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Given data on a response variable Y and k predictors or binary variables

X1, X2, . . . , Xk, we wish to develop a regression model to predict Y . Assuming

that the collection of variables is measured on the correct scale, and that the

candidate list of effects includes all the important predictors or binary variables,

the most general model is

Y = β0 + β1X1 + · · · + βkXk + ε.

In most problems one or more of the effects can be eliminated from the full

model without loss of information. We want to identify the important effects,

or equivalently, eliminate the effects that are not very useful for explaining the

variation in Y .

We will study several automated non-hierarchical methods for model selec-

tion. Given a specific criterion for selecting a model, a method gives the best

model. Before applying these methods, plot Y against each predictor to see

whether transformations are needed. Although transformations of binary vari-

ables are not necessary, side-by-side boxplots of the response across the levels

of a factor give useful information on the predictive ability of the factor. If a

transformation of Xi is suggested, include the transformation along with the

original Xi in the candidate list. Note that we can transform the predictors

differently, for example, log(X1) and
√
X2. However, if several transformations

are suggested for the response, then one should consider doing one analysis for

each suggested response scale before deciding on the final scale.

Different criteria for selecting models lead to different “best models.” Given

a collection of candidates for the best model, we make a choice of model on the

basis of (1) a direct comparison of models, if possible (2) examination of model

adequacy (residuals, influence, etc.) (3) simplicity — all things being equal,

simpler models are preferred, and (4) scientific plausibility.

I view the various criteria as a means to generate interesting models for

further consideration. I do not take any of them literally as best.

You should recognize that automated model selection methods should not

replace scientific theory when building models! Automated methods are best
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310 Ch 10: Automated Model Selection for Multiple Regression

suited for exploratory analyses, in situations where the researcher has little

scientific information as a guide.

AIC/BIC were discussed in Section 3.2.1 for stepwise procedures and were

used in examples in Chapter 9. In those examples, I included the corresponding

F -tests in the ANOVA table as a criterion for dropping variables from a model.

The next few sections cover these methods in more detail, then discuss other

criteria and selections strategies, finishing with a few examples.
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10.1: Forward Selection 311

10.1 Forward Selection

In forward selection we add variables to the model one at a time. The steps in

the procedure are:

1. Find the variable in the candidate list with the largest correlation (ignor-

ing the sign) with Y . This variable gives a simple linear regression model

with the largest R2. Suppose this is X1. Then fit the model

Y = β0 + β1X1 + ε (10.1)

and test H0 : β1 = 0. If we reject H0, go to step 2. Otherwise stop and

conclude that no variables are important. A t-test can be used here, or

the equivalent ANOVA F -test.

2. Find the remaining variable which when added to model (10.1) increases

R2 the most (or equivalently decreases Residual SS the most). Suppose

this is X2. Fit the model

Y = β0 + β1X1 + β2X2 + ε (10.2)

and test H0 : β2 = 0. If we do not reject H0, stop and use model (10.1)

to predict Y . If we reject H0, replace model (10.1) with (10.2) and repeat

step 2 sequentially until no further variables are added to the model.

In forward selection we sequentially isolate the most important effect left

in the pool, and check whether it is needed in the model. If it is needed we

continue the process. Otherwise we stop.

The F -test default level for the tests on the individual effects is sometimes

set as high as α = 0.50 (SAS default). This may seem needlessly high. However,

in many problems certain variables may be important only in the presence of

other variables. If we force the forward selection to test at standard levels then

the process will never get “going” when none of the variables is important on

its own.
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312 Ch 10: Automated Model Selection for Multiple Regression

10.2 Backward Elimination

The backward elimination procedure (discussed earlier this semester) deletes

unimportant variables, one at a time, starting from the full model. The steps

is the procedure are:

1. Fit the full model

Y = β0 + β1X1 + · · · + βkXk + ε. (10.3)

2. Find the variable which when omitted from the full model (10.3) reduces

R2 the least, or equivalently, increases the Residual SS the least. This

is the variable that gives the largest p-value for testing an individual

regression coefficient H0 : βj = 0 for j > 0. Suppose this variable is Xk.

If you reject H0, stop and conclude that the full model is best. If you do

not reject H0, delete Xk from the full model, giving the new full model

Y = β0 + β1X1 + · · · + βk−1Xk−1 + ε

to replace (10.3). Repeat steps 1 and 2 sequentially until no further

variables can be deleted.

In backward elimination we isolate the least important effect left in the

model, and check whether it is important. If not, delete it and repeat the

process. Otherwise, stop. The default test level on the individual variables is

sometimes set at α = 0.10 (SAS default).
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10.3 Stepwise Regression

Stepwise regression combines features of forward selection and backward elim-

ination. A deficiency of forward selection is that variables can not be omitted

from the model once they are selected. This is problematic because many vari-

ables that are initially important are not important once several other variables

are included in the model. In stepwise regression, we add variables to the model

as in forward regression, but include a backward elimination step every time a

new variable is added. That is, every time we add a variable to the model we

ask whether any of the variables added earlier can be omitted. If variables can

be omitted, they are placed back into the candidate pool for consideration at

the next step of the process. The process continues until no additional variables

can be added, and none of the variables in the model can be excluded. The

procedure can start from an empty model, a full model, or an intermediate

model, depending on the software.

The p-values used for including and excluding variables in stepwise regres-

sion are usually taken to be equal (why is this reasonable?), and sometimes set

at α = 0.15 (SAS default).
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314 Ch 10: Automated Model Selection for Multiple Regression

10.3.1 Example: Indian systolic blood pressure

We revisit the example first introduced in Chapter 2. Anthropologists con-

ducted a study to determine the long-term effects of an environmental change

on systolic blood pressure. They measured the blood pressure and several other

characteristics of 39 Indians who migrated from a very primitive environment

high in the Andes into the mainstream of Peruvian society at a lower altitude.

All of the Indians were males at least 21 years of age, and were born at a high

altitude.

Let us illustrate the three model selection methods to build a regression

model, using systolic blood pressure (sysbp) as the response, and seven candi-

date predictors: wt = weight in kilos; ht = height in mm; chin = chin skin fold

in mm; fore = forearm skin fold in mm; calf = calf skin fold in mm; pulse

= pulse rate-beats/min, and yrage = fraction, which is the proportion of each

individual’s lifetime spent in the new environment.

Below I generate simple summary statistics and plots. The plots do not

suggest any apparent transformations of the response or the predictors, so we

will analyze the data using the given scales.
library(tidyverse)

# load ada functions

source("ada_functions.R")

#### Example: Indian

dat_indian <-

read_table2("http://statacumen.com/teach/ADA2/notes/ADA2_notes_Ch02_indian.dat") %>%

mutate(

# Create the "fraction of their life" variable

# yrage = years since migration divided by age

yrage = yrmig / age

)

## Parsed with column specification:

## cols(

## id = col double(),

## age = col double(),

## yrmig = col double(),

## wt = col double(),

## ht = col double(),

## chin = col double(),
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10.3: Stepwise Regression 315

## fore = col double(),

## calf = col double(),

## pulse = col double(),

## sysbp = col double(),

## diabp = col double()

## )

str(dat_indian)

## Classes 'spec_tbl_df', 'tbl_df', 'tbl' and 'data.frame': 39 obs. of 12 variables:

## $ id : num 1 2 3 4 5 6 7 8 9 10 ...

## $ age : num 21 22 24 24 25 27 28 28 31 32 ...

## $ yrmig: num 1 6 5 1 1 19 5 25 6 13 ...

## $ wt : num 71 56.5 56 61 65 62 53 53 65 57 ...

## $ ht : num 1629 1569 1561 1619 1566 ...

## $ chin : num 8 3.3 3.3 3.7 9 3 7.3 3.7 10.3 5.7 ...

## $ fore : num 7 5 1.3 3 12.7 3.3 4.7 4.3 9 4 ...

## $ calf : num 12.7 8 4.3 4.3 20.7 5.7 8 0 10 6 ...

## $ pulse: num 88 64 68 52 72 72 64 80 76 60 ...

## $ sysbp: num 170 120 125 148 140 106 120 108 124 134 ...

## $ diabp: num 76 60 75 120 78 72 76 62 70 64 ...

## $ yrage: num 0.0476 0.2727 0.2083 0.0417 0.04 ...

# Description of variables

# id = individual id

# age = age in years yrmig = years since migration

# wt = weight in kilos ht = height in mm

# chin = chin skin fold in mm fore = forearm skin fold in mm

# calf = calf skin fold in mm pulse = pulse rate-beats/min

# sysbp = systolic bp diabp = diastolic bp

# correlation matrix and associated p-values testing "H0: rho == 0"

#library(Hmisc)

cor_i <-

dat_indian %>%

select(

sysbp, wt, ht, chin, fore, calf, pulse, yrage

) %>%

as.matrix() %>%

Hmisc::rcorr()

# print only correlations with the response to 3 significant digits (first row)

cor_i$r[1, ] %>% signif(3)

## sysbp wt ht chin fore calf pulse yrage

## 1.000 0.521 0.219 0.170 0.272 0.251 0.133 -0.276
# scatterplots
library(ggplot2)
p <- list()
p[[1]] <- ggplot(dat_indian, aes(x = wt , y = sysbp)) + geom_point(size=2)
p[[2]] <- ggplot(dat_indian, aes(x = ht , y = sysbp)) + geom_point(size=2)
p[[3]] <- ggplot(dat_indian, aes(x = chin , y = sysbp)) + geom_point(size=2)
p[[4]] <- ggplot(dat_indian, aes(x = fore , y = sysbp)) + geom_point(size=2)
p[[5]] <- ggplot(dat_indian, aes(x = calf , y = sysbp)) + geom_point(size=2)
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316 Ch 10: Automated Model Selection for Multiple Regression

p[[6]] <- ggplot(dat_indian, aes(x = pulse, y = sysbp)) + geom_point(size=2)
p[[7]] <- ggplot(dat_indian, aes(x = yrage, y = sysbp)) + geom_point(size=2)

library(gridExtra)
grid.arrange(grobs = list(p[[1]], p[[2]], p[[3]], p[[4]], p[[5]], p[[6]], p[[7]])

, ncol = 3
, top = "Scatterplots of response sysbp with each predictor variable"
)
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10.3: Stepwise Regression 317

10.3.2 Stepwise selection with Indian systolic blood
pressure

The step() function provides the forward, backward, and stepwise procedures

based on AIC or BIC, and provides corresponding F -tests.
## step() function specification

## The first two arguments of step(object, scope, ...) are

# object = a fitted model object.

# scope = a formula giving the terms to be considered for adding or dropping

## default is AIC

# for BIC, include k = log(nrow( [data.frame name] ))

# test="F" includes additional information for parameter estimate tests

# that we're familiar with

Forward selection output The output for the forward selection method

is below. BIC is our selection criterion, though similar decisions are made as if

using F -tests.

Step 1 Variable wt =weight is entered first because it has the highest

correlation with sysbp =sys bp. The corresponding F -value is the square of

the t-statistic for testing the significance of the weight predictor in this simple

linear regression model.

Step 2 Adding yrage =fraction to the simple linear regression model

with weight as a predictor increases R2 the most, or equivalently, decreases

Residual SS (RSS) the most.

Step 3 The last table has “<none>” as the first row indicating that

the current model (no change to current model) is the best under the current

selection criterion.
# start with an empty model (just the intercept 1)

lm_indian_empty <-

lm(

sysbp ~ 1

, data = dat_indian

)
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318 Ch 10: Automated Model Selection for Multiple Regression

# Forward selection, BIC with F-tests

lm_indian_forward_red_BIC <-

step(

lm_indian_empty

, sysbp ~ wt + ht + chin + fore + calf + pulse + yrage

, direction = "forward"

, test = "F"

, k = log(nrow(dat_indian))

)

## Start: AIC=203.38

## sysbp ~ 1

##

## Df Sum of Sq RSS AIC F value Pr(>F)

## + wt 1 1775.38 4756.1 194.67 13.8117 0.0006654 ***

## <none> 6531.4 203.38

## + yrage 1 498.06 6033.4 203.95 3.0544 0.0888139 .

## + fore 1 484.22 6047.2 204.03 2.9627 0.0935587 .

## + calf 1 410.80 6120.6 204.51 2.4833 0.1235725

## + ht 1 313.58 6217.9 205.12 1.8660 0.1801796

## + chin 1 189.19 6342.2 205.89 1.1037 0.3002710

## + pulse 1 114.77 6416.7 206.35 0.6618 0.4211339

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Step: AIC=194.67

## sysbp ~ wt

##

## Df Sum of Sq RSS AIC F value Pr(>F)

## + yrage 1 1314.69 3441.4 185.71 13.7530 0.0006991 ***

## <none> 4756.1 194.67

## + chin 1 143.63 4612.4 197.14 1.1210 0.2967490

## + calf 1 16.67 4739.4 198.19 0.1267 0.7240063

## + pulse 1 6.11 4749.9 198.28 0.0463 0.8308792

## + ht 1 2.01 4754.0 198.31 0.0152 0.9024460

## + fore 1 1.16 4754.9 198.32 0.0088 0.9257371

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Step: AIC=185.71

## sysbp ~ wt + yrage

##

## Df Sum of Sq RSS AIC F value Pr(>F)

## <none> 3441.4 185.71

## + chin 1 197.372 3244.0 187.07 2.1295 0.1534

## + fore 1 50.548 3390.8 188.80 0.5218 0.4749

## + calf 1 30.218 3411.1 189.03 0.3101 0.5812

## + ht 1 23.738 3417.6 189.11 0.2431 0.6251

## + pulse 1 5.882 3435.5 189.31 0.0599 0.8081
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10.3: Stepwise Regression 319

summary(lm_indian_forward_red_BIC)

##

## Call:

## lm(formula = sysbp ~ wt + yrage, data = dat_indian)

##

## Residuals:

## Min 1Q Median 3Q Max

## -18.4330 -7.3070 0.8963 5.7275 23.9819

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 60.8959 14.2809 4.264 0.000138 ***

## wt 1.2169 0.2337 5.207 7.97e-06 ***

## yrage -26.7672 7.2178 -3.708 0.000699 ***

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Residual standard error: 9.777 on 36 degrees of freedom

## Multiple R-squared: 0.4731,Adjusted R-squared: 0.4438

## F-statistic: 16.16 on 2 and 36 DF, p-value: 9.795e-06
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320 Ch 10: Automated Model Selection for Multiple Regression

Backward selection output The output for the backward elimination

method is below. BIC is our selection criterion, though similar decisions are

made as if using F -tests.

Step 0 The full model has 7 predictors so REG df = 7. The F -test in the

full model ANOVA table (F = 4.91 with p-value=0.0008) tests the hypothesis

that the regression coefficient for each predictor variable is zero. This test is

highly significant, indicating that one or more of the predictors is important in

the model.

The t-value column gives the t-statistic for testing the significance of the

individual predictors in the full model conditional on the other variables being

in the model.
# start with a full model

lm_indian_full <-

lm(

sysbp ~ wt + ht + chin + fore + calf + pulse + yrage

, data = dat_indian

)

summary(lm_indian_full)

##

## Call:

## lm(formula = sysbp ~ wt + ht + chin + fore + calf + pulse + yrage,

## data = dat_indian)

##

## Residuals:

## Min 1Q Median 3Q Max

## -14.3993 -5.7916 -0.6907 6.9453 23.5771

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 106.45766 53.91303 1.975 0.057277 .

## wt 1.71095 0.38659 4.426 0.000111 ***

## ht -0.04533 0.03945 -1.149 0.259329

## chin -1.15725 0.84612 -1.368 0.181239

## fore -0.70183 1.34986 -0.520 0.606806

## calf 0.10357 0.61170 0.169 0.866643

## pulse 0.07485 0.19570 0.383 0.704699

## yrage -29.31810 7.86839 -3.726 0.000777 ***

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Residual standard error: 9.994 on 31 degrees of freedom
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10.3: Stepwise Regression 321

## Multiple R-squared: 0.5259,Adjusted R-squared: 0.4189

## F-statistic: 4.913 on 7 and 31 DF, p-value: 0.0008079

The least important variable in the full model, as judged by the p-value,

is calf =calf skin fold. This variable, upon omission, reduces R2 the least,

or equivalently, increases the Residual SS the least. So calf is the first to be

omitted from the model.

Step 1 After deleting calf , the six predictor model is fitted. At least one

of the predictors left is important, as judged by the overall F -test p-value. The

least important predictor left is pulse =pulse rate.
# Backward selection, BIC with F-tests

lm_indian_backward_red_BIC <-

step(

lm_indian_full

, direction = "backward"

, test = "F"

, k = log(nrow(dat_indian))

)

## Start: AIC=199.91

## sysbp ~ wt + ht + chin + fore + calf + pulse + yrage

##

## Df Sum of Sq RSS AIC F value Pr(>F)

## - calf 1 2.86 3099.3 196.28 0.0287 0.8666427

## - pulse 1 14.61 3111.1 196.43 0.1463 0.7046990

## - fore 1 27.00 3123.4 196.59 0.2703 0.6068061

## - ht 1 131.88 3228.3 197.88 1.3203 0.2593289

## - chin 1 186.85 3283.3 198.53 1.8706 0.1812390

## <none> 3096.4 199.91

## - yrage 1 1386.76 4483.2 210.68 13.8835 0.0007773 ***

## - wt 1 1956.49 5052.9 215.35 19.5874 0.0001105 ***

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Step: AIC=196.28

## sysbp ~ wt + ht + chin + fore + pulse + yrage

##

## Df Sum of Sq RSS AIC F value Pr(>F)

## - pulse 1 13.34 3112.6 192.79 0.1377 0.7130185

## - fore 1 26.99 3126.3 192.96 0.2787 0.6011969

## - ht 1 129.56 3228.9 194.22 1.3377 0.2560083

## - chin 1 184.03 3283.3 194.87 1.9000 0.1776352

## <none> 3099.3 196.28

## - yrage 1 1448.00 4547.3 207.57 14.9504 0.0005087 ***

UNM, Stat 428/528 ADA2



322 Ch 10: Automated Model Selection for Multiple Regression

## - wt 1 1953.77 5053.1 211.69 20.1724 8.655e-05 ***

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Step: AIC=192.79

## sysbp ~ wt + ht + chin + fore + yrage

##

## Df Sum of Sq RSS AIC F value Pr(>F)

## - fore 1 17.78 3130.4 189.35 0.1885 0.667013

## - ht 1 131.12 3243.8 190.73 1.3902 0.246810

## - chin 1 198.30 3310.9 191.53 2.1023 0.156514

## <none> 3112.6 192.79

## - yrage 1 1450.02 4562.7 204.04 15.3730 0.000421 ***

## - wt 1 1983.51 5096.2 208.35 21.0290 6.219e-05 ***

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Step: AIC=189.35

## sysbp ~ wt + ht + chin + yrage

##

## Df Sum of Sq RSS AIC F value Pr(>F)

## - ht 1 113.57 3244.0 187.07 1.2334 0.2745301

## - chin 1 287.20 3417.6 189.11 3.1193 0.0863479 .

## <none> 3130.4 189.35

## - yrage 1 1445.52 4575.9 200.49 15.7000 0.0003607 ***

## - wt 1 2263.64 5394.1 206.90 24.5857 1.945e-05 ***

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Step: AIC=187.07

## sysbp ~ wt + chin + yrage

##

## Df Sum of Sq RSS AIC F value Pr(>F)

## - chin 1 197.37 3441.4 185.71 2.1295 0.1534065

## <none> 3244.0 187.07

## - yrage 1 1368.44 4612.4 197.14 14.7643 0.0004912 ***

## - wt 1 2515.33 5759.3 205.80 27.1384 8.512e-06 ***

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Step: AIC=185.71

## sysbp ~ wt + yrage

##

## Df Sum of Sq RSS AIC F value Pr(>F)

## <none> 3441.4 185.71

## - yrage 1 1314.7 4756.1 194.67 13.753 0.0006991 ***

## - wt 1 2592.0 6033.4 203.95 27.115 7.966e-06 ***

## ---
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## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

summary(lm_indian_backward_red_BIC)

##

## Call:

## lm(formula = sysbp ~ wt + yrage, data = dat_indian)

##

## Residuals:

## Min 1Q Median 3Q Max

## -18.4330 -7.3070 0.8963 5.7275 23.9819

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 60.8959 14.2809 4.264 0.000138 ***

## wt 1.2169 0.2337 5.207 7.97e-06 ***

## yrage -26.7672 7.2178 -3.708 0.000699 ***

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Residual standard error: 9.777 on 36 degrees of freedom

## Multiple R-squared: 0.4731,Adjusted R-squared: 0.4438

## F-statistic: 16.16 on 2 and 36 DF, p-value: 9.795e-06

In the final table we are unable to drop yrage or wt from the model.
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Stepwise selection output The output for the stepwise selection is given

below.

Variables are listed in the output tables in order that best improves the

AIC/BIC criterion. In the stepwise case, BIC will decrease (improve) by con-

sidering variables to drop or add (indicated in the first column by − and +).

Rather than printing a small table at each step of the step() procedure, we use

lm.XXX$anova to print a summary of the drop/add choices made.
# Stepwise (both) selection, BIC with F-tests, starting with intermediate model

# (this is a purposefully chosen "opposite" model,

# from the forward and backward methods this model

# includes all the variables dropped and none kept)

lm_indian_intermediate <-

lm(

sysbp ~ ht + fore + calf + pulse

, data = dat_indian

)

# option: trace = 0 does not print each step of the selection

lm_indian_both_red_BIC <-

step(

lm_indian_intermediate

, sysbp ~ wt + ht + chin + fore + calf + pulse + yrage

, direction = "both"

, test = "F"

, k = log(nrow(dat_indian))

, trace = 0

)

# the anova object provides a summary of the selection steps in order

lm_indian_both_red_BIC$anova

## Step Df Deviance Resid. Df Resid. Dev AIC

## 1 NA NA 34 5651.131 212.3837

## 2 - pulse 1 2.874432 35 5654.005 208.7400

## 3 - calf 1 21.843631 36 5675.849 205.2268

## 4 + wt -1 925.198114 35 4750.651 201.9508

## 5 + yrage -1 1439.707117 34 3310.944 191.5335

## 6 - ht 1 79.870793 35 3390.815 188.7995

## 7 - fore 1 50.548149 36 3441.363 185.7131

summary(lm_indian_both_red_BIC)

##

## Call:

## lm(formula = sysbp ~ wt + yrage, data = dat_indian)

##

## Residuals:

## Min 1Q Median 3Q Max

## -18.4330 -7.3070 0.8963 5.7275 23.9819
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##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 60.8959 14.2809 4.264 0.000138 ***

## wt 1.2169 0.2337 5.207 7.97e-06 ***

## yrage -26.7672 7.2178 -3.708 0.000699 ***

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Residual standard error: 9.777 on 36 degrees of freedom

## Multiple R-squared: 0.4731,Adjusted R-squared: 0.4438

## F-statistic: 16.16 on 2 and 36 DF, p-value: 9.795e-06

Summary of three section methods

All three methods using BIC choose the same final model, sysbp = β0 +

β1 wt + β2 yrage. Using the AIC criterion, you will find different results.
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10.4 Other Model Selection Procedures

10.4.1 R2 Criterion

R2 is the proportion of variation explained by the model over the grand mean,

and we wish to maximize this. A substantial increase in R2 is usually ob-

served when an “important” effect is added to a regression model. With the

R2 criterion, variables are added to the model until further additions give in-

consequential increases in R2. The R2 criterion is not well-defined in the sense

of producing a single best model. All other things being equal, I prefer the

simpler of two models with similar values of R2. If several models with similar

complexity have similar R2s, then there may be no good reason, at this stage

of the analysis, to prefer one over the rest.

10.4.2 Adjusted-R2 Criterion, maximize

The adjusted-R2 criterion gives a way to compare R2 across models with differ-

ent numbers of variables, and we want to maximize this. This eliminates some

of the difficulty with calibrating R2, which increases even when unimportant

predictors are added to a model. For a model with p variables and an intercept,

the adjusted-R2 is defined by

R̄2 = 1− n− 1

n− p− 1
(1−R2),

where n is the sample size.

There are four properties of R̄2 worth mentioning:

1. R̄2 ≤ R2,

2. if two models have the same number of variables, then the model with

the larger R2 has the larger R̄2,

3. if two models have the same R2, then the model with fewer variables has

the larger adjusted-R2. Put another way, R̄2 penalizes complex models

with many variables. And
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4. R̄2 can be less than zero for models that explain little of the variation in

Y .

The adjusted R2 is easier to calibrate than R2 because it tends to decrease

when unimportant variables are added to a model. The model with the maxi-

mum R̄2 is judged best by this criterion. As I noted before, I do not take any

of the criteria literally, and would also choose other models with R̄2 near the

maximum value for further consideration.

10.4.3 Mallows’ Cp Criterion, minimize

Mallows’ Cp measures the adequacy of predictions from a model, relative to

those obtained from the full model, and we want to minimize Cp. Mallows’ Cp
statistic is defined for a given model with p variables by

Cp =
Residual SS

σ̂2
FULL

− Residual df + (p + 1)

where σ̂2
FULL is the Residual MS from the full model with k variables X1, X2,

. . ., Xk.

If all the important effects from the candidate list are included in the model,

then the difference between the first two terms of Cp should be approximately

zero. Thus, if the model under consideration includes all the important variables

from the candidate list, then Cp should be approximately p+ 1 (the number of

variables in model plus one), or less. If important variables from the candidate

list are excluded, Cp will tend to be much greater than p + 1.

Two important properties of Cp are

1. the full model has Cp = p + 1, where p = k, and

2. if two models have the same number of variables, then the model with

the larger R2 has the smaller Cp.

Models with Cp ≈ p + 1, or less, merit further consideration. As with R2

and R̄2, I prefer simpler models that satisfy this condition. The “best” model

by this criterion has the minimum Cp.
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10.5 Illustration with Peru Indian data

R2 Criterion
# The leaps package provides best subsets with other selection criteria.

library(leaps)

# First, fit the full model

lm_indian_full <-

lm(

sysbp ~ wt + ht + chin + fore + calf + pulse + yrage

, data = dat_indian

)

# Second, create the design matrix which leap uses as argument

# using model.matrix(lm.XXX) as input to leaps()

# R^2 -- for each model size, report best subset of size 5

leaps_r2 <-

leaps(

x = model.matrix(lm_indian_full)

, y = dat_indian$sysbp

, method = "r2"

, int = FALSE

, nbest = 5

, names = colnames(model.matrix(lm_indian_full))

)

str(leaps_r2)

## List of 4

## $ which: logi [1:36, 1:8] FALSE TRUE FALSE FALSE FALSE TRUE ...

## ..- attr(*, "dimnames")=List of 2

## .. ..$ : chr [1:36] "1" "1" "1" "1" ...

## .. ..$ : chr [1:8] "(Intercept)" "wt" "ht" "chin" ...

## $ label: chr [1:8] "(Intercept)" "wt" "ht" "chin" ...

## $ size : num [1:36] 1 1 1 1 1 2 2 2 2 2 ...

## $ r2 : num [1:36] 0.99 0.99 0.989 0.976 0.845 ...

# plot model R^2 vs size of model

plot(leaps_r2$size, leaps_r2$r2, main = "R2")

# report the best model (indicate which terms are in the model)

best_model_r2 <- leaps_r2$which[which((leaps_r2$r2 == max(leaps_r2$r2))),]

# these are the variable names for the best model

names(best_model_r2)[best_model_r2]

## [1] "(Intercept)" "wt" "ht" "chin"

## [5] "fore" "calf" "pulse" "yrage"
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Adjusted-R2 Criterion, maximize
# adj-R^2 -- for each model size, report best subset of size 5

leaps_adjr2 <-

leaps(

x = model.matrix(lm_indian_full)

, y = dat_indian$sysbp

, method = "adjr2"

, int = FALSE

, nbest = 5

, names = colnames(model.matrix(lm_indian_full))

)

# plot model R^2 vs size of model

plot(leaps_adjr2$size, leaps_adjr2$adjr2, main = "Adj-R2")

# report the best model (indicate which terms are in the model)

best_model_adjr2 <- leaps_adjr2$which[which((leaps_adjr2$adjr2 == max(leaps_adjr2$adjr2))),]

# these are the variable names for the best model

names(best_model_adjr2)[best_model_adjr2]

## [1] "(Intercept)" "wt" "ht" "chin"

## [5] "yrage"
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Mallows’ Cp Criterion, minimize
# Cp -- for each model size, report best subset of size 3

leaps_Cp <-

leaps(

x = model.matrix(lm_indian_full)

, y = dat_indian$sysbp

, method = "Cp"

, int = FALSE

, nbest = 3

, names = colnames(model.matrix(lm_indian_full))

)

# plot model R^2 vs size of model

plot(leaps_Cp$size, leaps_Cp$Cp, main = "Cp")

lines(leaps_Cp$size, leaps_Cp$size) # adds the line for Cp = p

# report the best model (indicate which terms are in the model)

best_model_Cp <- leaps_Cp$which[which((leaps_Cp$Cp == min(leaps_Cp$Cp))),]

# these are the variable names for the best model

names(best_model_Cp)[best_model_Cp]

## [1] "(Intercept)" "wt" "yrage"
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All together The function below takes regsubsets() output and formats it

into a table sorted by BIC.
# best subset, returns results sorted by BIC
f_bestsubset <-
function(
form # model formula

, dat # dataset
, nbest = 5 # number of models to return for each model size, default is 5
) {

# all output in the bs "best subset" object
bs <-
leaps::regsubsets(
form

, data = dat
, nvmax = 30
, nbest = nbest
, method = "exhaustive"
)

# selected output in named columns
bs2 <-
cbind(
summary(bs)$which # columns indicating which model terms are included

, SIZE = (rowSums(summary(bs)$which) - 1) # number of terms in model
, rss = summary(bs)$rss # residual sum of squares
, r2 = summary(bs)$rsq # R^2
, adjr2 = summary(bs)$adjr2 # Adj-R^2
, cp = summary(bs)$cp # Cp
, bic = summary(bs)$bic # BIC
) %>%
as_tibble() %>%
# sort models ascending by BIC (best model at top)
arrange(
bic

)

# return sorted table
return(bs2)

}

# best subset selection on our model
i_best <-
f_bestsubset(
form = formula(sysbp ~ wt + ht + chin + fore + calf + pulse + yrage)

, dat = dat_indian
)

op <- options(); # saving old options
options(width=100) # setting command window output text width wider

i_best %>% print(n = Inf, width = Inf)

## # A tibble: 31 x 14
## `(Intercept)` wt ht chin fore calf pulse yrage SIZE rss r2 adjr2 cp bic
## <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 1 1 0 0 0 0 0 1 2 3441. 0.473 0.444 1.45 -14.0
## 2 1 1 0 1 0 0 0 1 3 3244. 0.503 0.461 1.48 -12.6
## 3 1 1 0 0 1 0 0 1 3 3391. 0.481 0.436 2.95 -10.9
## 4 1 1 0 0 0 1 0 1 3 3411. 0.478 0.433 3.15 -10.7
## 5 1 1 1 0 0 0 0 1 3 3418. 0.477 0.432 3.22 -10.6
## 6 1 1 0 0 0 0 1 1 3 3435. 0.474 0.429 3.39 -10.4
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## 7 1 1 1 1 0 0 0 1 4 3130. 0.521 0.464 2.34 -10.4
## 8 1 1 0 1 0 0 1 1 4 3232. 0.505 0.447 3.36 -9.12
## 9 1 1 0 1 1 0 0 1 4 3244. 0.503 0.445 3.47 -8.98
## 10 1 1 0 1 0 1 0 1 4 3244. 0.503 0.445 3.48 -8.98
## 11 1 1 1 0 1 0 0 1 4 3311. 0.493 0.433 4.15 -8.18
## 12 1 1 1 1 1 0 0 1 5 3113. 0.523 0.451 4.16 -6.92
## 13 1 1 1 1 0 0 1 1 5 3126. 0.521 0.449 4.30 -6.75
## 14 1 1 1 1 0 1 0 1 5 3128. 0.521 0.448 4.32 -6.73
## 15 1 1 0 1 1 0 1 1 5 3229. 0.506 0.431 5.33 -5.49
## 16 1 1 0 1 0 1 1 1 5 3232. 0.505 0.430 5.36 -5.46
## 17 1 1 0 0 0 0 0 0 1 4756. 0.272 0.252 12.6 -5.04
## 18 1 1 1 1 1 0 1 1 6 3099. 0.525 0.437 6.03 -3.43
## 19 1 1 1 1 1 1 0 1 6 3111. 0.524 0.434 6.15 -3.28
## 20 1 1 1 1 0 1 1 1 6 3123. 0.522 0.432 6.27 -3.12
## 21 1 1 0 1 0 0 0 0 2 4612. 0.294 0.255 13.2 -2.58
## 22 1 1 0 1 1 1 1 1 6 3228. 0.506 0.413 7.32 -1.84
## 23 1 1 0 0 0 1 0 0 2 4739. 0.274 0.234 14.4 -1.52
## 24 1 1 0 0 0 0 1 0 2 4750. 0.273 0.232 14.6 -1.43
## 25 1 1 1 0 0 0 0 0 2 4754. 0.272 0.232 14.6 -1.40
## 26 1 1 1 0 1 1 1 1 6 3283. 0.497 0.403 7.87 -1.18
## 27 1 1 1 1 1 1 1 1 7 3096. 0.526 0.419 8 0.200
## 28 1 0 0 0 0 0 0 1 1 6033. 0.0763 0.0513 25.4 4.23
## 29 1 0 0 0 1 0 0 0 1 6047. 0.0741 0.0491 25.5 4.32
## 30 1 0 0 0 0 1 0 0 1 6121. 0.0629 0.0376 26.3 4.79
## 31 1 0 1 0 0 0 0 0 1 6218. 0.0480 0.0223 27.2 5.41

options(op); # reset (all) initial options
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10.5.1 R2, R̄2, and Cp Summary for Peru Indian Data

Discussion of R2 results:

1. The single predictor model with the highest value of R2 has wt = weight

as a predictor: R2 = 0.272. All the other single predictor models have

R2 < 0.10.

2. The two predictor model with the highest value of R2 has weight and

yrage = fraction as predictors: R2 = 0.473. No other two predictor

model has R2 close to this.

3. All of the best three predictor models include weight and fraction as pre-

dictors. However, the increase in R2 achieved by adding a third predictor

is minimal.

4. None of the more complex models with four or more predictors provides

a significant increase in R2.

A good model using the R2 criterion has two predictors, weight and yrage.

The same conclusion is reached with R̄2, albeit the model with maximum R̄2

includes wt (weight), ht (height), chin (chin skin fold), and yrage (fraction)

as predictors.

Discussion of Cp results:

1. None of the single predictor models is adequate. Each has Cp � 1+1 = 2,

the target value.

2. The only adequate two predictor model has wt = weight and yrage =

fraction as predictors: Cp = 1.45 < 2 + 1 = 3. This is the minimum Cp
model.

3. Every model with weight and fraction is adequate. Every model that

excludes either weight or fraction is inadequate: Cp � p + 1.

According to Cp, any reasonable model must include both weight and frac-

tion as predictors. Based on simplicity, I would select the model with these

two predictors as a starting point. I can always add predictors if subsequent

analysis suggests this is necessary!
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10.5.2 Peru Indian Data Summary

The model selection procedures suggest three models that warrant further con-

sideration.

Predictors Methods suggesting model
------------------- ------------------------------------------------
wt, yrage BIC via stepwise, forward, and backward, and C_p
wt, yrage, chin AIC via stepwise and backward selection
wt, yrage, chin, ht AIC via forward selection, Adj-R2

I will give three reasons why I feel that the simpler model is preferable at

this point:

1. It was suggested by 4 of the 5 methods (ignoring R2).

2. Forward selection often chooses predictors that are not important, even

when the significance level for inclusion is reduced from the default α =

0.50 level.

3. The AIC/BIC forward and backward elimination outputs suggest that

neither chin skin fold nor height is significant at any of the standard

levels of significance used in practice. Look at the third and fourth steps

of forward selection to see this.

Using a mechanical approach, we are led to a model with weight and yrage

as predictors of systolic blood pressure. At this point we should closely examine

this model. We did this earlier this semester and found that observation 1 (the

individual with the largest systolic blood pressure) was fitted poorly by the

model and potentially influential.

As noted earlier this semester, model selection methods can be highly influ-

enced by outliers and influential cases. Thus, we should hold out case 1, and

re-evaluate the various procedures to see whether case 1 unduly influenced the

models selected. I will just note (not shown) that the selection methods point

to the same model when case 1 is held out. After deleting case 1, there are no

large residuals, extremely influential points, or any gross abnormalities in plots.

Both analyses suggest that the “best model” for predicting systolic blood

pressure is

sysbp = β0 + β1 wt + β2 yrage + ε.
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Should case 1 be deleted? I have not fully explored this issue, but I will note

that eliminating this case does have a significant impact on the least squares

estimates of the regression coefficients, and on predicted values. What do you

think?
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10.6 Example: Oxygen Uptake

An experiment was conducted to model oxygen uptake (o2up), in milligrams of

oxygen per minute, from five chemical measurements: biological oxygen demand

(bod), total Kjeldahl nitrogen (tkn), total solids (ts), total volatile solids (tvs),

which is a component of ts, and chemical oxygen demand (cod), each measured

in milligrams per liter. The data were collected on samples of dairy wastes kept

in suspension in water in a laboratory for 220 days. All observations were on

the same sample over time. We desire an equation relating o2up to the other

variables. The goal is to find variables that should be further studied with the

eventual goal of developing a prediction equation (day should not be considered

as a predictor).

We are interested in developing a regression model with o2up, or some

function of o2up, as a response. The researchers believe that the predictor

variables are more likely to be linearly related to log10(o2up) rather than o2up,

so log10(o2up) was included in the data set. As a first step, we should plot

o2up against the different predictors, and see whether the relationship between

o2up and the individual predictors is roughly linear. If not, we will consider

appropriate transformations of the response and/or predictors.
#### Example: Oxygen uptake

dat_oxygen <-

read_table2("http://statacumen.com/teach/ADA2/notes/ADA2_notes_Ch10_oxygen.dat")

## Parsed with column specification:

## cols(

## day = col double(),

## bod = col double(),

## tkn = col double(),

## ts = col double(),

## tvs = col double(),

## cod = col double(),

## o2up = col double(),

## logup = col double()

## )

UNM, Stat 428/528 ADA2



338 Ch 10: Automated Model Selection for Multiple Regression

day bod tkn ts tvs cod o2up logup
1 0 1125 232 7160 85.9 8905 36.0 1.5563
2 7 920 268 8804 86.5 7388 7.9 0.8976
3 15 835 271 8108 85.2 5348 5.6 0.7482
4 22 1000 237 6370 83.8 8056 5.2 0.7160
5 29 1150 192 6441 82.1 6960 2.0 0.3010
6 37 990 202 5154 79.2 5690 2.3 0.3617
7 44 840 184 5896 81.2 6932 1.3 0.1139
8 58 650 200 5336 80.6 5400 1.3 0.1139
9 65 640 180 5041 78.4 3177 0.6 −0.2218

10 72 583 165 5012 79.3 4461 0.7 −0.1549
11 80 570 151 4825 78.7 3901 1.0 0.0000
12 86 570 171 4391 78.0 5002 1.0 0.0000
13 93 510 243 4320 72.3 4665 0.8 −0.0969
14 100 555 147 3709 74.9 4642 0.6 −0.2218
15 107 460 286 3969 74.4 4840 0.4 −0.3979
16 122 275 198 3558 72.5 4479 0.7 −0.1549
17 129 510 196 4361 57.7 4200 0.6 −0.2218
18 151 165 210 3301 71.8 3410 0.4 −0.3979
19 171 244 327 2964 72.5 3360 0.3 −0.5229
20 220 79 334 2777 71.9 2599 0.9 −0.0458

The plots showed an exponential relationship between o2up and the predic-

tors. To shorten the output, only one plot is given. An exponential relationship

can often be approximately linearized by transforming o2up to the log10(o2up)

scale suggested by the researchers. The extreme skewness in the marginal distri-

bution of o2up also gives an indication that a transformation might be needed.
# scatterplots
library(ggplot2)
p <- list()
p[[1]] <- ggplot(dat_oxygen, aes(x = bod, y = o2up)) + geom_point(size=2)
p[[2]] <- ggplot(dat_oxygen, aes(x = tkn, y = o2up)) + geom_point(size=2)
p[[3]] <- ggplot(dat_oxygen, aes(x = ts , y = o2up)) + geom_point(size=2)
p[[4]] <- ggplot(dat_oxygen, aes(x = tvs, y = o2up)) + geom_point(size=2)
p[[5]] <- ggplot(dat_oxygen, aes(x = cod, y = o2up)) + geom_point(size=2)

library(gridExtra)
grid.arrange(grobs = list(p[[1]], p[[2]], p[[3]], p[[4]], p[[5]])

, ncol = 3
, top = "Scatterplots of response o2up with each predictor variable"
)
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Scatterplots of response o2up with each predictor variable

After transformation, several plots show a roughly linear relationship. A

sensible next step would be to build a regression model using log(o2up) as the

response variable.
# scatterplots
library(ggplot2)
p <- list()
p[[1]] <- ggplot(dat_oxygen, aes(x = bod, y = logup)) + geom_point(size=2)
p[[2]] <- ggplot(dat_oxygen, aes(x = tkn, y = logup)) + geom_point(size=2)
p[[3]] <- ggplot(dat_oxygen, aes(x = ts , y = logup)) + geom_point(size=2)
p[[4]] <- ggplot(dat_oxygen, aes(x = tvs, y = logup)) + geom_point(size=2)
p[[5]] <- ggplot(dat_oxygen, aes(x = cod, y = logup)) + geom_point(size=2)

library(gridExtra)
grid.arrange(grobs = list(p[[1]], p[[2]], p[[3]], p[[4]], p[[5]])

, ncol = 3
, top = "Scatterplots of response logup with each predictor variable"
)
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Scatterplots of response logup with each predictor variable

Correlation between response and each predictor.
# correlation matrix and associated p-values testing "H0: rho == 0"

#library(Hmisc)

cor_o <-

dat_oxygen %>%

select(

logup, bod, tkn, ts, tvs, cod

) %>%

as.matrix() %>%

Hmisc::rcorr()

# print only correlations with the response to 3 significant digits (first row)

cor_o$r[1, ] %>% signif(3)

## logup bod tkn ts tvs cod

## 1.0000 0.7740 0.0906 0.8350 0.7110 0.8320

I used several of the model selection procedures to select out predictors.

The model selection criteria below point to a more careful analysis of the model

with ts and cod as predictors. This model has the minimum Cp and is selected

by the backward and stepwise procedures. Furthermore, no other model has a

substantially higher R2 or R̄2. The fit of the model will not likely be improved

substantially by adding any of the remaining three effects to this model.
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# best subset selection on our model

o_best <-

f_bestsubset(

form = formula(logup ~ bod + tkn + ts + tvs + cod)

, dat = dat_oxygen

, nbest = 3

)

op <- options(); # saving old options

options(width=100) # setting command window output text width wider

o_best %>% print(n = Inf, width = Inf)

## # A tibble: 13 x 12

## `(Intercept)` bod tkn ts tvs cod SIZE rss r2 adjr2 cp bic

## <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>

## 1 1 0 0 1 0 1 2 1.09 0.786 0.760 1.74 -21.8

## 2 1 0 1 1 0 1 3 0.987 0.805 0.768 2.32 -20.7

## 3 1 0 0 1 1 1 3 1.06 0.790 0.751 3.42 -19.2

## 4 1 1 0 1 0 1 3 1.06 0.790 0.750 3.44 -19.2

## 5 1 0 1 1 1 1 4 0.965 0.809 0.759 4.00 -18.2

## 6 1 0 0 1 0 0 1 1.54 0.696 0.680 6.29 -17.9

## 7 1 0 0 0 1 1 2 1.33 0.738 0.707 5.27 -17.8

## 8 1 1 1 1 0 1 4 0.987 0.805 0.753 4.32 -17.7

## 9 1 0 0 0 0 1 1 1.56 0.693 0.676 6.57 -17.6

## 10 1 1 0 1 1 1 4 1.04 0.795 0.740 5.07 -16.7

## 11 1 0 1 0 0 1 2 1.44 0.716 0.682 6.87 -16.2

## 12 1 1 1 1 1 1 5 0.965 0.809 0.741 6. -15.2

## 13 1 1 0 0 0 0 1 2.03 0.598 0.576 13.5 -12.3

options(op); # reset (all) initial options

These comments must be taken with a grain of salt because we have not crit-

ically assessed the underlying assumptions (linearity, normality, independence),

nor have we considered whether the data contain influential points or outliers.
lm_oxygen_final <-

lm(

logup ~ ts + cod

, data = dat_oxygen

)

summary(lm_oxygen_final)

##

## Call:

## lm(formula = logup ~ ts + cod, data = dat_oxygen)

##

## Residuals:

## Min 1Q Median 3Q Max

## -0.37640 -0.09238 -0.04229 0.06256 0.59827

##
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342 Ch 10: Automated Model Selection for Multiple Regression

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) -1.370e+00 1.969e-01 -6.960 2.3e-06 ***

## ts 1.492e-04 5.489e-05 2.717 0.0146 *

## cod 1.415e-04 5.318e-05 2.661 0.0165 *

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Residual standard error: 0.2526 on 17 degrees of freedom

## Multiple R-squared: 0.7857,Adjusted R-squared: 0.7605

## F-statistic: 31.17 on 2 and 17 DF, p-value: 2.058e-06

The p-values for testing the importance of the individual predictors are

small, indicating that both predictors are important. However, two observations

(1 and 20) are poorly fitted by the model (both have ri > 2) and are individually

most influential (largest Dis). Recall that this experiment was conducted over

220 days, so these observations were the first and last data points collected. We

have little information about the experiment, but it is reasonable to conjecture

that the experiment may not have reached a steady state until the second time

point, and that the experiment was ended when the experimental material

dissipated. The end points of the experiment may not be typical of conditions

under which we are interested in modelling oxygen uptake. A sensible strategy

here is to delete these points and redo the entire analysis to see whether our

model changes noticeably.

Furthermore, the partial residual plot for both ts and cod clearly highlights

outlying cases 1 and 20.
# plot diagnistics
lm_diag_plots(lm_oxygen_final, sw_plot_set = "simpleAV")
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10.6.1 Redo analysis excluding first and last obser-
vations

For more completeness, we exclude the end observations and repeat the model

selection steps. Summaries from the model selection are provided.

The model selection criteria again suggest ts and cod as predictors. After

deleting observations 1 and 20 the R2 for this two predictor model jumps from

0.786 to 0.892. Also note that the LS coefficients change noticeably after these

observations are deleted.
# exclude observations 1 and 20

dat_oxygen2 <-

dat_oxygen %>%

slice(

-c(1, 20)

)

Correlation between response and each predictor.
# correlation matrix and associated p-values testing "H0: rho == 0"

#library(Hmisc)

cor_o <-

dat_oxygen2 %>%

select(

logup, bod, tkn, ts, tvs, cod

) %>%

as.matrix() %>%

Hmisc::rcorr()

# print only correlations with the response to 3 significant digits (first row)

cor_o$r[1, ] %>% signif(3)

## logup bod tkn ts tvs cod

## 1.000 0.813 0.116 0.921 0.717 0.806

# best subset selection on our model

o_best <-

f_bestsubset(

form = formula(logup ~ bod + tkn + ts + tvs + cod)

, dat = dat_oxygen2

, nbest = 3

)

op <- options(); # saving old options

options(width=100) # setting command window output text width wider

o_best %>% print(n = Inf, width = Inf)

## # A tibble: 13 x 12

## `(Intercept)` bod tkn ts tvs cod SIZE rss r2 adjr2 cp bic
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## <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>

## 1 1 0 0 1 0 1 2 0.310 0.892 0.878 0.176 -31.4

## 2 1 0 0 1 1 1 3 0.306 0.894 0.871 2.02 -28.8

## 3 1 1 0 1 0 1 3 0.309 0.893 0.870 2.15 -28.6

## 4 1 0 1 1 0 1 3 0.310 0.892 0.869 2.16 -28.6

## 5 1 0 0 1 0 0 1 0.435 0.849 0.840 3.07 -28.3

## 6 1 1 0 1 0 0 2 0.383 0.867 0.849 3.05 -27.6

## 7 1 0 0 1 1 0 2 0.418 0.855 0.835 4.43 -26.1

## 8 1 1 0 1 1 1 4 0.306 0.894 0.861 4.00 -25.9

## 9 1 0 1 1 1 1 4 0.306 0.894 0.861 4.01 -25.9

## 10 1 1 1 1 0 1 4 0.309 0.893 0.860 4.14 -25.7

## 11 1 1 1 1 1 1 5 0.306 0.894 0.850 6 -23.0

## 12 1 1 0 0 0 0 1 0.977 0.661 0.640 24.4 -13.7

## 13 1 0 0 0 0 1 1 1.01 0.649 0.627 25.7 -13.1

options(op); # reset (all) initial options

Below is the model with ts and cod as predictors, after omitting the end

observations. Both predictors are significant at the 0.05 level. Furthermore,

there do not appear to be any extreme outliers. The QQ-plot, and the plot of

studentized residuals against predicted values do not show any extreme abnor-

malities.
lm_oxygen2_final <-

lm(

logup ~ ts + cod

, data = dat_oxygen2

)

summary(lm_oxygen2_final)

##

## Call:

## lm(formula = logup ~ ts + cod, data = dat_oxygen2)

##

## Residuals:

## Min 1Q Median 3Q Max

## -0.24157 -0.08517 0.01004 0.10102 0.25094

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) -1.335e+00 1.338e-01 -9.976 5.16e-08 ***

## ts 1.852e-04 3.182e-05 5.820 3.38e-05 ***

## cod 8.638e-05 3.517e-05 2.456 0.0267 *

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Residual standard error: 0.1438 on 15 degrees of freedom

## Multiple R-squared: 0.8923,Adjusted R-squared: 0.878
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## F-statistic: 62.15 on 2 and 15 DF, p-value: 5.507e-08

# plot diagnistics
lm_diag_plots(lm_oxygen2_final, sw_plot_set = "simpleAV")
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Let us recall that the researcher’s primary goal was to identify important

predictors of o2up. Regardless of whether we are inclined to include the end

observations in the analysis or not, it is reasonable to conclude that ts and cod

are useful for explaining the variation in log10(o2up). If these data were the

final experiment, I might be inclined to eliminate the end observations and use
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the following equation to predict oxygen uptake:

log10(o2up) = −1.335302 + 0.000185 ts + 0.000086 cod.
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