turtles. The table below gives the length, width, and height (all in mm) for 24 males and 24 females.

```
fn.data <- "http://statacumen.com/teach/ADA2/ADA2_notes_Ch15_shells_mf.dat"
shells <- read.table(fn.data, header = TRUE)
str(shells)
'data.frame': 48 obs. of 4 variables:
$ sex : Factor w/ 2 levels "F","M": 1 1 1 1 1 1 1 1 1 1 ...
$ length: int 98 103 103 105 109 123 123 133 133 133 ...
$ width : int 81 84 86 86 88 92 95 99 102 102 ...
$ height: int 38 38 42 42 44 50 46 51 51 51 ...
#head(shells)

<table>
<thead>
<tr>
<th>sex</th>
<th>length</th>
<th>width</th>
<th>height</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>98</td>
<td>81</td>
<td>38</td>
</tr>
<tr>
<td>F</td>
<td>103</td>
<td>84</td>
<td>38</td>
</tr>
<tr>
<td>F</td>
<td>103</td>
<td>86</td>
<td>42</td>
</tr>
<tr>
<td>F</td>
<td>105</td>
<td>86</td>
<td>42</td>
</tr>
<tr>
<td>F</td>
<td>109</td>
<td>88</td>
<td>44</td>
</tr>
<tr>
<td>F</td>
<td>123</td>
<td>92</td>
<td>50</td>
</tr>
<tr>
<td>F</td>
<td>123</td>
<td>95</td>
<td>46</td>
</tr>
<tr>
<td>F</td>
<td>133</td>
<td>99</td>
<td>51</td>
</tr>
<tr>
<td>F</td>
<td>133</td>
<td>102</td>
<td>51</td>
</tr>
<tr>
<td>F</td>
<td>133</td>
<td>102</td>
<td>51</td>
</tr>
<tr>
<td>F</td>
<td>134</td>
<td>100</td>
<td>48</td>
</tr>
<tr>
<td>F</td>
<td>136</td>
<td>102</td>
<td>49</td>
</tr>
<tr>
<td>F</td>
<td>138</td>
<td>98</td>
<td>51</td>
</tr>
<tr>
<td>F</td>
<td>138</td>
<td>99</td>
<td>51</td>
</tr>
<tr>
<td>F</td>
<td>141</td>
<td>105</td>
<td>53</td>
</tr>
<tr>
<td>F</td>
<td>147</td>
<td>108</td>
<td>57</td>
</tr>
<tr>
<td>F</td>
<td>149</td>
<td>107</td>
<td>55</td>
</tr>
<tr>
<td>F</td>
<td>153</td>
<td>107</td>
<td>56</td>
</tr>
<tr>
<td>F</td>
<td>155</td>
<td>115</td>
<td>63</td>
</tr>
<tr>
<td>F</td>
<td>155</td>
<td>117</td>
<td>60</td>
</tr>
<tr>
<td>F</td>
<td>158</td>
<td>115</td>
<td>62</td>
</tr>
<tr>
<td>F</td>
<td>159</td>
<td>118</td>
<td>63</td>
</tr>
<tr>
<td>F</td>
<td>162</td>
<td>124</td>
<td>61</td>
</tr>
<tr>
<td>F</td>
<td>177</td>
<td>132</td>
<td>67</td>
</tr>
</tbody>
</table>
```

```
25 M 93 74 37
26 M 94 78 35
27 M 96 80 35
28 M 101 84 39
29 M 102 85 38
30 M 103 81 37
31 M 104 83 39
32 M 106 83 39
33 M 107 82 38
34 M 112 89 40
35 M 113 88 40
36 M 114 86 40
37 M 116 90 43
38 M 117 90 41
39 M 117 91 41
40 M 119 93 44
41 M 120 89 40
42 M 121 93 44
43 M 121 95 42
44 M 125 93 45
45 M 127 96 45
46 M 128 95 45
47 M 131 95 46
48 M 135 106 47
```

```
Scatterplot matrix
library(ggplot2)
suppressMessages(suppressWarnings(library(GGally)))
put scatterplots on top so y axis is vertical
p <- ggpairs(shells, colour = "sex")
```
MANOVA considers the following two questions:

- Are the population mean length, width, and height the same for males and females?
- If not, then what combination of features is most responsible for the differences?

To describe MANOVA, suppose you measure $p$ features on independent random samples from
be the vector of population means for the $i^{th}$ population, where $\mu_{ij}$ is the $i^{th}$ population mean on the $j^{th}$ feature. For the turtles, $p = 3$ features and $k = 2$ strata (sexes).

A one-way MANOVA tests the hypothesis that the population mean vectors are identical: $H_0 : \mu_1 = \mu_2 = \cdots = \mu_k$ against $H_A : \text{not } H_0$. For the carapace data, you are simultaneously testing that the sexes have equal population mean lengths, equal population mean widths, and equal population mean heights.

Assume that the sample sizes from the different groups are $n_1, n_2, \ldots, n_k$. The total sample size is $n = n_1 + n_2 + \cdots + n_k$. Let

$$X_{ij}' = [X_{ij1} X_{ij2} \cdots X_{ijp}]'$$

be the vector of responses for the $j^{th}$ individual from the $i^{th}$ sample. Let

$$\bar{X}_i' = [\bar{X}_{i1} \bar{X}_{i2} \cdots \bar{X}_{ip}]'$$

and $S_i$ be the mean vector and variance-covariance matrix for the $i^{th}$ sample. Finally, let

$$\bar{X}' = [\bar{X}_1 \bar{X}_2 \cdots \bar{X}_p]'$$

be the vector of means ignoring samples (combine all the data across samples and compute the average on each feature), and let

$$S = \frac{\sum_i (n_i - 1)S_i}{n - k}$$

be the pooled variance-covariance matrix. The pooled variance-covariance matrix is a weighted average of the variance-covariance matrices from each group.

To test $H_0$, construct the following MANOVA table, which is the multivariate analog of the ANOVA table:

<table>
<thead>
<tr>
<th>Source</th>
<th>df</th>
<th>SS</th>
<th>MS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Between</td>
<td>$k - 1$</td>
<td>$\sum_i n_i(X_i - \bar{X})(X_i - \bar{X})'$</td>
<td></td>
</tr>
<tr>
<td>Within</td>
<td>$n - k$</td>
<td>$\sum_i (n_i - 1)S_i$</td>
<td>$\sum_i (n_i - 1)S_i$</td>
</tr>
<tr>
<td>Total</td>
<td>$n - 1$</td>
<td>$\sum_{ij}(X_{ij} - \bar{X})(X_{ij} - \bar{X})'$</td>
<td>$\sum_{ij}(X_{ij} - \bar{X})(X_{ij} - \bar{X})'$</td>
</tr>
</tbody>
</table>

where all the MSs are SS/df.

The expressions for the SS have the same form as SS in univariate analysis of variance, except that each SS is a $p \times p$ symmetric matrix. The diagonal elements of the SS matrices are the SS for one-way ANOVAs on the individual features. The off-diagonal elements are SS between features. The Error MS matrix is the pooled variance-covariance matrix $S$.

The standard MANOVA assumes that you have independent samples from multivariate normal populations with identical variance-covariance matrices. This implies that each feature is normally distributed in each population, that a feature has the same variability across populations, and that the correlation (or covariance) between two features is identical across populations. The Error MS matrix estimates the common population variance-covariance matrix when the population variance-covariance matrices are identical.
The $H_0$ of equal population mean vectors should be rejected when the difference among mean vectors, as measured by the Between MS matrix, is large relative to the variability within groups, as measured by the Error MS matrix. Equivalently, $H_0$ is implausible if a significant portion of the total variation in the data, as measured by the Total SS matrix, is due to differences among the groups. The same idea is used in a one-way ANOVA to motivate the $F$-test of no differences in population means. However, some care is needed to quantify these ideas in a MANOVA because there are several natural matrix definitions for comparing the Between MS matrix to the Error MS matrix. As a result, several MANOVA tests of $H_0$ have been proposed.

Graphical summaries for the carapace data are given above, with numerical summaries below.

```r
summary statistics for each sex
by(shells, shells$sex, summary)
shells$sex: F
sex length width height
F:24 Min. : 98 Min. :81.0 Min. :38.0
M: 0 1st Qu.:123 1st Qu.:94.2 1st Qu.:47.5
Median :137 Median :102.0 Median :51.0
Mean :136 Mean :102.6 Mean :52.0
3rd Qu.:154 3rd Qu.:109.8 3rd Qu.:57.8
Max. :177 Max. :132.0 Max. :67.0

standard deviations
by(shells[, 2:4], shells$sex, apply, 2, sd)
shells$sex: F
length width height
21.249 13.105 8.046

correlation matrix (excluding associated p-values testing "H0: rho == 0")
library(Hmisc)
rcorr(as.matrix(shells[, 2:4]))[[1]] # all
length width height
length 1.0000 0.9779 0.9628
width 0.9779 1.0000 0.9599
height 0.9628 0.9599 1.0000
rcorr(as.matrix(shells[shells$sex == "F", 2:4]))[[1]] # females
length width height
length 1.0000 0.9731 0.9707
width 0.9731 1.0000 0.9659
height 0.9707 0.9659 1.0000
rcorr(as.matrix(shells[shells$sex == "M", 2:4]))[[1]] # males
```
The features are positively correlated within each sex. The correlations between pairs of features are similar for males and females. Females tend to be larger on each feature. The distributions for length, width, and height are fairly symmetric within sexes. No outliers are present. Although females are more variable on each feature than males, the MANOVA assumptions do not appear to be grossly violated here. (Additionally, you could consider transforming the each dimension of the data in hopes to make the covariances between sexes more similar, though it may not be easy to find a good transformation to use.)

pca.sh <- princomp(shells[, 2:4])
df.pca.sh <- data.frame(sex = shells$sex, pca.sh$scores)
str(df.pca.sh)

# Scatterplot matrix
library(ggplot2)
suppressMessages(suppressWarnings(library(GGally)))
# put scatterplots on top so y axis is vertical
p <- ggpairs(df.pca.sh, colour = "sex"
           , title = "Principal components of Shells")
print(p)

# detach GGally package after use so reshape2 works (old reshape for GGally conflicts)
detach("package:GGally", unload=TRUE)
detach("package:reshape", unload=TRUE)
For comparison with the MANOVA below, here are the univariate ANOVAs for each feature. For the carapace data, the univariate ANOVAs indicate significant differences between sexes on length, width, and height. Females are larger on average than males on each feature.

```r
Univariate ANOVA tests, by each response variable
lm.sh <- lm(cbind(length, width, height) ~ sex, data = shells)
summary(lm.sh)

Response length:
##
Call:
lm(formula = length ~ sex, data = shells)
##
Residuals:
Min 1Q Median 3Q Max
-38.04 -10.67 1.27 11.93 40.96
##
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 136.04 3.51 38.77 < 2e-16 ***
sexM -22.63 4.96 -4.56 3.8e-05 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
Residual standard error: 17.2 on 46 degrees of freedom
Multiple R-squared: 0.311, Adjusted R-squared: 0.296
F-statistic: 20.8 on 1 and 46 DF, p-value: 3.79e-05
##
Response width:
##
Call:
lm(formula = width ~ sex, data = shells)
##
Residuals:
Min 1Q Median 3Q Max
-21.58 -5.542 -0.438 4.885 29.417
##
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 102.58 2.15 47.7 < 2e-16 ***
sexM -14.29 3.04 -4.7 2.4e-05 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
Residual standard error: 10.5 on 46 degrees of freedom
Multiple R-squared: 0.325, Adjusted R-squared: 0.31
F-statistic: 22.1 on 1 and 46 DF, p-value: 2.38e-05
##
Response height:
##
Call:
lm(formula = height ~ sex, data = shells)
##
Residuals:
```
A few procedures can be used for one-way MANOVA; two are `manova()` and the `car` package's `Manova()`. First we check the assumption of multivariate normality.

```r
Test multivariate normality using the Shapiro-Wilk test for multivariate normality
library(mvnormtest)
The data needs to be transposed t() so each variable is a row
with observations as columns.

mshapiro.test(t(shells[shells$sex == "F", 2:4]))
```

```
Shapiro-Wilk normality test
##
data: Z
W = 0.8932, p-value = 0.01551
mshapiro.test(t(shells[shells$sex == "M", 2:4]))
```

```
Shapiro-Wilk normality test
##
data: Z
W = 0.936, p-value = 0.1329
```

# Graphical Assessment of Multivariate Normality
```r
f.mnv.norm.qqplot <- function(x, name = "") {
 # creates a QQ-plot for assessing multivariate normality
 x <- as.matrix(x) # n x p numeric matrix
center <- colMeans(x) # centroid
n <- nrow(x);
p <- ncol(x);
cov <- cov(x);
d <- mahalanobis(x, center, cov) # distances
qqplot(qchisq(ppoints(n), df=p), d,
 main=paste("QQ Plot MV Normality:", name),
 ylab="Mahalanobis D2 distance",
 xlab="Chi-squared quantiles")
}
```
The curvature in the Female sample cause us to reject normality, while the males do not deviate from normality. We’ll proceed anyway since this deviation from normality in the female sample will largely increase the variability of the sample and not displace the mean greatly, and the sample sizes are somewhat large.

**Multivariate test statistics** These four multivariate test statistics are among the most common to assess differences across the levels of the categorical variables for a linear combination of responses. In general Wilks’ lambda is recommended unless there are problems with small total sample size, unequal sample sizes between groups, violations of assumptions, etc., in which case Pillai’s trace is more robust.

**Wilks’ lambda, \((\lambda)\)**

- Most commonly used statistic for overall significance
- Considers differences over all the characteristic roots
- The smaller the value of Wilks’ lambda, the larger the between-groups dispersion

**Pillai’s trace**

- Considers differences over all the characteristic roots
- More robust than Wilks’; should be used when sample size decreases, unequal cell sizes or homogeneity of covariances is violated

**Hotelling’s trace**
• Considers differences over all the characteristic roots

Roy’s greatest characteristic root

• Tests for differences on only the first discriminant function (Chapter 16)
• Most appropriate when responses are strongly interrelated on a single dimension
• Highly sensitive to violation of assumptions, but most powerful when all assumptions are met.

# Multivariate MANOVA test
# the specific test is specified in summary()
# test = c("Pillai", "Wilks", "Hotelling-Lawley", "Roy")
man.sh <- manova(cbind(length, width, height) ~ sex, data = shells)
summary(man.sh, test="Wilks")
## Df Wilks approx F num Df den Df Pr(>F)
## sex 1 0.387 23.2 3 44 3.6e-09 ***
## Residuals 46
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

# I prefer the output from the car package
library(car)
lm.man <- lm(cbind(length, width, height) ~ sex, data = shells)
man.sh <- Manova(lm.man)
summary(man.sh)
##
## Type II MANOVA Tests:
##
## Sum of squares and products for error:
##    length width height
## length 13591 8057 4680
## width 8057 5101 2840
## height 4680 2840 1748
##
## ------------------------------------------
##
## Term: sex
##
## Sum of squares and products for the hypothesis:
##    length width height
## length 6143 3880 3077
## width 3880 2451 1944
## height 3077 1944 1541
##
## Multivariate Tests: sex
##    Df test stat approx F num Df den Df Pr(>F)
## Pillai 1 0.6131 23.24 3 44 3.62e-09 ***
## Wilks 1 0.3869 23.24 3 44 3.62e-09 ***
## Hotelling-Lawley 1 1.5843 23.24 3 44 3.62e-09 ***
## Roy 1 1.5843 23.24 3 44 3.62e-09 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
The four MANOVA tests of no differences between sexes are all highly significant. These tests reinforce the univariate analyses. Of the four tests, I prefer Roy’s test because it has an intuitive interpretation. I will mostly ignore the other three tests for discussion.

Roy’s test locates the linear combination of the features that produces the most significant one-way ANOVA test for no differences among groups. If the groups are not significantly different on the linear combination that best separates the groups in a one-way ANOVA sense, then there is no evidence that the population mean vectors are different. The critical value for Roy’s test accounts for the linear combination being suggested by the data. That is, the critical value for Roy’s test is not the same critical value that is used in a one-way ANOVA. The idea is similar to a Bonferroni-type correction with multiple comparisons.

Roy’s method has the ability to locate linear combinations of the features on which the groups differ, even when the differences across groups are not significant on any feature. This is a reason for treating multivariate problems using multivariate methods rather than through individual univariate analyses on each feature.

```r
For Roy's characteristic Root and vector
str(man.sh)
H <- man.shSSPsex # H = hypothesis matrix
man.sh$df # hypothesis df
E <- man.sh$SSPE # E = error matrix
man.sh$error.df # error df

characteristic roots of (E inverse * H)
EinvH <- solve(E) %*% H # solve() computes the matrix inverse
ev <- eigen(EinvH) # eigenvalue/eigenvectors
ev
$values
[1] 1.584e+00 1.680e-15 -1.193e-15
##
$vectors
[,1] [,2] [,3]
[1,] 0.2152 -0.47793 0.03786
[2,] 0.1014 0.06175 0.58342
[3,] -0.9713 0.87623 -0.81129
```

The characteristic vector (eigenvector) output gives one linear combination of the features for each variable in the data set. By construction, the linear combinations are uncorrelated (adjusting for groups). In general, the first \( a = \min(p, k - 1) \) linear combinations contain information in decreasing amounts for distinguishing among the groups. The first linear combination is used by Roy’s test.

The three linear combinations for the carapace data are (reading down the columns in the matrix of eigenvectors)

- \( D_1 = 0.2152 \) Length + 0.1014 Width + −0.9713 Height
- \( D_2 = −0.4779 \) Length + 0.0618 Width + 0.8762 Height
- \( D_3 = 0.0379 \) Length + 0.5834 Width + −0.8113 Height.

Here \( p = 3 \) and \( k = 2 \) gives \( a = \min(p, k - 1) = \min(3, 2 - 1) = 1 \) so only \( D_1 \) from \( (D_1, D_2, \text{ and } D_3) \) contains information for distinguishing between male and female painted turtles.

As in PCA, the linear combinations should be interpreted. However, do not discount the contribution of a feature with a small loading (though, in the shells example, \( D_2 \) and \( D_3 \) have
0 for loadings). In particular, the most important feature for distinguishing among the groups might have a small loading because of the measurement scale.

The following output shows the differences between sexes on D1. The separation between sexes on D1 is greater than on any single feature. Females typically have much larger D1 scores than males.

Since the matrix of eigenvectors are a rotation matrix\(^1\) we can create the D linear combinations by matrix multiplication of the eigenvector (rotation) matrix with the original data (being careful about dimensions).

```r
linear combinations of features
D <- as.matrix(shells[,2:4]) %*% ev$vectors
colnames(D) <- c("D1", "D2", "D3")
df.D <- data.frame(sex = shells$sex, D)
str(df.D)
```

```
'data.frame': 48 obs. of 4 variables:
$ sex: Factor w/ 2 levels "F","M": 1 1 1 1 1 1 1 1 1 1 ...
$ D1 : num -7.6 -6.22 -9.91 -9.48 -10.36 ...
$ D2 : num -8.54 -10.74 -7.11 -8.07 -8.11 ...
$ D3 : num 20.1 22.1 20 20.1 19.8 ...
```

```r
Scatterplot matrix
library(ggplot2)
suppressMessages(suppressWarnings(library(GGally)))
put scatterplots on top so y axis is vertical
p <- ggpairs(df.D, colour = "sex",
 title = "D1 is the linear combination that best distinguishes the sexes")
print(p)
```

```
detach GGally package after use so reshape2 works (old reshape for GGally conflicts)
detach("package:GGally", unload=TRUE)
detach("package:reshape", unload=TRUE)
```

\(^1\)http://en.wikipedia.org/wiki/Rotation_matrix
D1 is the linear combination that best distinguishes the sexes

# Univariate ANOVA tests, by D1 linear combination variable
lm.D.sh <- lm(D1 ~ sex, data = df.D)
summary(lm.D.sh)
##
## Call:
## lm(formula = D1 ~ sex, data = df.D)
##
## Residuals:
##    Min     1Q  Median     3Q    Max
## -5.305 -0.979  0.326  0.957  4.643
##
## Coefficients:
##            Estimate Std. Error t value Pr(>|t|)
## (Intercept)  -10.868     0.388  -27.98  < 2e-16 ***
## sexM           4.690     0.549    8.54  4.8e-11 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.9 on 46 degrees of freedom
## Multiple R-squared:  0.613, Adjusted R-squared:  0.605
## F-statistic: 72.9 on 1 and 46 DF,  p-value: 4.84e-11
Chapter 16

Discriminant Analysis

A researcher collected data on two external features for two (known) sub-species of an insect. She can use discriminant analysis to find linear combinations of the features that best distinguish the sub-species. The analysis can then be used to classify insects with unknown sub-species origin into one of the two sub-species based on their external features.

To see how this might be done, consider the following data plot. Can1 is the linear combination of the two features that best distinguishes or discriminates the two sub-species. The value of Can1 could be used to classify insects into one of the two groups, as illustrated.

The method generalizes to more than two features and sub-species.

16.1 Canonical Discriminant Analysis

While there’s a connection between canonical discriminant analysis and canonical correlation, I prefer to emphasize the connection between canonical discriminant analysis and MANOVA because these techniques are essentially identical.
Assume that you have representative samples from \( k \) groups, strata, or sub-populations. Each selected individual is measured on \( p \) features (measurements) \( X_1, X_2, \ldots, X_p \). As in MANOVA, canonical discriminant analysis assumes you have independent samples from multivariate normal populations with identical variance-covariance matrices.

Canonical discriminant analysis computes \( r = \min(p, k - 1) \) linear combinations of the features with the following properties. The first linear combination, called the **first linear discriminant function**

\[
\text{Can}_1 = a_{11}X_1 + a_{12}X_2 + \cdots + a_{1p}X_p
\]
gives the most significant \( F \)-test for a null hypothesis of no group differences in a one-way ANOVA, among all linear combinations of the features. The second linear combination or the **second linear discriminant function**:

\[
\text{Can}_2 = a_{21}X_1 + a_{22}X_2 + \cdots + a_{2p}X_p
\]
gives the most significant \( F \)-test for no group differences in a one-way ANOVA, among all linear combinations of the features that are uncorrelated (adjusting for groups) with \( \text{Can}_1 \). In general, the \( j^{th} \) linear combination \( \text{Can}_j \ (j = 1, 2, \ldots, r) \) gives the most significant \( F \)-test for no group differences in a one-way ANOVA, among all linear combinations of the features that are uncorrelated with \( \text{Can}_1, \text{Can}_2, \ldots, \text{Can}(j - 1) \).

The coefficients in the canonical discriminant functions can be multiplied by a constant, or all the signs can be changed (that is, multiplied by the constant -1), without changing their properties or interpretations.

### 16.2 Example: Owners of riding mowers

The manufacturer of a riding lawn mower wishes to identify the best prospects for buying their product using data on the incomes \( (X_1) \) and lot sizes \( (X_2) \) of homeowners (Johnson and Wichern, 1988). The data below are the incomes and lot sizes from independent random samples of 12 current owners and 12 non-owners of the mowers.

```r
fn.data <- "http://statacumen.com/teach/ADA2/ADA2_notes_Ch16_mower.dat"
mower <- read.table(fn.data, header = TRUE)
income = income in $1000
lotsize = lot size in 1000 sq ft
owner = nonowners or owners
str(mower)
```

```r
'data.frame': 24 obs. of 3 variables:
$ income : num 20 28.5 21.6 20.5 29 36.7 36 27.6 23 31 ...
$ lotsize: num 9.2 8.4 10.8 10.4 11.8 9.6 8.8 11.2 10 10.4 ...
$ owner : Factor w/ 2 levels "nonowner","owner": 2 2 2 2 2 2 2 2 2 2 ...
Example: Owners of riding mowers

<table>
<thead>
<tr>
<th></th>
<th>income</th>
<th>lotsize</th>
<th>owner</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>20.00</td>
<td>9.20</td>
<td>owner</td>
</tr>
<tr>
<td>2</td>
<td>28.50</td>
<td>8.40</td>
<td>owner</td>
</tr>
<tr>
<td>3</td>
<td>21.60</td>
<td>10.80</td>
<td>owner</td>
</tr>
<tr>
<td>4</td>
<td>20.50</td>
<td>10.40</td>
<td>owner</td>
</tr>
<tr>
<td>5</td>
<td>29.00</td>
<td>11.80</td>
<td>owner</td>
</tr>
<tr>
<td>6</td>
<td>36.70</td>
<td>9.60</td>
<td>owner</td>
</tr>
<tr>
<td>7</td>
<td>36.00</td>
<td>8.80</td>
<td>owner</td>
</tr>
<tr>
<td>8</td>
<td>27.60</td>
<td>11.20</td>
<td>owner</td>
</tr>
<tr>
<td>9</td>
<td>23.00</td>
<td>10.00</td>
<td>owner</td>
</tr>
<tr>
<td>10</td>
<td>31.00</td>
<td>10.40</td>
<td>owner</td>
</tr>
<tr>
<td>11</td>
<td>17.00</td>
<td>11.00</td>
<td>owner</td>
</tr>
<tr>
<td>12</td>
<td>27.00</td>
<td>10.00</td>
<td>owner</td>
</tr>
<tr>
<td>13</td>
<td>25.00</td>
<td>9.80</td>
<td>nonowner</td>
</tr>
<tr>
<td>14</td>
<td>17.60</td>
<td>10.40</td>
<td>nonowner</td>
</tr>
<tr>
<td>15</td>
<td>21.60</td>
<td>8.60</td>
<td>nonowner</td>
</tr>
<tr>
<td>16</td>
<td>14.40</td>
<td>10.20</td>
<td>nonowner</td>
</tr>
<tr>
<td>17</td>
<td>28.00</td>
<td>8.80</td>
<td>nonowner</td>
</tr>
<tr>
<td>18</td>
<td>19.80</td>
<td>8.00</td>
<td>nonowner</td>
</tr>
<tr>
<td>19</td>
<td>22.00</td>
<td>9.20</td>
<td>nonowner</td>
</tr>
<tr>
<td>20</td>
<td>15.80</td>
<td>7.00</td>
<td>nonowner</td>
</tr>
<tr>
<td>21</td>
<td>11.00</td>
<td>9.40</td>
<td>nonowner</td>
</tr>
<tr>
<td>22</td>
<td>16.00</td>
<td>7.40</td>
<td>nonowner</td>
</tr>
</tbody>
</table>

```r
calling(ggplot2)
p <- ggplot(mower, aes(x = income, y = lotsize, shape = owner, colour = owner))
p <- p + geom_point(size = 3)
p <- p + scale_y_continuous(limits = c(0, 15))
p <- p + scale_x_continuous(limits = c(0, 40))
p <- p + coord_fixed(ratio = 1)  # square axes (for perp lines)
p <- p + xlab("income in $1000")
p <- p + ylab("lot size in 1000 sq ft")
print(p)
```

```r
suppressMessages(suppressWarnings(library(GGally)))
p <- ggpairs(rev(mower), colour = "owner")
print(p)
```

detach GGally package after use so reshape2 works (old reshape for GGally conflicts)
detach("package:GGally", unload=TRUE)
detach("package:reshape", unload=TRUE)
Although the two groups overlap, the owners tend to have higher incomes and larger lots than
the non-owners. Income seems to distinguish owners and non-owners better than lot size, but both
variables seem to be useful for discriminating between groups.

Qualitatively, one might classify prospects based on their location relative to a roughly vertical
line on the scatter plot. A discriminant analysis gives similar results to this heuristic approach
because the Can1 scores will roughly correspond to the projection of the two features onto a line
perpendicular to the hypothetical vertical line. candisc() computes one discriminant function here
because \(p = 2 \) and \(k = 2 \) gives \(r = \min(p, k - 1) = \min(2, 1) = 1 \).

Below we first fit a lm() and use that object to compare populations. First we compare using
univariate ANOVAs. The p-values are for one-way ANOVA comparing owners to non-owners and
both income and lotsize features are important individually for distinguishing between the groups.

```r
# first fit lm() with formula = continuous variables ~ factor variables
lm.mower <- lm(cbind(income, lotsize) ~ owner, data = mower)
# univariate ANOVA tests
summary(lm.mower)
## Response income :
##
## Call:
## lm(formula = income ~ owner, data = mower)
##
## Residuals:
##     Min  1Q Median  3Q Max
## -9.492 -3.802  0.587  2.598 10.208
##
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)
## (Intercept)    19.13      1.60    11.95 4.3e-11 ***
## ownerowner     7.36       2.26     3.25  0.0037 **
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```
Residual standard error: 5.54 on 22 degrees of freedom
Multiple R-squared: 0.324, Adjusted R-squared: 0.294
F-statistic: 10.6 on 1 and 22 DF, p-value: 0.00367

Response lotsize:

Call:
`lm(formula = lotsize ~ owner, data = mower)`

Residuals:
- Min 1Q Median 3Q Max
 - -1.8167 -0.6667 -0.0167 0.7167 1.6667

Coefficients:
- Estimate Std. Error t value Pr(>|t|)
 - (Intercept) 8.817 0.298 29.55 <2e-16 ***
 - ownerowner 1.317 0.422 3.12 0.005 **

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 1.03 on 22 degrees of freedom
Multiple R-squared: 0.307, Adjusted R-squared: 0.275
F-statistic: 9.74 on 1 and 22 DF, p-value: 0.00498

Second, the MANOVA indicates the multivariate means are different indicating both income and lotsize features taken together are important for distinguishing between the groups.

```r
# test whether the multivariate means of the two populations are different
library(car)
man.mo <- Manova(lm.mower)
summary(man.mo)

# Type II MANOVA Tests:

# Sum of squares and products for error:
- income lotsize
  - income 676.32 -26.41
  - lotsize -26.41 23.50

# Multivariate Tests: owner
- Df test stat approx F num Df den Df Pr(>F)
  - Pillai 1 0.5386 12.26 2 21 0.000297 ***
  - Wilks 1 0.4614 12.26 2 21 0.000297 ***
  - Hotelling-Lawley 1 1.1673 12.26 2 21 0.000297 ***
```
Finally, we fit the canonical discriminant function with `candisc()`. The LR (likelihood ratio) p-values below correspond to tests of no differences between groups on the canonical discriminant functions. There is only one canonical discriminant function here. The tests of no differences based on the first canonical discriminant function is equivalent to Roy’s MANOVA test.

```r
# perform canonical discriminant analysis
can.mower <- candisc(lm.mower)
can.mower
```

The objects available from the `candisc()` object are named below, and we’ll soon use a few. There are also a few plots available, but I’ll be creating other plots shortly.

```r
names(can.mower) # list of objects in can.mower
```

The raw canonical coefficients define the canonical discriminant variables and are identical to the feature loadings in a one-way MANOVA, except for an unimportant multiplicative factor. Only Can1 is generated here.

```r
can.mower$coeffs.raw
```

The means output gives the mean score on the canonical discriminant variables by group, after centering the scores to have mean zero over all groups. These are in order of the owner factor levels.
Example: Owners of riding mowers

The linear combination of income and lotsize that best distinguishes owners from non-owners

$$\text{Can1} = -0.1453 \text{INCOME} + -0.759 \text{LOTSIZE}$$

is a weighted average of income and lotsize.

In the scatterplot below, Can1 is the direction indicated by the dashed line.

```r
library(ggplot2)

# Scatterplots with Can1 line overlayed
p <- ggplot(mower, aes(x = income, y = lotsize, shape = owner, colour = owner))
p <- p + geom_point(size = 3)

# use a little algebra to determine the intercept and slopes of the
# Can1 line and a line perpendicular to it.

# dashed line of Can1
b1 <- can.mower$coeffs.raw[1]/can.mower$coeffs.raw[2]  # slope
a1 <- mean(mower$lotsize) - b1 * mean(mower$income) - 3.5  # intercept
p <- p + geom_abline(intercept = a1, slope = b1, linetype = 2)
p <- p + annotate("text", x = 10, y = 6, label = "Can1",
                  hjust = 0, vjust = 1, size = 4)

# solid line to separate groups (perpendicular to Can1)
b2 <- -can.mower$coeffs.raw[2]/can.mower$coeffs.raw[1]  # slope
a2 <- mean(mower$lotsize) - b2 * mean(mower$income) - 4.5  # intercept
p <- p + geom_abline(intercept = a2, slope = b2, linetype = 1, alpha = 0.5)
p <- p + annotate("text", x = 22, y = 15, label = "Perp to Can1 for discrim",
                  hjust = 0, vjust = 1, size = 4)

p <- p + scale_y_continuous(limits = c(0, 15))
p <- p + scale_x_continuous(limits = c(0, 40))
p <- p + coord_fixed(ratio = 1)  # square axes (for perp lines)
p <- p + xlab("income in $1000")
p <- p + ylab("lot size in 1000 sq ft")
print(p)
```
The standardized coefficients (use the pooled within-class coefficients) indicate the relative contributions of the features to the discrimination. The standardized coefficients are roughly equal, which suggests that income and lotsize contribute similarly to distinguishing the owners from non-owners.

```r
can.mower$coeffs.std
## Can1
## income -0.8058
## lotsize -0.7846
```

The p-value of 0.0004 on the likelihood ratio test indicates that Can1 strongly distinguishes between owners and non-owners. This is consistent with the separation between owners and non-owners in the boxplot of Can1 scores.

I noted above that Can1 is essentially the same linear combination given in a MANOVA
16.3 Discriminant Analysis on Fisher’s Iris Data

Fisher’s iris data consists of samples of 50 flowers from each of three species of iris: Setosa, Versicolor, and Virginica. Four measurements (in mm) were taken on each flower: sepal length, sepal width, petal length, and petal width.

The plots show big differences between Setosa and the other two species. The differences between Versicolor and Virginica are smaller, and appear to be mostly due to differences in the petal widths and lengths.
The "iris" dataset is included with R in the library(datasets)

```r
str(iris)
## 'data.frame': 150 obs. of 6 variables:
##  $ Sepal.Length: num 5.1 4.9 4.7 4.6 5 5.4 4.6 5 4.4 4.9 ...
##  $ Sepal.Width : num 3.5 3.2 3.1 3.6 3.9 3.4 3.4 2.9 3.1 ...
##  $ Petal.Length: num 1.4 1.4 1.3 1.5 1.4 1.7 1.4 1.5 1.4 1.5 ...
##  $ Petal.Width : num 0.2 0.2 0.2 0.2 0.2 0.4 0.3 0.2 0.2 0.1 ...
##  $ Species : Factor w/ 3 levels "setosa","versicolor","virginica": 1 1 1 1 1 1 1 1 1 1 ...  
##  $ test : Factor w/ 2 levels "test","train": 2 1 1 2 1 2 1 1 1 1 ...
```

Scatterplot matrix

```r
library(ggplot2)
suppressMessages(suppressWarnings(library(GGally)))
p <- ggpairs(iris[,c(5,1,2,3,4)], colour = "Species")
print(p)
```

detach GGally package after use so reshape2 works (old reshape for GGally conflicts)
```
```
```
```
```
candisc was used to discriminate among species. There are \( k = 3 \) species and \( p = 4 \) features, so the number of discriminant functions is 2 (the minimum of 4 and 3 − 1).

```r
first fit lm() with formula = continuous variables ~ factor variables
lm.iris <- lm(cbind(Sepal.Length, Sepal.Width, Petal.Length, Petal.Width) ~ Species, data = iris)
univariate ANOVA tests
#summary(lm.iris)
test whether the multivariate means of the two populations are different
#library(car)
#man.mo <- Manova(lm.iris)
#summary(man.mo)
perform canonical discriminant analysis
library(candisc)
can.iris <- candisc(lm.iris)
can.iris$coeffs.raw
```

Can1 is a comparison of petal and sepal measurements (from Raw Canonical Coefficients):

\[
\text{Can1} = -0.8294 \text{sepalL} - 1.534 \text{sepalW} + 2.201 \text{petalL} + 2.81 \text{petalW}.
\]

Can2 is not easily interpreted, though perhaps a comparison of lengths and widths ignoring sepalL:

\[
\text{Can2} = 0.0241 \text{sepalL} + 2.165 \text{sepalW} - 0.9319 \text{petalL} + 2.839 \text{petalW}.
\]

The canonical directions provide a maximal separation the species. Two lines across Can1 will provide a classification rule.

```r
Scatterplot matrix
library(ggplot2)
suppressMessages(suppressWarnings(library(GGally)))
p <- ggpairs(can.iris$scores, colour = "Species")
print(p)
```

# detach GGally package after use so reshape2 works (old reshape for GGally conflicts)
detach("package:GGally", unload=TRUE)
detach("package:reshape", unload=TRUE)
There are significant differences among species on both discriminant functions; see the p-values under the likelihood ratio tests. Of course, Can1 produces the largest differences — the overlap among species on Can1 is small. Setosa has the lowest Can1 scores because this species has the smallest petal measurements relative to its sepal measurements. Virginica has the highest Can1 scores.

can.iris
##
## Canonical Discriminant Analysis for Species:
##
## CanRsq Eigenvalue Difference Percent Cumulative
## 1 0.970 32.192 31.9 99.121 99.1
## 2 0.222 0.285 31.9 0.879 100.0
##
## Test of H0: The canonical correlations in the
## current row and all that follow are zero
##
## LR test stat approx F num Df den Df Pr(> F)
## 1 0.023 404 4 292 < 2e-16 ***
## 2 0.778 42 1 147 1.3e-09 ***
Questions:

1. What is the most striking feature of the plot of the Can1 scores?

2. Does the assumption of equal population covariance matrices across species seem plausible?

3. How about multivariate normality?

```r
Covariance matrices by species
by(iris[,1:4], iris$Species, cov)
```

```
iris$Species: setosa
Sepal.Length Sepal.Width Petal.Length Petal.Width
Sepal.Length 0.12425 0.099216 0.016355 0.010331
Sepal.Width 0.09922 0.143690 0.011698 0.009298
Petal.Length 0.01636 0.011698 0.030159 0.006069
Petal.Width 0.01033 0.009298 0.006069 0.011106
--
iris$Species: versicolor
Sepal.Length Sepal.Width Petal.Length Petal.Width
Sepal.Length 0.26643 0.08518 0.18290 0.05578
Sepal.Width 0.08518 0.09847 0.08265 0.04120
Petal.Length 0.18290 0.08265 0.22082 0.07310
Petal.Width 0.05578 0.04120 0.07310 0.03911
--
iris$Species: virginica
Sepal.Length Sepal.Width Petal.Length Petal.Width
Sepal.Length 0.40434 0.09376 0.30329 0.04909
Sepal.Width 0.09376 0.10400 0.07138 0.04763
Petal.Length 0.30329 0.07138 0.30459 0.04882
Petal.Width 0.04909 0.04763 0.04882 0.07543

Test multivariate normality using the Shapiro-Wilk test for multivariate normality
library(mvnormtest)
The data needs to be transposed t() so each variable is a row
with observations as columns.

mshapiro.test(t(iris[iris$Species == "setosa", 1:4]))
```

```
Shapiro-Wilk normality test
data: Z
W = 0.9588, p-value = 0.07906
```

```
mshapiro.test(t(iris[iris$Species == "versicolor", 1:4]))
```

```
Shapiro-Wilk normality test
data: Z
W = 0.9304, p-value = 0.005739
```

```
mshapiro.test(t(iris[iris$Species == "virginica", 1:4]))
```

```
Shapiro-Wilk normality test
data: Z
W = 0.9405, p-value = 0.002733
```
## Shapiro-Wilk normality test

data: Z
W = 0.9341, p-value = 0.007955

# Graphical Assessment of Multivariate Normality

f.mnv.norm.qqplot <- function(x, name = "") {
  # creates a QQ-plot for assessing multivariate normality
  x <- as.matrix(x)  # n x p numeric matrix
  center <- colMeans(x)  # centroid
  n <- nrow(x);
  p <- ncol(x);
  cov <- cov(x);
  d <- mahalanobis(x, center, cov) # distances
  qqplot(qchisq(ppoints(n), df=p), d
        , main=paste("QQ Plot MV Normality:", name)
        , ylab="Mahalanobis D2 distance"
        , xlab="Chi-squared quantiles"
        , abline(a = 0, b = 1, col = "red")
}

par(mfrow=c(1,3))
f.mnv.norm.qqplot(iris[iris$Species == "setosa" , 1:4], "setosa")
f.mnv.norm.qqplot(iris[iris$Species == "versicolor", 1:4], "versicolor")
f.mnv.norm.qqplot(iris[iris$Species == "virginica" , 1:4], "virginica")
par(mfrow=c(1,1))
A goal with discriminant analysis might be to classify individuals of unknown origin into one of several known groups. How should this be done? Recall our example where two subspecies of an insect are compared on two external features. The discriminant analysis gives one discriminant function (CAN1) for distinguishing the subspecies. It makes sense to use CAN1 to classify insects because CAN1 is the best (linear) combination of the features to distinguish between subspecies.

Given the score on CAN1 for each insect to be classified, assign insects to the sub-species that they most resemble. Similarity is measured by the distance on CAN1 to the average CAN1 scores for the two subspecies, identified by X’s on the plot.

To classify using \( r \) discriminant functions, compute the average response on CAN1, \( \ldots \), CAN\( r \) in each sample. Then compute the canonical discriminant function scores for each individual to be classified. Each observation is classified into the group it is closest to, as measured by the distance from the observation in \( r \)-space to the sample mean vector on the canonical variables. How do you measure distance in \( r \)-space?

The plot below illustrates the idea with the \( r = 2 \) discriminant functions in Fisher’s iris data: Obs 1 is classified as Versicolor and Obs 2 is classified as Setosa.
17.1 Classification using Mahalanobis distance

Classification using discrimination is based on the original features and not the canonical discriminant function scores. Although a linear classification rule is identical to the method I just outlined, the equivalence is not obvious. I will discuss the method without justifying the equivalence.

Suppose \( p \) features \( X = (X_1, X_2, \ldots, X_p)' \) are used to discriminate among the \( k \) groups. Let \( \bar{X}_i = (\bar{X}_{i1}, \bar{X}_{i2}, \ldots, \bar{X}_{ip})' \) be the vector of mean responses for the \( i^{th} \) sample, and let \( S_i \) be the \( p \)-by-\( p \) variance-covariance matrix for the \( i^{th} \) sample. The pooled variance-covariance matrix is given by

\[
S = \frac{(n_1 - 1)S_1 + (n_2 - 1)S_2 + \cdots + (n_k - 1)S_k}{n - k},
\]

where the \( n_i \)s are the group sample sizes and \( n = n_1 + n_2 + \cdots + n_k \) is the total sample size.

The classification rules below can be defined using either the Mahalanobis generalized squared distance or in terms of a probability model. I will describe each, starting with the Mahalanobis or \( M \)-distance.

The \( M \)-distance from an observation \( X \) to (the center of) the \( i^{th} \) sample is

\[
D_i^2(X) = (X - \bar{X}_i)'S^{-1}(X - \bar{X}_i),
\]

where \((X - \bar{X}_i)\)' is the transpose of the column vector \((X - \bar{X}_i)\), and \(S^{-1}\) is the matrix inverse of \( S \). Note that if \( S \) is the identity matrix (a matrix with 1s on the diagonal and 0s on the off-diagonals), then this is the Euclidean distance. Given the \( M \)-distance from \( X \) to each sample, classify \( X \) into the group which has the minimum \( M \)-distance.
The $M$-distance is an elliptical distance measure that accounts for correlation between features, and adjusts for different scales by standardizing the features to have unit variance. The picture below (left) highlights the idea when $p = 2$. All of the points on a given ellipse are the same $M$-distance to the center $(\bar{X}_1, \bar{X}_2)'$. As the ellipse expands, the $M$-distance to the center increases.

To see how classification works, suppose you have three groups and two features, as in the plot above (right). Observations 1 is closest in $M$-distance to the center of group 3. Observation 2 is closest to group 1. Thus, classify observations 1 and 2 into groups 3 and 1, respectively. Observation 3 is closest to the center of group 2 in terms of the standard Euclidean (walking) distance. However, observation 3 is more similar to data in group 1 than it is to either of the other groups. The $M$-distance from observation 3 to group 1 is substantially smaller than the $M$-distances to either group 2 or 3. The $M$-distance accounts for the elliptical cloud of data within each group, which reflects the correlation between the two features. Thus, you would classify observation 3 into group 1.

The $M$-distance from the $i^{th}$ group to the $j^{th}$ group is the $M$-distance between the centers of the groups:

$$D^2(i, j) = D^2(j, i) = (\bar{X}_i - \bar{X}_j)'S^{-1}(\bar{X}_i - \bar{X}_j).$$

Larger values suggest relatively better potential for discrimination between groups. In the plot above, $D^2(1, 2) < D^2(1, 3)$ which implies that it should be easier to distinguish between groups 1 and 3 than groups 1 and 2.

$M$-distance classification is equivalent to classification based on a probability model that assumes the samples are independently selected from multivariate normal populations with identical covariance matrices. This assumption is consistent with the plot above where the data points form elliptical clouds with similar orientations and spreads across samples. Suppose you can assume a priori (without looking at the data for the individual that you wish to classify) that a randomly selected individual from the combined population (i.e., merge all sub-populations) is equally likely to be from any group:

$$\text{PRIOR}_j \equiv \Pr(\text{observation is from group } j) = \frac{1}{k},$$
where \( k \) is the number of groups. Then, given the observed features \( X \) for an individual

\[
\Pr(j|X) \equiv \Pr(\text{observation is from group } j \text{ given } X) = \frac{\exp\{-0.5D_j^2(X)\}}{\sum_k \exp\{-0.5D_k^2(X)\}}.
\]

To be precise, I will note that \( \Pr(j|X) \) is unknown, and the expression for \( \Pr(j|X) \) is an estimate based on the data.

The group with the largest posterior probability \( \Pr(j|X) \) is the group into which \( X \) is classified. Maximizing \( \Pr(j|X) \) across groups is equivalent to minimizing the \( M \)-distance \( D_j^2(X) \) across groups, so the two classification rules are equivalent.

17.2 Evaluating the Accuracy of a Classification Rule

The misclassification rate, or the expected proportion of misclassified observations, is a good yardstick to gauge a classification rule. Better rules have smaller misclassification rates, but there is no universal cutoff for what is considered good in a given problem. You should judge a classification rule relative to the current standards in your field for “good classification”.

Resubstitution evaluates the misclassification rate using the data from which the classification rule is constructed. The resubstitution estimate of the error rate is optimistic (too small). A greater percentage of misclassifications is expected when the rule is used on new data, or on data from which the rule is not constructed.

Cross-validation is a better way to estimate the misclassification rate. In many statistical packages, you can implement cross-validation by randomly splitting the data into a training or calibration set from which the classification rule is constructed. The remaining data, called the test data set, is used with the classification rule to estimate the error rate. In particular, the proportion of test cases misclassified estimates the misclassification rate. This process is often repeated, say 10 times, and the error rate estimated to be the average of the error rates from the individual splits. With repeated random splitting, it is common to use 10% of each split as the test data set (a 10-fold cross-validation).

Repeated random splitting can be coded. As an alternative, you might consider using one random 50-50 split (a 2-fold) to estimate the misclassification rate, provided you have a reasonably large data base.

Another form of cross-validation uses a jackknife method where single cases are held out of the data (an \( n \)-fold), then classified after constructing the classification rule from the remaining data. The process is repeated for each case, giving an estimated misclassification rate as the proportion of cases misclassified.

The lda() function allows for jackknife cross-validation (CV) and cross-validation using a single test data set (predict()). The jackknife method is necessary with small sized data sets so single observations don’t greatly bias the classification. You can also classify observations with unknown group membership, by treating the observations to be classified as a test data set.

17.3 Example: Carapace classification and error
As suggested in the `partimat()` plot below (and by an earlier analysis), classification based on the length and height of the carapace appears best (considering only pairs). For this example, we’ll only consider those two features.

```r
classification of observations based on classification methods # (e.g. lda, qda) for every combination of two variables.
library(klaR)
partimat(sex ~ length + width + height, data = shells , plot.matrix = TRUE)
```
The default linear discriminant analysis assumes equal prior probabilities for males and females.

\[
\text{library(MASS)}
\]
\[
\text{lda.sh <- lda(sex ~ length + height, data = shells)}
\]
\[
\text{lda.sh}
\]
## Call:
## lda(sex ~ length + height, data = shells)
##
## Prior probabilities of groups:
## F M
## 0.5 0.5
##
## Group means:
## length height
## F 136.0 52.04
## M 113.4 40.71
##
## Coefficients of linear discriminants:
## LD1
## length 0.1371
## height -0.4891

The linear discriminant function is in the direction that best separates the sexes,

\[
LD1 = 0.1371 \text{ length} - 0.4891 \text{ height}.
\]

The plot of the lda object shows the groups across the linear discriminant function. From the klaR package we can get color-coded classification areas based on a perpendicular line across the LD function.

\[
\text{plot(} \text{lda.sh, dimen = 1, type = "both", col = as.numeric(shells$sex)}\text{)}
\]

The constructed table gives the jackknife-based classification and posterior probabilities of being male or female for each observation in the data set. The misclassification rate follows.
# CV = TRUE does jackknife (leave-one-out) crossvalidation
lda.sh.cv <- lda(sex ~ length + height, data = shells, CV = TRUE)

# Create a table of classification and posterior probabilities for each observation
classify.sh <- data.frame(sex = shells$sex,
                          class = lda.sh.cv$class,
                          error = "",
                          round(lda.sh.cv$posterior,3))
colnames(classify.sh) <- c("sex", "class", "error",
                          paste("post", colnames(lda.sh.cv$posterior), sep=""))

# error column
classify.sh$error <- as.character(classify.sh$error)
classify.agree <- as.character(as.numeric(shells$sex) - as.numeric(lda.sh.cv$class))
classify.sh$error[!(classify.agree == 0)] <- classify.agree[!(classify.agree == 0)]

The classification summary table is constructed from the canonical discriminant functions by comparing the predicted group membership for each observation to its actual group label. To be precise, if you assume that the sex for the 24 males are unknown then you would classify each of them correctly. Similarly, 20 of the 24 females are classified correctly, with the other four classified as males. The Total Error of 0.0833 is the estimated miscassification rate, computed as the sum of Rates \times Prior over sexes: 0.0833 = 0.1667 \times 0.5 + 0 \times 0.5. Are the misclassification results sensible, given the data plots that you saw earlier?

The listing of the posterior probabilities for each sex, by case, gives you an idea of the clarity of classification, with larger differences between the male and female posteriors corresponding to more definitive (but not necessarily correct!) classifications.

# print table
classify.sh
## sex class error postF postM
## 1 F M -1 0.166 0.834
## 2 F M -1 0.031 0.969
## 3 F F 0.847 0.153
## 4 F F 0.748 0.252
## 5 F F 0.900 0.100
## 6 F F 0.992 0.008
## 7 F F 0.517 0.483
## 8 F F 0.937 0.063
## 9 F F 0.937 0.063
## 10 F F 0.937 0.063
## 11 F M -1 0.184 0.816
## 12 F M -1 0.294 0.706
## 13 F F 0.733 0.267
## 14 F F 0.733 0.267
## 15 F F 0.917 0.083
## 16 F F 0.994 0.006
## 17 F F 0.886 0.114
## 18 F F 0.864 0.136
## 19 F F 1.000 0.000
## 20 F F 0.998 0.002
## 21 F F 1.000 0.000
## 22 F F 1.000 0.000
## 23 F F 0.993 0.007  
## 24 F F 0.999 0.001  
## 25 M M 0.481 0.519  
## 26 M M 0.040 0.960  
## 27 M M 0.020 0.980  
## 28 M M 0.346 0.654  
## 29 M M 0.092 0.908  
## 30 M M 0.021 0.979  
## 31 M M 0.146 0.854  
## 32 M M 0.078 0.922  
## 33 M M 0.018 0.982  
## 34 M M 0.036 0.964  
## 35 M M 0.026 0.974  
## 36 M M 0.019 0.981  
## 37 M M 0.256 0.744  
## 38 M M 0.023 0.977  
## 39 M M 0.023 0.977  
## 40 M M 0.012 0.988  
## 41 M M 0.002 0.998  
## 42 M M 0.175 0.825  
## 43 M M 0.020 0.980  
## 44 M M 0.157 0.843  
## 45 M M 0.090 0.910  
## 46 M M 0.067 0.933  
## 47 M M 0.081 0.919  
## 48 M M 0.074 0.926  

# Assess the accuracy of the prediction  
pred.freq <- table(shells$sex, lda.sh.cv$class) # row = true sex, col = classified sex  
prop.table(pred.freq, 1) # proportions by row  

diag(prop.table(pred.freq, 1))  
# total proportion correct  
sum(diag(prop.table(pred.freq)))  
# total error rate  
1 - sum(diag(prop.table(pred.freq)))
17.4 Example: Fisher’s Iris Data cross-validation

I will illustrate cross-validation on Fisher’s iris data first using a test data set, and then using the jackknife method. The 150 observations were randomly rearranged and separated into two batches of 75. The 75 observations in the calibration set were used to develop a classification rule. This rule was applied to the remaining 75 flowers, which form the test data set. There is no general rule about the relative sizes of the test data and the training data. Many researchers use a 50-50 split. Regardless of the split, you should combine the two data sets at the end of the cross-validation to create the actual rule for classifying future data.

Below, the half of the indices of the iris data set are randomly selected, and assigned a label “test”, whereas the rest are “train”. A plot indicates the two subsamples are similar.

```r
The "iris" dataset is included with R in the library(datasets)
data(iris)
str(iris)
'data.frame': 150 obs. of 5 variables:
$ Sepal.Length: num 5.1 4.9 4.7 4.6 5 5.4 4.6 5 4.4 4.9 ...
$ Sepal.Width : num 3.5 3 3.2 3.1 3.6 3.9 3.4 3.4 2.9 3.1 ...
$ Petal.Length: num 1.4 1.4 1.3 1.5 1.4 1.7 1.4 1.5 1.4 1.5 ...
$ Petal.Width : num 0.2 0.2 0.2 0.2 0.2 0.4 0.3 0.2 0.2 0.1 ...
$ Species : Factor w/ 3 levels "setosa","versicolor",..: 1 1 1 1 1 1 1 1 1 1 ...

Randomly assign equal train/test by Species strata
library(plyr)
iris <- ddply(iris, .(Species), function(X) {
 ind <- sample.int(nrow(X), size = round(nrow(X)/2))
 sort(ind)
 X$test <- "train"
 X$test[ind] <- "test"
 X$test <- factor(X$test)
 X$test
 return(X)
})
summary(iris$test)
test train
75 75
table(iris$Species, iris$test)
##
test train
setosa 25 25
versicolor 25 25
virginica 25 25

Scatterplot matrix
library(ggplot2)
suppressMessages(suppressWarnings(library(GGally)))
p <- ggpairs(subset(iris, test == "train")[,c(5,1,2,3,4)], colour = "Species", title = "train")
print(p)
p <- ggpairs(subset(iris, test == "test")[,c(5,1,2,3,4)], colour = "Species", title = "test")
print(p)

detach GGally package after use so reshape2 works (old reshape for GGally conflicts)
As suggested in the `partimat()` plot below, we should expect `Sepal.Length` to potentially not contribute much to the classification, since (pairwise) more errors are introduced with that variable than between other pairs. (In fact, we’ll see below that the coefficients for `Sepal.Length` is smallest.)

```r
# classification of observations based on classification methods
# (e.g. lda, qda) for every combination of two variables.
library(klaR)
partimat(Species ~ Sepal.Length + Sepal.Width + Petal.Length + Petal.Width,
       data = subset(iris, test == "train"),
       plot.matrix = TRUE)
```

```r
library(MASS)
lda.iris <- lda(Species ~ Sepal.Length + Sepal.Width + Petal.Length + Petal.Width,
                data = subset(iris, test == "train"))
```
Example: Fisher’s Iris Data cross-validation

The linear discriminant functions that best classify the Species in the training set are

\[
\begin{align*}
\text{LD1} &= 0.5981 \text{sepalL} + 1.684 \text{sepalW} - 2.287 \text{petalL} - 2.297 \text{petalW} \\
\text{LD2} &= -0.332 \text{sepalL} + 2.088 \text{sepalW} - 0.8035 \text{petalL} + 2.81 \text{petalW}.
\end{align*}
\]

The plots of the \texttt{lda} object shows the data on the LD scale.

```r
plot(lda.iris, dimen = 1, col = as.numeric(iris$Species))
plot(lda.iris, dimen = 2, col = as.numeric(iris$Species))
#pairs(lda.iris, col = as.numeric(iris$Species))
```
CV = TRUE does jackknife (leave-one-out) crossvalidation
lda.iris.cv <- lda(Species ~ Sepal.Length + Sepal.Width + Petal.Length + Petal.Width, data = subset(iris, test == "train"), CV = TRUE)

Create a table of classification and posterior probabilities for each observation
classify.iris <- data.frame(Species = subset(iris, test == "train")$Species, class = lda.iris.cv$class, error = "",
 round(lda.iris.cv$posterior,3))
colnames(classify.iris) <- c("Species", "class", "error",
 paste("post", colnames(lda.iris.cv$posterior), sep=""))

error column
classify.iris$error <- as.character(classify.iris$error)
classify.agree <- as.character(as.numeric(subset(iris, test == "train")$Species) - as.numeric(lda.iris.cv$class))
classify.iris$error[!(classify.agree == 0)] <- classify.agree[!(classify.agree == 0)]

The misclassification error is low within the training set.

print table
classify.iris

Assess the accuracy of the prediction
row = true Species, col = classified Species
pred.freq <- table(subset(iris, test == "train")$Species, lda.iris.cv$class)
pred.freq

##
setosa versicolor virginica
setosa 25 0 0
versicolor 0 23 2
virginica 0 1 24
prop.table(pred.freq, 1) # proportions by row
##
##

How well does the LD functions constructed on the training data predict the Species in the independent test data?

```r
# predict the test data from the training data LDFs
pred.iris <- predict(lda.iris, newdata = subset(iris, test == "test"))

# Create a table of classification and posterior probabilities for each observation
classify.iris <- data.frame(Species = subset(iris, test == "test")$Species,
                            , class = pred.iris$class,
                            , error = "",
                            , round(pred.iris$posterior,3))

colnames(classify.iris) <- c("Species", "class", "error",
                            , paste("P", colnames(lda.iris.cv$posterior), sep=""))

# error column
classify.iris$error <- as.character(classify.iris$error)
classify.agree <- as.character(as.numeric(subset(iris, test == "test")$Species) - as.numeric(pred.iris$class))
classify.iris$error[!(classify.agree == 0)] <- classify.agree[!(classify.agree == 0)]

# print table
classify.iris
```

<table>
<thead>
<tr>
<th>Species</th>
<th>class</th>
<th>error</th>
<th>Psetosa</th>
<th>Pversicolor</th>
<th>Pvirginica</th>
</tr>
</thead>
<tbody>
<tr>
<td>setosa</td>
<td>setosa</td>
<td>1.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>

```r
## setosa versicolor virginica
## setosa 1.00 0.00 0.00
## versicolor 0.00 0.92 0.08
## virginica 0.00 0.04 0.96

# proportion correct for each category
diag(prop.table(pred.freq, 1))
## setosa versicolor virginica
## 1.00 0.92 0.96

# total proportion correct
sum(diag(prop.table(pred.freq)))
## [1] 0.96

# total error rate
1 - sum(diag(prop.table(pred.freq)))
## [1] 0.04
```
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th>1</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>29</td>
<td>setosa</td>
<td>setosa</td>
<td>1</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>31</td>
<td>setosa</td>
<td>setosa</td>
<td>1</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>35</td>
<td>setosa</td>
<td>setosa</td>
<td>1</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>37</td>
<td>setosa</td>
<td>setosa</td>
<td>1</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>40</td>
<td>setosa</td>
<td>setosa</td>
<td>1</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>41</td>
<td>setosa</td>
<td>setosa</td>
<td>1</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>43</td>
<td>setosa</td>
<td>setosa</td>
<td>1</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>44</td>
<td>setosa</td>
<td>setosa</td>
<td>1</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>45</td>
<td>setosa</td>
<td>setosa</td>
<td>1</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>47</td>
<td>setosa</td>
<td>setosa</td>
<td>1</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>49</td>
<td>setosa</td>
<td>setosa</td>
<td>1</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>52</td>
<td>versicolor</td>
<td>versicolor</td>
<td>0</td>
<td>0.999</td>
<td>0.001</td>
</tr>
<tr>
<td>53</td>
<td>versicolor</td>
<td>versicolor</td>
<td>0</td>
<td>0.992</td>
<td>0.008</td>
</tr>
<tr>
<td>54</td>
<td>versicolor</td>
<td>versicolor</td>
<td>0</td>
<td>0.999</td>
<td>0.001</td>
</tr>
<tr>
<td>55</td>
<td>versicolor</td>
<td>versicolor</td>
<td>0</td>
<td>0.992</td>
<td>0.008</td>
</tr>
<tr>
<td>57</td>
<td>versicolor</td>
<td>versicolor</td>
<td>0</td>
<td>0.988</td>
<td>0.012</td>
</tr>
<tr>
<td>59</td>
<td>versicolor</td>
<td>versicolor</td>
<td>0</td>
<td>1.000</td>
<td>0.000</td>
</tr>
<tr>
<td>61</td>
<td>versicolor</td>
<td>versicolor</td>
<td>0</td>
<td>1.000</td>
<td>0.000</td>
</tr>
<tr>
<td>62</td>
<td>versicolor</td>
<td>versicolor</td>
<td>0</td>
<td>0.999</td>
<td>0.001</td>
</tr>
<tr>
<td>63</td>
<td>versicolor</td>
<td>versicolor</td>
<td>0</td>
<td>1.000</td>
<td>0.000</td>
</tr>
<tr>
<td>69</td>
<td>versicolor</td>
<td>versicolor</td>
<td>0</td>
<td>0.918</td>
<td>0.082</td>
</tr>
<tr>
<td>74</td>
<td>versicolor</td>
<td>versicolor</td>
<td>0</td>
<td>0.999</td>
<td>0.001</td>
</tr>
<tr>
<td>76</td>
<td>versicolor</td>
<td>versicolor</td>
<td>0</td>
<td>1.000</td>
<td>0.000</td>
</tr>
<tr>
<td>79</td>
<td>versicolor</td>
<td>versicolor</td>
<td>0</td>
<td>0.991</td>
<td>0.009</td>
</tr>
<tr>
<td>80</td>
<td>versicolor</td>
<td>versicolor</td>
<td>0</td>
<td>1.000</td>
<td>0.000</td>
</tr>
<tr>
<td>83</td>
<td>versicolor</td>
<td>versicolor</td>
<td>0</td>
<td>1.000</td>
<td>0.000</td>
</tr>
<tr>
<td>85</td>
<td>versicolor</td>
<td>versicolor</td>
<td>0</td>
<td>0.973</td>
<td>0.027</td>
</tr>
<tr>
<td>89</td>
<td>versicolor</td>
<td>versicolor</td>
<td>0</td>
<td>1.000</td>
<td>0.000</td>
</tr>
<tr>
<td>90</td>
<td>versicolor</td>
<td>versicolor</td>
<td>0</td>
<td>1.000</td>
<td>0.000</td>
</tr>
<tr>
<td>91</td>
<td>versicolor</td>
<td>versicolor</td>
<td>0</td>
<td>0.998</td>
<td>0.002</td>
</tr>
<tr>
<td>93</td>
<td>versicolor</td>
<td>versicolor</td>
<td>0</td>
<td>1.000</td>
<td>0.000</td>
</tr>
<tr>
<td>95</td>
<td>versicolor</td>
<td>versicolor</td>
<td>0</td>
<td>0.999</td>
<td>0.001</td>
</tr>
<tr>
<td>96</td>
<td>versicolor</td>
<td>versicolor</td>
<td>0</td>
<td>1.000</td>
<td>0.000</td>
</tr>
<tr>
<td>97</td>
<td>versicolor</td>
<td>versicolor</td>
<td>0</td>
<td>1.000</td>
<td>0.000</td>
</tr>
<tr>
<td>98</td>
<td>versicolor</td>
<td>versicolor</td>
<td>0</td>
<td>1.000</td>
<td>0.000</td>
</tr>
<tr>
<td>99</td>
<td>versicolor</td>
<td>versicolor</td>
<td>0</td>
<td>1.000</td>
<td>0.000</td>
</tr>
<tr>
<td>103</td>
<td>virginica</td>
<td>virginica</td>
<td>0</td>
<td>0.000</td>
<td>1.000</td>
</tr>
<tr>
<td>105</td>
<td>virginica</td>
<td>virginica</td>
<td>0</td>
<td>0.000</td>
<td>1.000</td>
</tr>
<tr>
<td>106</td>
<td>virginica</td>
<td>virginica</td>
<td>0</td>
<td>0.000</td>
<td>1.000</td>
</tr>
<tr>
<td>107</td>
<td>virginica</td>
<td>virginica</td>
<td>0</td>
<td>0.114</td>
<td>0.886</td>
</tr>
<tr>
<td>108</td>
<td>virginica</td>
<td>virginica</td>
<td>0</td>
<td>0.000</td>
<td>1.000</td>
</tr>
<tr>
<td>109</td>
<td>virginica</td>
<td>virginica</td>
<td>0</td>
<td>0.000</td>
<td>1.000</td>
</tr>
<tr>
<td>113</td>
<td>virginica</td>
<td>virginica</td>
<td>0</td>
<td>0.001</td>
<td>0.999</td>
</tr>
<tr>
<td>114</td>
<td>virginica</td>
<td>virginica</td>
<td>0</td>
<td>0.001</td>
<td>0.999</td>
</tr>
<tr>
<td>116</td>
<td>virginica</td>
<td>virginica</td>
<td>0</td>
<td>0.000</td>
<td>1.000</td>
</tr>
<tr>
<td>118</td>
<td>virginica</td>
<td>virginica</td>
<td>0</td>
<td>0.000</td>
<td>1.000</td>
</tr>
<tr>
<td>119</td>
<td>virginica</td>
<td>virginica</td>
<td>0</td>
<td>0.000</td>
<td>1.000</td>
</tr>
<tr>
<td>122</td>
<td>virginica</td>
<td>virginica</td>
<td>0</td>
<td>0.004</td>
<td>0.996</td>
</tr>
<tr>
<td>124</td>
<td>virginica</td>
<td>virginica</td>
<td>0</td>
<td>0.137</td>
<td>0.863</td>
</tr>
<tr>
<td>127</td>
<td>virginica</td>
<td>virginica</td>
<td>0</td>
<td>0.283</td>
<td>0.717</td>
</tr>
<tr>
<td>130</td>
<td>virginica</td>
<td>virginica</td>
<td>0</td>
<td>0.053</td>
<td>0.947</td>
</tr>
<tr>
<td>132</td>
<td>virginica</td>
<td>virginica</td>
<td>0</td>
<td>0.001</td>
<td>0.999</td>
</tr>
<tr>
<td>136</td>
<td>virginica</td>
<td>virginica</td>
<td>0</td>
<td>0.000</td>
<td>1.000</td>
</tr>
<tr>
<td>138</td>
<td>virginica</td>
<td>virginica</td>
<td>0</td>
<td>0.010</td>
<td>0.990</td>
</tr>
</tbody>
</table>
17.4 Example: Fisher’s Iris Data cross-validation

Assess the accuracy of the prediction
row = true Species, col = classified Species
pred.freq <- table(subset(iris, test == "test")$Species, pred.iris$class)
pred.freq
##
setosa versicolor virginica
setosa 25 0 0
versicolor 0 25 0
virginica 0 0 25
prop.table(pred.freq, 1) # proportions by row
##
setosa versicolor virginica
setosa 1 0 0
versicolor 0 1 0
virginica 0 0 1
proportion correct for each category
diag(prop.table(pred.freq, 1))
setosa versicolor virginica
1 1 1
total proportion correct
sum(diag(prop.table(pred.freq)))
[1] 1
total error rate
1 - sum(diag(prop.table(pred.freq)))
[1] 0

The classification rule based on the training set works well with the test data. Do not expect such nice results on all classification problems! Usually the error rate is slightly higher on the test data than on the training data.

It is important to recognize that statistically significant differences (MANOVA) among groups on linear discriminant function scores do not necessarily translate into accurate classification rules! (WHY?)

17.4.1 Stepwise variable selection for classification

Stepwise variable selection for classification can be performed using package klaR function stepclass() using any specified classification function. Classification performance is estimated by selected from one of Uschi’s classification performance measures.

The resulting model can be very sensitive to the starting model. Below, the first model starts full and ends full. The second model starts empty and ends after one variable is added. Note that running this repeatedly could result in slightly different models because the k-fold crossvalidation
partitions the data at random. The `formula` object gives the selected model.

```r
library(klaR)
# start with full model and do stepwise (direction = "backward")
step.iris.b <- stepclass(Species ~ Sepal.Length + Sepal.Width + Petal.Length + Petal.Width
, data = iris
, method = "lda"
, improvement = 0.01 # stop criterion: improvement less than 1%
  # default of 5% is too coarse
, direction = "backward")
## 'stepwise classification', using 10-fold cross-validated correctness rate of method lda'.
## 150 observations of 4 variables in 3 classes; direction: backward
## stop criterion: improvement less than 1%.
## correctness rate: 0.98; starting variables (4): Sepal.Length, Sepal.Width, Petal.Length, Petal.Width
##
## hr.elapsed min.elapsed sec.elapsed
## 0.00 0.00 0.32
plot(step.iris.b, main = "Start = full model, backward selection")
step.iris.b$formula
## Species ~ Sepal.Length + Sepal.Width + Petal.Length + Petal.Width
## <environment: 0x000000001015bee0>

# start with empty model and do stepwise (direction = "both")
step.iris.f <- stepclass(Species ~ Sepal.Length + Sepal.Width + Petal.Length + Petal.Width
, data = iris
, method = "lda"
, improvement = 0.01 # stop criterion: improvement less than 1%
  # default of 5% is too coarse
, direction = "forward")
## 'stepwise classification', using 10-fold cross-validated correctness rate of method lda'.
## 150 observations of 4 variables in 3 classes; direction: forward
## stop criterion: improvement less than 1%.
## correctness rate: 0.96; in: "Petal.Width"; variables (1): Petal.Width
##
## hr.elapsed min.elapsed sec.elapsed
## 0.00 0.00 0.39
plot(step.iris.f, main = "Start = empty model, forward selection")
step.iris.f$formula
## Species ~ Petal.Width
## <environment: 0x000000002c9ee4e8>
```
Given your selected model, you can then go on to fit your classification model by using the formula from the `stepclass` object.

```r
library(MASS)
lda.iris.step <- lda(step.iris.b$formula,
                      data = iris)
lda.iris.step
```

```r
## Call:
## lda(step.iris.b$formula, data = iris)
##
## ## Prior probabilities of groups:
## setosa versicolor virginica
## 0.3333 0.3333 0.3333
##
## ## Group means:
## Sepal.Length Sepal.Width Petal.Length Petal.Width
## setosa 5.006 3.428 1.462 0.246
## versicolor 5.936 2.770 4.260 1.326
## virginica 6.588 2.974 5.552 2.026
##
## ## Coefficients of linear discriminants:
## LD1  LD2
## Sepal.Length 0.8294 0.0241
## Sepal.Width 1.5345 2.1645
## Petal.Length -2.2012 -0.9319
## Petal.Width -2.8105 2.8392
##
## ## Proportion of trace:
## LD1  LD2
## 0.9912 0.0088
```

Note that if you have many variables, you may wish to use the alternate syntax below to specify your formula (see the help `?stepclass` for this example).
17.5 Example: Analysis of Admissions Data

The admissions officer of a business school has used an index of undergraduate GPA and management aptitude test scores (GMAT) to help decide which applicants should be admitted to graduate school. The data below gives the GPA and GMAT scores for recent applicants who are classified as admit (A), borderline (B), or not admit (N). An equal number of A, B, and N’s (roughly) were selected from their corresponding populations (Johnson and Wichern, 1988).

```
fn.data <- "http://statacumen.com/teach/ADA2/ADA2_notes_Ch17_business.dat"
business <- read.table(fn.data, header = TRUE)

## Scatterplot matrix
library(ggplot2)
suppressMessages(suppressWarnings(library(GGally)))
p <- ggpairs(business, colour = "admit")
print(p)

# detach GGally package after use so reshape2 works (old reshape for GGally conflicts)
detach("package:GGally", unload=TRUE)
detach("package:reshape", unload=TRUE)

library(ggplot2)
p <- ggplot(business, aes(x = gpa, y = gmat, shape = admit, colour = admit))
p <- p + geom_point(size = 6)
library(R.oo) # for ascii code lookup
p <- p + scale_shape_manual(values=charToInt(sort(unique(business$admit))))
p <- p + theme(legend.position="none") # remove legend with fill colours
print(p)
```
The officer wishes to use these data to develop a more quantitative (i.e., less subjective) approach to classify prospective students. Historically, about 20% of all applicants have been admitted initially, 10% are classified as borderline, and the remaining 70% are not admitted. The officer would like to keep these percentages roughly the same in the future.

This is a natural place to use discriminant analysis. Let us do a more careful analysis here, paying attention to underlying assumptions of normality and equal covariance matrices.

The GPA and GMAT distributions are reasonably symmetric. Although a few outliers are present, it does not appear that any transformation will eliminate the outliers and preserve the symmetry. Given that the outliers are not very extreme, I would analyze the data on this scale. Except for the outliers, the spreads (IQRs) are roughly equal across groups within GPA and GMAT. I will look carefully at the variance-covariance matrices later.

There is a fair amount of overlap between the borderline and other groups, but this should not be too surprising. Otherwise these applicants would not be borderline!

17.5.1 Further Analysis of the Admissions Data

The assumption of constant variance-covariance matrices is suspect. The GPA and GMAT variances are roughly constant across groups, but the correlation between GPA and GMAT varies greatly over groups.

```r
ej <- .147
B <- -0.331
N <- 0.507
Cor: 0.442
A: 0.147
B: -0.331
N: 0.507
```

```
# Covariance matrices by admit
by(business[,2:3], business$admit, cov)
## business$admit: A
## gpa gmat
## gpa 0.05867  2.858
## gmat 2.85760 6479.991
## ----------------------------------------------------
## business$admit: B
## gpa gmat
## gpa 0.05423 -4.878
```
Assuming equal variance-covariance matrices, both GPA and GMAT are important for discriminating among entrance groups. This is consistent with the original data plots.
library(MASS)
lda.business <- lda(admit ~ gpa + gmat,
data = business)
lda.business
Call:
lda(admit ~ gpa + gmat, data = business)
##
Prior probabilities of groups:
A B N
0.3596 0.3483 0.2921
##
Group means:
gpa gmat
A 3.322 554.4
B 3.005 454.2
N 2.400 443.7
##
Coefficients of linear discriminants:
LD1 LD2
gpa -3.977913 -1.48346
gmat -0.003058 0.01292
##
Proportion of trace:
LD1 LD2
0.9473 0.0527

The linear discriminant functions that best classify the admit are

LD1 = \(-3.978\) gpa + \(-0.0031\) gmat
LD2 = \(-1.483\) gpa + \(0.0129\) gmat,

interpreted as a weighted average of the scores and a contrast of the scores.

The plots of the lda object shows the data on the LD scale.

plot(lda.business, dimen = 1)
plot(lda.business, dimen = 2, col = as.numeric(business$admit))
pairs(lda.business, col = as.numeric(business$admit))
CV = TRUE does jackknife (leave-one-out) crossvalidation
lda.business.cv <- lda(admit ~ gpa + gmat
, data = business, CV = TRUE)

Create a table of classification and posterior probabilities for each observation
classify.business <- data.frame(admit = business$admit
, class = lda.business.cv$class
, error = ""
, round(lda.business.cv$posterior,3))
colnames(classify.business) <- c("admit", "class", "error"
, paste("post", colnames(lda.business.cv$posterior), sep=""))

error column
classify.business$error <- as.character(classify.business$error)
classify.agree <- as.character(as.numeric(business$admit)
- as.numeric(lda.business.cv$class))
classify.business$error[!(classify.agree == 0)] <- classify.agree[!(classify.agree == 0)]

The misclassification error within the training set is reasonably low, given the overlap between
the B group and the others, and never a misclassification between A and N.

print table
#classify.business

Assess the accuracy of the prediction
row = true admit, col = classified admit
pred.freq <- table(business$admit, lda.business.cv$class)
pred.freq
##
A B N
A 26 6 0
B 3 25 3
N 0 3 23

prop.table(pred.freq, 1) # proportions by row
17.5.2 Classification Using Unequal Prior Probabilities

A new twist to this problem is that we have prior information on the relative sizes of the populations. Historically 20% of applicants are admitted, 10% are borderline, and 70% are not admitted. This prior information is incorporated into the classification rule by using a `prior` option with `lda()`. The prior probabilities are assumed to be equal when this statement is omitted. The classification rule for unequal prior probabilities uses both the M-distance and the prior probability for making decisions, as outlined below.

When the prior probabilities are unequal, classification is based on the **generalized distance** to group j:

$$D^2_j(X) = (X - \bar{X}_j)'S^{-1}(X - \bar{X}_j) - 2 \log(PRIOR_j),$$

or on the estimated posterior probability of membership in group j:

$$Pr(j|X) = \frac{\exp\{-0.5D^2_j(X)\}}{\sum_k \exp\{-0.5D^2_k(X)\}}.$$

Here S is the pooled covariance matrix, and $\log(PRIOR_j)$ is the (natural) log of the prior probability of being in group j. As before, you classify observation X into the group that it is closest to in terms of generalized distance, or equivalently, into the group with the maximum posterior probability.

Note that $-2\log(PRIOR_j)$ exceeds zero, and is extremely large when $PRIOR_j$ is near zero. The generalized distance is the M-distance plus a penalty term that is large when the prior probability for a given group is small. If the prior probabilities are equal, the penalty terms are equal so the classification rule depends only on the M-distance.

The penalty makes it harder (relative to equal probabilities) to classify into a low probability group, and easier to classify into high probability groups. In the admissions data, an observation has to be very close to the B or A groups to not be classified as N.

Note that in the analysis below, we make the tenuous assumption that the population covariance matrices are equal. We also have 6 new observations that we wish to classify. These observations are entered as a test data set with missing class levels.
new observations to classify
business.test <- read.table(text = "
admit gpa gmat
NA 2.7 630
NA 3.3 450
NA 3.4 540
NA 2.8 420
NA 3.5 340
NA 3.0 500
",
header = TRUE)

With priors, the LDs are different.

library(MASS)
lda.business <- lda(admit ~ gpa + gmat,
 , prior = c(0.2, 0.1, 0.7)
 , data = business)

lda.business
Call:
lda(admit ~ gpa + gmat, data = business, prior = c(0.2, 0.1, 0.7))
##
Prior probabilities of groups:
A B N
0.2 0.1 0.7
##
Group means:
gpa gmat
A 3.322 554.4
B 3.005 454.2
N 2.400 443.7
##
Coefficients of linear discriminants:
LD1 LD2
gpa -4.014778 -1.381
gmat -0.002724 0.013
##
Proportion of trace:
LD1 LD2
0.9808 0.0192

About 1/2 of the borderlines in the calibration set are misclassified. This is due to the overlap of the B group with the other 2 groups, but also reflects the low prior probability for the borderline group. The classification rule requires strong evidence that an observation is borderline before it can be classified as such.

CV = TRUE does jackknife (leave-one-out) crossvalidation
lda.business.cv <- lda(admit ~ gpa + gmat,
 , prior = c(0.2, 0.1, 0.7)
 , data = business, CV = TRUE)

Create a table of classification and posterior probabilities for each observation
classify.business <- data.frame(admit = business$admit,
 , class = lda.business.cv$class
 , error = ""
 , round(lda.business.cv$posterior,3))
colnames(classify.business) <- c("admit", "class", "error",
 paste("post", colnames(lda.business.cv$posterior), sep=""))

error column
classify.business$error <- as.character(classify.business$error)
classify.agree <- as.character(as.numeric(business$admit) - as.numeric(lda.business.cv$class))
classify.business$error[!(classify.agree == 0)] <- classify.agree[!(classify.agree == 0)]

print table, errors only
classify.business[!(classify.business$error == ""),]
admit class error postA postB postN
29 A B -1 0.027 0.557 0.416
30 A N -2 0.114 0.383 0.503
31 A B -1 0.045 0.595 0.360
35 N A 2 0.442 0.273 0.285
36 N B 1 0.033 0.516 0.451
59 B N -1 0.001 0.044 0.955
60 B N -1 0.002 0.016 0.982
61 B N -1 0.126 0.329 0.545
66 B A 1 0.747 0.253 0.000
67 B N -1 0.161 0.412 0.428
68 B N -1 0.037 0.277 0.686
71 B N -1 0.059 0.227 0.714
72 B N -1 0.017 0.089 0.894
74 B N -1 0.070 0.129 0.801
75 B N -1 0.020 0.146 0.834
82 B N -1 0.107 0.344 0.549
85 B A 1 0.758 0.233 0.009
86 B A 1 0.979 0.021 0.001
87 B A 1 0.627 0.365 0.008
88 B A 1 0.633 0.367 0.000

Assess the accuracy of the prediction
row = true admit, col = classified admit
pred.freq <- table(business$admit, lda.business.cv$class)
pred.freq
##
A B N
A 29 2 1
B 5 16 10
N 1 1 24

prop.table(pred.freq, 1) # proportions by row
##
A B N
A 0.90625 0.06250 0.03125
B 0.16129 0.51613 0.32258
N 0.03846 0.03846 0.92308

proportion correct for each category
diag(prop.table(pred.freq, 1))
##
A B N
0.9062 0.5161 0.9231
The test data cases were entered with missing group IDs. The classification table compares the group IDs, which are unknown, to the ID for the group into which an observation is classified. These two labels differ, so all the test data cases are identified as misclassified. Do not be confused by this! Just focus on the classification for each case, and ignore the other summaries.

17.5.3 Classification With Unequal Covariance Matrices, QDA

The assumption of multivariate normal populations with equal covariance matrices is often unrealistic. Although there are no widely available procedures for MANOVA or stepwise variable selection in discriminant analysis that relax these assumptions, there are a variety of classification rules that weaken one or both of these assumptions. The `qda()` function is a quadratic discriminant classification rule that assumes normality but allows unequal covariance matrices.

The quadratic discriminant classification rule is based on the generalized distance to group j:

$$D_j^2(X) = (X - \bar{X}_j)'S_j^{-1}(X - \bar{X}_j) - 2\log(\text{PRIOR}_j) + \log|S_j|,$$
or equivalently, the posterior probability of membership in group j:

$$
Pr(j|X) = \frac{\exp\{-0.5D_j^2(X)\}}{\sum_k \exp\{-0.5D_k^2(X)\}}.
$$

Here S_j is the sample covariance matrix from group j and $\log|S_j|$ is the log of the determinant of this covariance matrix. The determinant penalty term is large for groups having large variability. The rule is not directly tied to linear discriminant function variables, so interpretation and insight into this method is less straightforward.

There is evidence that quadratic discrimination does not improve misclassification rates in many problems with small to modest sample sizes, in part, because the quadratic rule requires an estimate of the covariance matrix for each population. A modest to large number of observations is needed to accurately estimate variances and correlations. I often compute the linear and quadratic rules, but use the linear discriminant analysis unless the quadratic rule noticeably reduces the misclassification rate.

Recall that the GPA and GMAT sample variances are roughly constant across admission groups, but the correlation between GPA and GMAT varies widely across groups.

The quadratic rule does not classify the training data noticeably better than the linear discriminant analysis. The individuals in the test data have the same classifications under both approaches. Assuming that the optimistic error rates for the two rules were “equally optimistic”, I would be satisfied with the standard linear discriminant analysis, and would summarize my analysis based on this approach. Additional data is needed to decide whether the quadratic rule might help reduce the misclassification rates.

```r
# classification of observations based on classification methods
# (e.g. qda, qda) for every combination of two variables.
library(klaR)
partimat(admit ~ gmat + gpa,
    data = business,
    plot.matrix = FALSE,
    method = "lda", main = "LDA partition")
partimat(admit ~ gmat + gpa,
    data = business,
    plot.matrix = FALSE,
    method = "qda", main = "QDA partition")
```
library(MASS)
qda.business <- qda(admit ~ gpa + gmat,
 , prior = c(0.2, 0.1, 0.7),
 , data = business)
qda.business
Call:
qda(admit ~ gpa + gmat, data = business, prior = c(0.2, 0.1, 0.7))
#
Prior probabilities of groups:
A B N
0.2 0.1 0.7
#
Group means:
gpa gmat
A 3.322 554.4
B 3.005 454.2
N 2.400 443.7

CV = TRUE does jackknife (leave-one-out) crossvalidation
qda.business.cv <- qda(admit ~ gpa + gmat,
 , prior = c(0.2, 0.1, 0.7),
 , data = business, CV = TRUE)

Create a table of classification and posterior probabilities for each observation
classify.business <- data.frame(admit = business$admit,
 , class = qda.business.cv$class,
 , error = "",
 , round(qda.business.cv$posterior, 3))
colnames(classify.business) <- c("admit", "class", "error",
 , paste("post", colnames(qda.business.cv$posterior), sep=""))

error column
classify.business$error <- as.character(classify.business$error)
classify.agree <- as.character(as.numeric(business$admit)
 - as.numeric(qda.business.cv$class))
classify.business$error[!(classify.agree == 0)] <- classify.agree[!(classify.agree == 0)]

print table
classify.business

Assess the accuracy of the prediction
row = true admit, col = classified admit
pred.freq <- table(business$admit, qda.business.cv$class)
pred.freq
##
A B N
A 27 3 2
B 5 17 9
N 0 1 25
prop.table(pred.freq, 1) # proportions by row
##
A B N
A 0.84375 0.09375 0.06250
B 0.16129 0.54839 0.29032
N 0.00000 0.03846 0.96154

proportion correct for each category
diag(prop.table(pred.freq, 1))
##
A B N
0.8438 0.5484 0.9615
total proportion correct
sum(diag(prop.table(pred.freq)))
[1] 0.7753
total error rate
1 - sum(diag(prop.table(pred.freq)))
[1] 0.2247

predict the test data from the training data LDFs
pred.business <- predict(qda.business, newdata = business.test)

Create a table of classification and posterior probabilities for each observation
classify.business.test <- data.frame(admit = business.test$admit
 , class = pred.business$class
 , error = ""
 , round(pred.business$posterior,3))
colnames(classify.business.test) <- c("admit", "class"#, "error"
 , paste("post", colnames(pred.business$posterior), sep=""))

error column
classify.business.test$error <- as.character(classify.business.test$error)
classify.agree <- as.character(as.numeric(business.test$admit)
- as.numeric(pred.business$class))
classify.business.test$error[!(classify.agree == 0)] <- classify.agree[!(classify.agree == 0)]
print table
classify.business.test

admit class postA postB postN
1 NA N 0.043 0.038 0.919
2 NA A 0.597 0.402 0.000
3 NA A 0.978 0.022 0.000
4 NA N 0.051 0.423 0.526
5 NA B 0.292 0.708 0.000
6 NA B 0.363 0.513 0.123