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We have considered simple models for designed experiments and observa-

tional studies where a response variable is modeled as a linear combination of

effects due to factors or predictors, or both. With designed experiments,

where only qualitative factors are considered, we get a “pure ANOVA” model.

For example, in the experiment comparing survival times of beetles, the poten-

tial effects of insecticide (with levels A, B, C, and D) and dose (with levels

1=low, 2=medium, and 3=high) are included in the model as factors because

these variables are qualitative. The natural model to consider is a two-way
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266 Ch 9: Discussion of Response Models with Factors and Predictors

ANOVA with effects for dose and insecticide and a dose-by-insecticide interac-

tion. If, however, the dose given to each beetle was recorded on a measurement

scale, then the dosages can be used to define a predictor variable which can be

used as a “regression effect” in a model. That is, the dose or some function of

dose can be used as a (quantitative) predictor instead of as a qualitative effect.
For simplicity, assume that the doses are 10, 20, and 30, but the actual levels

are irrelevant to the discussion. The simple additive model, or ANCOVA model,
assumes that there is a linear relationship between mean survival time and dose,
with different intercepts for the four insecticides. If data set includes the survival
time (times) for each beetle, the insecticide (insect: an alphanumeric variable,
with values A, B, C, and D), and dose, you would fit the ANCOVA model this
way
dat_beetles <-

dat_beetles %>%

mutate(

insect = factor(insect)

)

lm_t_i_d <-

lm(

times ~ insect + dose

, data = dat_beetles

)

A more complex model that allows separate regression lines for each insec-
ticide is specified as follows:
lm_t_i_d_id <-

lm(

times ~ insect + dose + insect:dose

, data = dat_beetles

)

It is important to recognize that the factor() statement defines which vari-
ables in the model are treated as factors. Each effect of the factor data type is
treated as a factor. Effects in the model statement that are numeric data types
are treated as predictors. To treat a measurement variable as a factor (with
one level for each distinct observed value of the variable) instead of a predictor,
convert that varible type to a factor using factor(). Thus, in the survival time
experiment, these models
dat_beetles <-

dat_beetles %>%

mutate(

insect = factor(insect)

, dose = factor(dose)

)
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# call this (A) for additive

lm_t_i_d <-

lm(

times ~ insect + dose

, data = dat_beetles

)

# call this (I) for interaction

lm_t_i_d_id <-

lm(

times ~ insect + dose + insect:dose

, data = dat_beetles

)

give the analysis for a two-way ANOVA model without interaction and with

interaction, respectively, where both dose and insecticide are treated as factors

(since dose and insect are both converted to factors), even though we just

defined dose on a measurement scale!

Is there a basic connection between the ANCOVA and separate regression

line models for dose and two-way ANOVA models where dose and insecticide are

treated as factors? Yes — I mentioned a connection when discussing ANCOVA

and I will try now to make the connection more explicit.

For the moment, let us simplify the discussion and assume that only one

insecticide was used at three dose levels. The LS estimates of the mean responses

from the quadratic model

Times = β0 + β1 Dose + β2 Dose2 + ε

are the observed average survival times at the three dose levels. The LS curve

goes through the mean survival time at each dose, as illustrated in the picture

below.

If we treat dose as a factor, and fit the one-way ANOVA model

Times = Grand Mean + Dose Effect + Residual,

then the LS estimates of the population mean survival times are the observed

mean survival times. The two models are mathematically equivalent, but the

parameters have different interpretations. In essence, the one-way ANOVA

model places no restrictions on the values of the population means (no a priori

relation between them) at the three doses, and neither does the quadratic model!
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(WHY?)
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In a one-way ANOVA, the standard hypothesis of interest is that the dose

effects are zero. This can be tested using the one-way ANOVA F-test, or by

testing H0 : β1 = β2 = 0 in the quadratic model. With three dosages, the

absence of a linear or quadratic effect implies that all the population mean

survival times must be equal. An advantage of the polynomial model over the

one-way ANOVA is that it provides an easy way to quantify how dose impacts

the mean survival, and a convenient way to check whether a simple description

such as a simple linear regression model is adequate to describe the effect.

More generally, if dose has p levels, then the one-way ANOVA model

Times = Grand Mean + Dose Effect + Residual,

is equivalent to the (p− 1)st degree polynomial

Times = β0 + β1 Dose + β2 Dose2 + · · · + βp−1 Dose(p−1) + ε

and the one-way ANOVA F-test for no treatment effects is equivalent to testing

H0 : β1 = β2 = · · · = βp−1 = 0 in this polynomial.
Returning to the original experiment with 4 insecticides and 3 doses, I

can show the following two equivalences. First, the two-way additive ANOVA
model, with insecticide and dose as factors, i.e., model (A), is mathematically
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equivalent to an additive model with insecticide as a factor, and a quadratic
effect in dose:
dat_beetles <-

dat_beetles %>%

mutate(

insect = factor(insect)

)

lm_t_i_d_d2 <-

lm(

times ~ insect + dose + I(dose^2)

, data = dat_beetles

)

Thinking of dose2 as a quadratic term in dose, rather than as an interaction,

this model has an additive insecticide effect, but the dose effect is not differen-

tiated across insecticides. That is, the model assumes that the quadratic curves

for the four insecticides differ only in level (i.e., different intercepts) and that the

coefficients for the dose and dose2 effects are identical across insecticides. This

is an additive model, because the population means plot has parallel profiles.

A possible pictorial representation of this model is given below.
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Second, the two-way ANOVA interaction model, with insecticide and dose
as factors, i.e., model (I), is mathematically equivalent to an interaction model
with insecticide as a factor, and a quadratic effect in dose.

UNM, Stat 428/528 ADA2



270 Ch 9: Discussion of Response Models with Factors and Predictors

dat_beetles <-

dat_beetles %>%

mutate(

insect = factor(insect)

)

lm_t_i_d_d2_id_id2 <-

lm(

times ~ insect + dose + I(dose^2) + insect:dose + insect:I(dose^2)

, data = dat_beetles

)

This model fits separate quadratic relationships for each of the four in-

secticides, by including interactions between insecticides and the linear and

quadratic terms in dose. Because dose has three levels, this model places no

restrictions on the mean responses.

To summarize, we have established that

� The additive two-way ANOVA model with insecticide and dose as factors

is mathematically identical to an additive model with an insecticide factor

and a quadratic effect in dose. The ANCOVA model with a linear effect

in dose is a special case of these models, where the quadratic effect is

omitted.

� The two-way ANOVA interaction model with insecticide and dose as fac-

tors is mathematically identical to a model with an insecticide factor, a

quadratic effect in dose, and interactions between the insecticide and the

linear and quadratic dose effects. The separate regression lines model with

a linear effect in dose is a special case of these models, where the quadratic

dose effect and the interaction of the quadratic term with insecticide are

omitted.

Recall that response models with factors and predictors as effects can

be fit using the lm() procedure, but each factor or interaction involving a factor

must be represented in the model using indicator variables or product terms.

The number of required indicators or product effects is one less than the number

of distinct levels of the factor. For example, to fit the model with “parallel”

quadratic curves in dose, you can define (in the data.frame()) three indicator
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variables for the insecticide effect, say I1, I2, and I3, and fit the model

Times = β0 + β1I1 + β2I2 + β3I3 + β4 Dose + β5 Dose2 + ε.

For the “quadratic interaction model”, you must define 6 interaction or product

terms between the 3 indicators and the 2 dose terms:

Times = β0 + β1I1 + β2I2 + β3I3 + β4 Dose + β5 Dose2

+β6I1 Dose + β7I2 Dose + β8I3 Dose

+β9I1 Dose2 + β10I2 Dose2 + β11I3 Dose2 + ε.

The (β6I1 Dose+β7I2 Dose+β8I3 Dose) component in the model formally cor-

responds to the insect∗dose interaction, whereas the (β9I1 Dose2+β10I2 Dose2+

β11I3 Dose2) component is equivalent to the insect ∗ dose ∗ dose interaction

(i.e., testing H0 : β9 = β10 = β11 = 0).

This discussion is not intended to confuse, but rather to impress upon

you the intimate connection between regression and ANOVA, and to con-

vince you of the care that is needed when modelling variation even in simple

studies. Researchers are usually faced with more complex modelling problems

than we have examined, where many variables might influence the response. If

experimentation is possible, a scientist will often control the levels of variables

that influence the response but that are not of primary interest. This can result

in a manageable experiment with, say, four or fewer qualitative or quantitative

variables that are systematically varied in a scientifically meaningful way. In

observational studies, where experimentation is not possible, the scientist builds

models to assess the effects of interest on the response, adjusting the response

for all the uncontrolled variables that might be important. The uncontrolled

variables are usually a mixture of factors and predictors. Ideally, the scientist

knows what variables to control in an experiment and which to vary, and what

variables are important to collect in an observational study.

The level of complexity that I am describing here might be intimidating,

but certain basic principles can be applied to many of the studies you will see.

Graduate students in statistics often take several courses (5+) in experimental
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design, regression analysis, and linear model theory to master the breadth of

models, and the subtleties of modelling, that are needed to be a good data

analyst. I can only scratch the surface here. I will discuss a reasonably complex

study having multiple factors and multiple predictors. The example focuses

on strategies for building models, with little attempt to do careful diagnostic

analyses. Hopefully, the example will give you an appreciation for statistical

modelling, but please be careful — these tools are dangerous!
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9.1: Some Comments on Building Models 273

9.1 Some Comments on Building Models

A primary goal in many statistical analyses is to build a model or models to

understand the variation in a response. Fortunately, or unfortunately, there is

no consensus on how this should be done. Ideally, theory would suggest models

to compare, but in many studies the goal is to provide an initial model that will

be refined, validated, or refuted, by further experimentation. An extreme view

is that the selected model(s) should only include effects that are “statistically

important”, whereas another extreme suggests that all effects that might be

“scientifically important” should be included.

A difficulty with implementing either approach is that importance is relative

to specific goals (i.e., Why are you building the model and what do you plan to

use the model for? Is the model a prescription or device to make predictions?

Is the model a tool to understand the effect that one or more variables have

on a response, after adjusting for uninteresting, but important effects that can

not be controlled? etc.) Madigan and Raftery, in the 1994 edition of The

Journal of the American Statistical Association, comment that “Science is

an iterative process in which competing models of reality are compared on the

basis of how well they predict what is observed; models that predict much less

well than their competitors are discarded.” They argue that models should be

selected using Occum’s razor, a widely accepted norm in scientific investigations

whereby the simplest plausible model among all reasonable models, given the

data, is preferred. Madigan and Raftery’s ideas are fairly consistent with the

first extreme, but can be implemented in a variety of ways, depending on how

you measure prediction adequacy. They propose a Bayesian approach, based

on model averaging and prior beliefs on the plausibility of different models. An

alternative method using Mallow’s Cp criterion will be discussed later.

A simple compromise between the two extremes might be to start the model

building process with the most complex model that is scientifically reasonable,

but still interpretable, and systematically eliminate effects using backward elim-

ination. The initial or maximal model might include polynomial effects for

predictors, main effects and interactions (2 factor, 3 factor, etc.) between fac-
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tors, and products or interactions between predictors and factors. This ap-

proach might appear to be less than ideal because the importance of effects is

assessed using hypothesis tests and no attempt is made to assess the effect of

changes on predictions. However, one can show that the average squared error

in predictions is essentially reduced by eliminating insignificant regression

effects from the model, so this approach seems tenable.

It might be sensible to only assess significance of effects specified in the

model statement. However, many of these effects consist of several degrees-

of-freedom. That is, the effect corresponds to several regression coefficients

in the model. (Refer to the discussion following the displayed equations on

page 271). The individual regression variables that comprise an effect could

also be tested individually. However, if the effect is a factor (with 3+ levels) or

an interaction involving a factor, then the interpretation of tests on individual

regression coefficients depends on the level of the factor that was selected to

be the baseline category. The Type III F -test on the entire effect does not

depend on the baseline category. In essence, two researchers can start with

different representations of the same mathematical model (i.e., the parameters

are defined differently for different choices of baseline categories), use the same

algorithm for selecting a model, yet come to different final models for the data.

Statisticians often follow the hierarchy principle, which states that a lower

order term (be it a factor or a predictor) may be considered for exclusion from

a model only if no higher order effects that include the term are present in

the model. For example, given an initial model with effects A, B, C, and the

A ∗B interaction, the only candidates for omission at the first step are C and

A ∗ B. If you follow the hierarchy principle, and test an entire effect rather

than test the single degree-of-freedom components that comprise an effect, then

the difficulty described above can not occur. The hierarchy principle is most

appealing with pure ANOVA models (such as the three-factor model in the

example below), where all the regression variables are indicators. In ANOVA

models, the ANOVA effects are of interest because they imply certain structure

on the means. The individual regression variables that define the effects are
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not usually a primary interest.

A non-hierarchical backward elimination algorithm where single degree-of-

freedom effects are eliminated independently of the other effects in the model

is implemented in the step() procedure. Recall our discussion of backwards

elimination from Chapter 3 earlier this semester.
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9.2 Example: The Effect of Sex and Rank
on Faculty Salary

The data in this example were collected from the personnel files of faculty at

a small college in the 1970s. The data were collected to assess whether women

were being discriminated against (consciously or unconsciously) in salary. The

sample consists of tenured and tenure-stream faculty only. Temporary faculty

were excluded from consideration (because they were already being discrimi-

nated against).

The variables below are id (individual identification numbers from 1 to 52),

sex (coded 1 for female and 0 for male), rank (coded 1 for Asst. Professor, 2

for Assoc. Professor and 3 for Full Professor), year (number of years in current

rank), degree (coded 1 for Doctorate, 0 else), yd (number of years since highest

degree was earned), and salary (academic year salary in dollars).
library(tidyverse)

# load ada functions

source("ada_functions.R")

#### Example: Faculty salary

dat_faculty <-

read_table2("http://statacumen.com/teach/ADA2/notes/ADA2_notes_Ch09_faculty.dat") %>%

mutate(

sex = factor(sex , labels=c("Male", "Female"))

# ordering the rank variable so Full is the baseline, then descending.

, rank = factor(rank , levels=c(3,2,1), labels=c("Full", "Assoc", "Asst"))

, degree = factor(degree, labels=c("Other", "Doctorate"))

)

## Parsed with column specification:

## cols(

## id = col double(),

## sex = col double(),

## rank = col double(),

## year = col double(),

## degree = col double(),

## yd = col double(),

## salary = col double()

## )

head(dat_faculty)

## # A tibble: 6 x 7
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## id sex rank year degree yd salary

## <dbl> <fct> <fct> <dbl> <fct> <dbl> <dbl>

## 1 1 Male Full 25 Doctorate 35 36350

## 2 2 Male Full 13 Doctorate 22 35350

## 3 3 Male Full 10 Doctorate 23 28200

## 4 4 Female Full 7 Doctorate 27 26775

## 5 5 Male Full 19 Other 30 33696

## 6 6 Male Full 16 Doctorate 21 28516

str(dat_faculty)

## Classes 'spec_tbl_df', 'tbl_df', 'tbl' and 'data.frame': 52 obs. of 7 variables:

## $ id : num 1 2 3 4 5 6 7 8 9 10 ...

## $ sex : Factor w/ 2 levels "Male","Female": 1 1 1 2 1 1 2 1 1 1 ...

## $ rank : Factor w/ 3 levels "Full","Assoc",..: 1 1 1 1 1 1 1 1 1 1 ...

## $ year : num 25 13 10 7 19 16 0 16 13 13 ...

## $ degree: Factor w/ 2 levels "Other","Doctorate": 2 2 2 2 1 2 1 2 1 1 ...

## $ yd : num 35 22 23 27 30 21 32 18 30 31 ...

## $ salary: num 36350 35350 28200 26775 33696 ...

The data includes two potential predictors of salary (year and yd), and

three factors (sex, rank, and degree). A primary statistical interest is whether

males and females are compensated equally, on average, after adjusting salary

for rank, years in rank, and the other given effects. Furthermore, we wish to

know whether an effect due to sex is the same for each rank, or not.

Before answering these questions, let us look at the data. I will initially focus

on the effect of the individual factors (sex, rank, and degree) on salary. A series

of box-plots is given below. Looking at the boxplots, notice that women tend to

earn less than men, that faculty with Doctorates tend to earn more than those

without Doctorates (median), and that salary tends to increase with rank.
# plot marginal boxplots

# Plot the data using ggplot
library(ggplot2)
p1 <- ggplot(dat_faculty, aes(x = sex, y = salary, group = sex))
# plot a reference line for the global mean (assuming no groups)
p1 <- p1 + geom_hline(aes(yintercept = mean(salary)),

colour = "black", linetype = "dashed", size = 0.3, alpha = 0.5)
# boxplot, size=.75 to stand out behind CI
p1 <- p1 + geom_boxplot(size = 0.75, alpha = 0.5)
# points for observed data
p1 <- p1 + geom_point(position = position_jitter(w = 0.05, h = 0), alpha = 0.5)
# diamond at mean for each group
p1 <- p1 + stat_summary(fun.y = mean, geom = "point", shape = 18, size = 6,

alpha = 0.5)
# confidence limits based on normal distribution
p1 <- p1 + stat_summary(fun.data = "mean_cl_normal", geom = "errorbar",

width = .2, alpha = 0.8)
p1 <- p1 + labs(title = "Salary by sex")

# Plot the data using ggplot
library(ggplot2)
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p2 <- ggplot(dat_faculty, aes(x = degree, y = salary, group = degree))
# plot a reference line for the global mean (assuming no groups)
p2 <- p2 + geom_hline(aes(yintercept = mean(salary)),

colour = "black", linetype = "dashed", size = 0.3, alpha = 0.5)
# boxplot, size=.75 to stand out behind CI
p2 <- p2 + geom_boxplot(size = 0.75, alpha = 0.5)
# points for observed data
p2 <- p2 + geom_point(position = position_jitter(w = 0.05, h = 0), alpha = 0.5)
# diamond at mean for each group
p2 <- p2 + stat_summary(fun.y = mean, geom = "point", shape = 18, size = 6,

alpha = 0.5)
# confidence limits based on normal distribution
p2 <- p2 + stat_summary(fun.data = "mean_cl_normal", geom = "errorbar",

width = .2, alpha = 0.8)
p2 <- p2 + labs(title = "Salary by degree")

# Plot the data using ggplot
library(ggplot2)
p3 <- ggplot(dat_faculty, aes(x = rank, y = salary, group = rank))
# plot a reference line for the global mean (assuming no groups)
p3 <- p3 + geom_hline(aes(yintercept = mean(salary)),

colour = "black", linetype = "dashed", size = 0.3, alpha = 0.5)
# boxplot, size=.75 to stand out behind CI
p3 <- p3 + geom_boxplot(size = 0.75, alpha = 0.5)
# points for observed data
p3 <- p3 + geom_point(position = position_jitter(w = 0.05, h = 0), alpha = 0.5)
# diamond at mean for each group
p3 <- p3 + stat_summary(fun.y = mean, geom = "point", shape = 18, size = 6,

alpha = 0.5)
# confidence limits based on normal distribution
p3 <- p3 + stat_summary(fun.data = "mean_cl_normal", geom = "errorbar",

width = .2, alpha = 0.8)
p3 <- p3 + labs(title = "Salary by rank")

library(gridExtra)
grid.arrange(grobs = list(p1, p2, p3), nrow = 1)
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9.2.1 A Three-Way ANOVA on Salary Data

Hopefully, our earlier analyses have cured you of the desire to claim that a

sex effect exists before considering whether the differences between male and

female salaries might be due to other factors. The output below gives the

sample sizes, means, and standard deviations for the 11 combinations of sex,

rank, and degree observed in the data. Side-by-side boxplots of the salaries for

the 11 combinations are also provided. One combination of the three factors

was not observed: female Associate Professors without Doctorates.

Looking at the summaries, the differences between sexes within each com-

bination of rank and degree appear to be fairly small. There is a big difference

in the ranks of men and women, with a higher percentage of men in the more

advanced ranks. This might explain the differences between male and female

salaries, when other factors are ignored.
sum_faculty <-

dat_faculty %>%

group_by(sex, rank, degree) %>%

summarize(

n = n()

, m = mean(salary)

, s = sd(salary)

)

sum_faculty

## # A tibble: 11 x 6

## # Groups: sex, rank [6]

## sex rank degree n m s

## <fct> <fct> <fct> <int> <dbl> <dbl>

## 1 Male Full Other 4 30712. 4242.

## 2 Male Full Doctorate 12 29593. 3480.

## 3 Male Assoc Other 7 23585. 1733.

## 4 Male Assoc Doctorate 5 23246. 2120.

## 5 Male Asst Other 3 20296 3017.

## 6 Male Asst Doctorate 7 16901. 729.

## 7 Female Full Other 1 24900 NaN

## 8 Female Full Doctorate 3 30107. 6904.

## 9 Female Assoc Other 2 21570 1245.

## 10 Female Asst Other 1 21600 NaN

## 11 Female Asst Doctorate 7 17006. 1835.
# plot marginal boxplots

library(ggplot2)
# create position dodge offset for plotting points
pd <- position_dodge(0.75) # 0.75 puts dots up center of boxplots
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p <- ggplot(dat_faculty, aes(x = degree, y = salary, fill = sex))
# plot a reference line for the global mean (assuming no groups)
p <- p + geom_hline(aes(yintercept = mean(salary)),

colour = "black", linetype = "dashed", size = 0.3, alpha = 0.5)
# boxplot, size=.25 for thin lines
p <- p + geom_boxplot(size = 0.25, alpha = 0.25)
# points for observed data
p <- p + geom_point(position = pd, alpha = 0.5)
p <- p + facet_grid(. ~ rank)
p <- p + scale_y_continuous(limits = c(0, max(dat_faculty$salary)))
p <- p + labs(title = "Salary by rank, degree, and sex")
print(p)
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I will consider two simple analyses of these data. The first analysis considers

the effect of the three factors on salary. The second analysis considers the effect

of the predictors. A complete analysis using both factors and predictors is then

considered. I am doing the three factor analysis because the most complex pure

ANOVA problem we considered this semester has two factors — the analysis is

for illustration only!!

The full model for a three-factor study includes the three main effects, the

three possible two-factor interactions, plus the three-factor interaction. Identi-

fying the factors by S (sex), D (degree) and R (rank), we write the full model
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as

Salary = Grand mean + S effect + D effect + R effect

+S*D interaction + S*R interaction + R*D interaction

+S*D*R interaction + Residual.

You should understand what main effects and two-factor interactions mea-

sure, but what about the three-factor term? If you look at the two levels of

degree separately, then a three-factor interaction is needed if the interaction

between sex and rank is different for the two degrees. (i.e., the profile plots

are different for the two degrees). Not surprisingly, three-factor interactions are

hard to interpret.

I considered a hierarchical backward elimination of effects (see Chapter 3 for

details). Individual regression variables are not considered for deletion, unless

they correspond to an effect in the model statement. All tests were performed

at the 0.10 level, but this hardly matters here.

The first step in the elimination is to fit the full model and check whether

the three-factor term is significant. The three-factor term was not significant

(in fact, it couldn’t be fit because one category had zero observations). After

eliminating this effect, I fit the model with all three two-factor terms, and

then sequentially deleted the least important effects, one at a time, while still

adhering to the hierarchy principle using the AIC criterion from the step()

function. The final model includes only an effect due to rank. Finally, I compute

the lsmeans() to compare salary for all pairs of rank.
# fit full model

lm_faculty_factor_full <-

lm(

salary ~ sex * rank * degree

, data = dat_faculty

)

library(car)

Anova(lm_faculty_factor_full, type=3)

## Error in Anova.III.lm(mod, error, singular.ok = singular.ok, ...): there are aliased

coefficients in the model

Note that there are not enough degrees-of-freedom to estimate all these
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effects because we have 0 observations for the Female/Assoc/Doctorate combi-
nation.
summary(lm_faculty_factor_full)

##

## Call:

## lm(formula = salary ~ sex * rank * degree, data = dat_faculty)

##

## Residuals:

## Min 1Q Median 3Q Max

## -6261.5 -1453.0 -225.9 1349.7 7938.3

##

## Coefficients: (1 not defined because of singularities)

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 30711.5 1485.0 20.681 < 2e-16

## sexFemale -5811.5 3320.7 -1.750 0.087581

## rankAssoc -7126.9 1861.6 -3.828 0.000433

## rankAsst -10415.5 2268.4 -4.591 4.13e-05

## degreeDoctorate -1118.8 1714.8 -0.652 0.517774

## sexFemale:rankAssoc 3796.9 4086.3 0.929 0.358229

## sexFemale:rankAsst 7115.5 4773.7 1.491 0.143734

## sexFemale:degreeDoctorate 6325.4 3834.4 1.650 0.106653

## rankAssoc:degreeDoctorate 780.4 2442.3 0.320 0.750952

## rankAsst:degreeDoctorate -2276.1 2672.3 -0.852 0.399304

## sexFemale:rankAssoc:degreeDoctorate NA NA NA NA

## sexFemale:rankAsst:degreeDoctorate -7524.8 5383.7 -1.398 0.169720

##

## (Intercept) ***

## sexFemale .

## rankAssoc ***

## rankAsst ***

## degreeDoctorate

## sexFemale:rankAssoc

## sexFemale:rankAsst

## sexFemale:degreeDoctorate

## rankAssoc:degreeDoctorate

## rankAsst:degreeDoctorate

## sexFemale:rankAssoc:degreeDoctorate

## sexFemale:rankAsst:degreeDoctorate

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Residual standard error: 2970 on 41 degrees of freedom

## Multiple R-squared: 0.7975,Adjusted R-squared: 0.7481

## F-statistic: 16.14 on 10 and 41 DF, p-value: 2.989e-11

Let’s use backward selection to choose a reduced model.
## AIC

# option: test="F" includes additional information
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# for parameter estimate tests that we're familiar with

# option: for BIC, include k=log(nrow( [data.frame name] ))

lm_faculty_factor_red_AIC <-

step(

lm_faculty_factor_full

, direction="backward"

, test="F"

)

## Start: AIC=841.26

## salary ~ sex * rank * degree

##

## Df Sum of Sq RSS AIC F value Pr(>F)

## <none> 361677227 841.26

## - sex:rank:degree 1 17233177 378910404 841.68 1.9536 0.1697

Because the full model can not be fit, the step() procedure does not work.

Below we remove the three-way interaction, then the step() procedure will do

the rest of the work for us.

Remove the three-way interaction, then use step() to perform backward selec-
tion based on AIC.
# model reduction using update() and subtracting (removing) model terms

lm_faculty_factor_red <- lm_faculty_factor_full

# remove variable

lm_faculty_factor_red <-

update(

lm_faculty_factor_red

, ~ . - sex:rank:degree

)

Anova(lm_faculty_factor_red, type=3)

## Anova Table (Type III tests)

##

## Response: salary

## Sum Sq Df F value Pr(>F)

## (Intercept) 3932650421 1 435.9113 < 2.2e-16 ***

## sex 11227674 1 1.2445 0.2709438

## rank 196652264 2 10.8989 0.0001539 ***

## degree 421614 1 0.0467 0.8298945

## sex:rank 2701493 2 0.1497 0.8614045

## sex:degree 7661926 1 0.8493 0.3620198

## rank:degree 33433415 2 1.8529 0.1693627

## Residuals 378910404 42

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

# AIC backward selection
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lm_faculty_factor_red_AIC <-

step(

lm_faculty_factor_red

, direction="backward"

, test="F"

)

## Start: AIC=841.68

## salary ~ sex + rank + degree + sex:rank + sex:degree + rank:degree

##

## Df Sum of Sq RSS AIC F value Pr(>F)

## - sex:rank 2 2701493 381611896 838.05 0.1497 0.8614

## - sex:degree 1 7661926 386572329 840.72 0.8493 0.3620

## <none> 378910404 841.68

## - rank:degree 2 33433415 412343819 842.08 1.8529 0.1694

##

## Step: AIC=838.05

## salary ~ sex + rank + degree + sex:degree + rank:degree

##

## Df Sum of Sq RSS AIC F value Pr(>F)

## - sex:degree 1 12335789 393947686 837.71 1.4223 0.2394

## <none> 381611896 838.05

## - rank:degree 2 32435968 414047864 838.29 1.8699 0.1662

##

## Step: AIC=837.71

## salary ~ sex + rank + degree + rank:degree

##

## Df Sum of Sq RSS AIC F value Pr(>F)

## - sex 1 3009036 396956722 836.10 0.3437 0.5606

## - rank:degree 2 27067985 421015671 837.16 1.5460 0.2242

## <none> 393947686 837.71

##

## Step: AIC=836.1

## salary ~ rank + degree + rank:degree

##

## Df Sum of Sq RSS AIC F value Pr(>F)

## - rank:degree 2 31019255 427975976 836.01 1.7973 0.1772

## <none> 396956722 836.10

##

## Step: AIC=836.01

## salary ~ rank + degree

##

## Df Sum of Sq RSS AIC F value Pr(>F)

## - degree 1 10970082 438946058 835.33 1.2304 0.2729

## <none> 427975976 836.01

## - rank 2 1349072233 1777048209 906.04 75.6532 1.45e-15 ***

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##
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## Step: AIC=835.33

## salary ~ rank

##

## Df Sum of Sq RSS AIC F value Pr(>F)

## <none> 438946058 835.33

## - rank 2 1346783800 1785729858 904.30 75.171 1.174e-15 ***

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

# all are significant, stop.

# final model: salary ~ rank

lm_faculty_factor_final <- lm_faculty_factor_red_AIC

library(car)

Anova(lm_faculty_factor_final, type=3)

## Anova Table (Type III tests)

##

## Response: salary

## Sum Sq Df F value Pr(>F)

## (Intercept) 1.7593e+10 1 1963.932 < 2.2e-16 ***

## rank 1.3468e+09 2 75.171 1.174e-15 ***

## Residuals 4.3895e+08 49

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

summary(lm_faculty_factor_final)

##

## Call:

## lm(formula = salary ~ rank, data = dat_faculty)

##

## Residuals:

## Min 1Q Median 3Q Max

## -5209.0 -1819.2 -417.8 1586.6 8386.1

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 29659.0 669.3 44.316 < 2e-16 ***

## rankAssoc -6483.0 1043.0 -6.216 1.09e-07 ***

## rankAsst -11890.3 972.4 -12.228 < 2e-16 ***

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Residual standard error: 2993 on 49 degrees of freedom

## Multiple R-squared: 0.7542,Adjusted R-squared: 0.7442

## F-statistic: 75.17 on 2 and 49 DF, p-value: 1.174e-15

All ranks are different with salaries increasing with rank.
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# Contrasts to perform pairwise comparisons

cont_f <-

emmeans::emmeans(

lm_faculty_factor_final

, specs = "rank"

)

# Means and CIs

confint(cont_f, adjust = "bonferroni")

## rank emmean SE df lower.CL upper.CL

## Full 29659 669 49 28000 31318

## Assoc 23176 800 49 21193 25159

## Asst 17769 705 49 16020 19517

##

## Confidence level used: 0.95

## Conf-level adjustment: bonferroni method for 3 estimates

# Pairwise comparisons

cont_f %>% pairs(adjust = "bonf") # adjust = "tukey" is default

## contrast estimate SE df t.ratio p.value

## Full - Assoc 6483 1043 49 6.216 <.0001

## Full - Asst 11890 972 49 12.228 <.0001

## Assoc - Asst 5407 1067 49 5.070 <.0001

##

## P value adjustment: bonferroni method for 3 tests

# Plot means and contrasts

p <- plot(cont_f, comparisons = TRUE, adjust = "bonf") # adjust = "tukey" is default

p <- p + labs(title = "Bonferroni-adjusted Salary by Rank contrasts")

p <- p + theme_bw()

print(p)

●
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16000 20000 24000 28000
emmean
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nk

Bonferroni−adjusted Salary by Rank contrasts

This analysis suggests that sex is not predictive of salary, once other fac-

tors are taken into account. In particular, faculty rank appears to be the sole

important effect, in the sense that once salaries are adjusted for rank no other

factors explain a significant amount of the unexplained variation in salaries.

As noted earlier, the analysis was meant to illustrate a three-factor

Prof. Erik B. Erhardt



9.2: Example: The Effect of Sex and Rank on Faculty Salary 287

ANOVA and backward selection. The analysis is likely flawed, because it

ignores the effects of year and year since degree on salary.
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9.2.2 Using Year and Year Since Degree to Predict
Salary

Plots of the salary against years in rank and years since degree show fairly strong

associations with salary. The variability in salaries appears to be increasing with

year and with year since degree, which might be expected. You might think to

transform the salaries to a log scale to eliminate this effect, but doing so has

little impact on the conclusions (not shown).
library(ggplot2)

p1 <- ggplot(dat_faculty, aes(x = year, y = salary, colour = rank, shape = sex, size = degree))
p1 <- p1 + scale_size_discrete(range=c(3,5))

## Warning: Using size for a discrete variable is not advised.
p1 <- p1 + geom_point(alpha = 0.5)
p1 <- p1 + labs(title = "Salary by year")
p1 <- p1 + theme(legend.position = "bottom", legend.direction="vertical")
#print(p1)

p2 <- ggplot(dat_faculty, aes(x = yd, y = salary, colour = rank, shape = sex, size = degree))
p2 <- p2 + scale_size_discrete(range=c(3,5))
## Warning: Using size for a discrete variable is not advised.
p2 <- p2 + geom_point(alpha = 0.5)
p2 <- p2 + labs(title = "Salary by yd")
p2 <- p2 + theme(legend.position = "bottom", legend.direction="vertical")
#print(p2)

library(gridExtra)
grid.arrange(grobs = list(p1, p2), nrow = 1)
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As a point of comparison with the three-factor ANOVA, I fit a multiple

regression model with year and years since degree as predictors of salary. These

two predictors are important for explaining the variation in salaries, but to-

gether they explain much less of the variation (58%) than rank does on its own

(75%).
# interaction model

lm_s_y_yd_yyd <-

lm(

salary ~ year * yd

, data = dat_faculty

)

summary(lm_s_y_yd_yyd)

##

## Call:

## lm(formula = salary ~ year * yd, data = dat_faculty)

##

## Residuals:

## Min 1Q Median 3Q Max

## -10368.5 -2361.5 -505.7 2363.1 12211.6

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 16287.391 1395.049 11.675 1.25e-15 ***

## year 561.155 275.243 2.039 0.04700 *

## yd 235.415 83.266 2.827 0.00683 **

## year:yd -3.089 10.412 -0.297 0.76796

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Residual standard error: 3958 on 48 degrees of freedom

## Multiple R-squared: 0.579,Adjusted R-squared: 0.5527

## F-statistic: 22 on 3 and 48 DF, p-value: 4.17e-09

# interaction is not significant

lm_s_y_yd <-

lm(

salary ~ year + yd

, data = dat_faculty

)

summary(lm_s_y_yd)

##

## Call:

## lm(formula = salary ~ year + yd, data = dat_faculty)

##

## Residuals:

## Min 1Q Median 3Q Max
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## -10321.2 -2347.2 -332.7 2298.8 12240.9

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 16555.7 1052.4 15.732 < 2e-16 ***

## year 489.3 129.6 3.777 0.000431 ***

## yd 222.2 69.8 3.184 0.002525 **

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Residual standard error: 3921 on 49 degrees of freedom

## Multiple R-squared: 0.5782,Adjusted R-squared: 0.561

## F-statistic: 33.58 on 2 and 49 DF, p-value: 6.532e-10

# Put predicted values into the dataset for plotting

dat_faculty$pred <- predict(lm_s_y_yd)

Parallel lines look reasonable. There are a few extreme salaries for Full

professor rank; the effect they will have is to shift up the entire regression line

and inflate the variance since they are in the middle of the range of the year

variable with low leverage.
library(ggplot2)
p <- ggplot(dat_faculty, aes(x = yd, y = salary, colour = year))
p <- p + geom_point()
p <- p + geom_smooth(method = lm, se = FALSE, size = 1/4)
#p <- p + geom_line(aes(y = pred), size = 1)
p <- p + labs(

title = "Faculty data, year with categorical rank"
, caption = paste0( "Solid lines are regression lines fit to each group separately (interaction model).\n"

, "Dashed line is regression line from fitted model (additive equal slope model).")
)

print(p)
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Solid lines are regression lines fit to each group separately (interaction model).
Dashed line is regression line from fitted model (additive equal slope model).

# plot diagnistics
lm_diag_plots(lm_s_y_yd, sw_plot_set = "simple")
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9.2.3 Using Factors and Predictors to Model Salaries

The plots we looked at helped us to understand the data. In particular, the

plot of salary against years in rank, using rank as a plotting symbol, suggests

that a combination of predictors and factors will likely be better for modelling

faculty salaries than either of the two models that we proposed up to this point.

There is no evidence of non-linearity in the plots of salary against the pre-

dictors, so I will not consider transforming years since degree, years in rank,

or salary. Note that the increasing variability in salaries for increasing years in

rank and increasing years since degree is partly due to differences in the rela-

tionships across ranks. The non-constant variance should be less of a concern

in any model that includes rank and either years in rank or years since degree

as effects.
I started the model building process with a maximal or full model with the

five main effects plus the 10 possible interactions between two effects, regardless
of whether the effects were factors or predictors. Notationally, this model is
written as follows:

Salary = Grand mean + S effect + D effect + R effect + YEAR effect + YD effect

+S * D interaction + S * R interaction + S * YEAR interaction + S * YD interaction

+D * R interaction + D * YEAR interaction + D * YD interaction

+R * YEAR interaction + R * YD interaction + YEAR * YD interaction + Residual,

where the year and year since degree effects (YD) are linear terms (as in the

multiple regression model we considered). To check whether any important

effects might have been omitted, I added individual three-factor terms to this

model. All of the three factor terms were insignificant (not shown), so I believe

that my choice for the “maximal” model is sensible.

The output below gives the fit to the maximal model, and subsequent fits,

using the hierarchy principle. Only selected summaries are provided.
# fit full model with two-way interactions

lm_faculty_full <-

lm(

salary ~ (sex + rank + degree + year + yd)^2

, data = dat_faculty

)

library(car)

Anova(lm_faculty_full, type=3)
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## Anova Table (Type III tests)

##

## Response: salary

## Sum Sq Df F value Pr(>F)

## (Intercept) 22605087 1 3.6916 0.06392 .

## sex 4092995 1 0.6684 0.41984

## rank 5731837 2 0.4680 0.63059

## degree 4137628 1 0.6757 0.41735

## year 2022246 1 0.3302 0.56966

## yd 3190911 1 0.5211 0.47578

## sex:rank 932237 2 0.0761 0.92688

## sex:degree 7164815 1 1.1701 0.28773

## sex:year 7194388 1 1.1749 0.28676

## sex:yd 2024210 1 0.3306 0.56947

## rank:degree 13021265 2 1.0632 0.35759

## rank:year 1571933 2 0.1284 0.88001

## rank:yd 9822382 2 0.8020 0.45750

## degree:year 4510249 1 0.7366 0.39735

## degree:yd 6407880 1 1.0465 0.31424

## year:yd 50921 1 0.0083 0.92793

## Residuals 189825454 31

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

# This time I use BIC for model reduction by specifying k=

# (compare this to model result using AIC --

# too many nonsignificant parameters left in model)

## BIC

# option: test="F" includes additional information

# for parameter estimate tests that we're familiar with

# option: for BIC, include k=log(nrow( [data.frame name] ))

lm_faculty_red_BIC <-

step(

lm_faculty_full

, direction="backward"

, test="F"

, k=log(nrow(dat_faculty))

)

## Start: AIC=868.72

## salary ~ (sex + rank + degree + year + yd)^2

##

## Df Sum of Sq RSS AIC F value Pr(>F)

## - sex:rank 2 932237 190757690 861.07 0.0761 0.9269

## - rank:year 2 1571933 191397386 861.24 0.1284 0.8800

## - rank:yd 2 9822382 199647836 863.44 0.8020 0.4575

## - rank:degree 2 13021265 202846719 864.26 1.0632 0.3576

## - year:yd 1 50921 189876375 864.78 0.0083 0.9279

## - sex:yd 1 2024210 191849663 865.32 0.3306 0.5695
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## - degree:year 1 4510249 194335703 865.99 0.7366 0.3974

## - degree:yd 1 6407880 196233334 866.49 1.0465 0.3142

## - sex:degree 1 7164815 196990268 866.69 1.1701 0.2877

## - sex:year 1 7194388 197019841 866.70 1.1749 0.2868

## <none> 189825454 868.72

##

## Step: AIC=861.07

## salary ~ sex + rank + degree + year + yd + sex:degree + sex:year +

## sex:yd + rank:degree + rank:year + rank:yd + degree:year +

## degree:yd + year:yd

##

## Df Sum of Sq RSS AIC F value Pr(>F)

## - rank:year 2 4480611 195238301 854.37 0.3876 0.6818

## - rank:yd 2 14587933 205345624 857.00 1.2618 0.2964

## - year:yd 1 25889 190783580 857.12 0.0045 0.9470

## - rank:degree 2 16365099 207122790 857.45 1.4155 0.2572

## - sex:yd 1 3293276 194050966 858.01 0.5697 0.4557

## - degree:year 1 4428068 195185758 858.31 0.7660 0.3878

## - degree:yd 1 6525075 197282766 858.87 1.1288 0.2957

## - sex:year 1 10462381 201220071 859.89 1.8099 0.1877

## - sex:degree 1 10654937 201412628 859.94 1.8432 0.1838

## <none> 190757690 861.07

##

## Step: AIC=854.37

## salary ~ sex + rank + degree + year + yd + sex:degree + sex:year +

## sex:yd + rank:degree + rank:yd + degree:year + degree:yd +

## year:yd

##

## Df Sum of Sq RSS AIC F value Pr(>F)

## - year:yd 1 582367 195820669 850.58 0.1044 0.7485

## - rank:degree 2 18612514 213850816 851.21 1.6683 0.2032

## - sex:yd 1 3008739 198247041 851.22 0.5394 0.4676

## - rank:yd 2 20258184 215496486 851.60 1.8158 0.1777

## - degree:year 1 7497925 202736226 852.38 1.3441 0.2542

## - degree:yd 1 8179958 203418259 852.56 1.4664 0.2340

## - sex:degree 1 12500896 207739197 853.65 2.2410 0.1434

## - sex:year 1 12669105 207907406 853.69 2.2712 0.1408

## <none> 195238301 854.37

##

## Step: AIC=850.58

## salary ~ sex + rank + degree + year + yd + sex:degree + sex:year +

## sex:yd + rank:degree + rank:yd + degree:year + degree:yd

##

## Df Sum of Sq RSS AIC F value Pr(>F)

## - sex:yd 1 2456466 198277134 847.27 0.4516 0.50587

## - rank:degree 2 21836322 217656990 848.17 2.0072 0.14912

## - degree:year 1 7414066 203234734 848.56 1.3630 0.25069

## - degree:yd 1 9232872 205053541 849.02 1.6974 0.20090
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## - sex:degree 1 12831931 208652600 849.93 2.3590 0.13330

## - sex:year 1 13646799 209467467 850.13 2.5089 0.12196

## <none> 195820669 850.58

## - rank:yd 2 41051000 236871669 852.57 3.7734 0.03253 *

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Step: AIC=847.27

## salary ~ sex + rank + degree + year + yd + sex:degree + sex:year +

## rank:degree + rank:yd + degree:year + degree:yd

##

## Df Sum of Sq RSS AIC F value Pr(>F)

## - rank:degree 2 21157939 219435073 844.64 1.9741 0.15324

## - degree:year 1 8497324 206774458 845.50 1.5857 0.21583

## - degree:yd 1 9463400 207740534 845.75 1.7659 0.19202

## - sex:degree 1 10394382 208671516 845.98 1.9397 0.17202

## <none> 198277134 847.27

## - sex:year 1 22789419 221066553 848.98 4.2527 0.04626 *

## - rank:yd 2 42516602 240793736 849.47 3.9670 0.02749 *

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Step: AIC=844.64

## salary ~ sex + rank + degree + year + yd + sex:degree + sex:year +

## rank:yd + degree:year + degree:yd

##

## Df Sum of Sq RSS AIC F value Pr(>F)

## - degree:yd 1 361929 219797002 840.78 0.0643 0.8011

## - degree:year 1 855102 220290175 840.89 0.1520 0.6988

## - sex:degree 1 1616150 221051223 841.07 0.2872 0.5950

## - rank:yd 2 24391011 243826084 842.22 2.1675 0.1281

## - sex:year 1 10569795 230004869 843.14 1.8786 0.1783

## <none> 219435073 844.64

##

## Step: AIC=840.78

## salary ~ sex + rank + degree + year + yd + sex:degree + sex:year +

## rank:yd + degree:year

##

## Df Sum of Sq RSS AIC F value Pr(>F)

## - sex:degree 1 3112507 222909509 837.56 0.5664 0.45609

## - degree:year 1 4414318 224211320 837.86 0.8033 0.37546

## - rank:yd 2 24695126 244492128 838.41 2.2471 0.11889

## - sex:year 1 16645026 236442028 840.62 3.0292 0.08947 .

## <none> 219797002 840.78

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Step: AIC=837.56
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## salary ~ sex + rank + degree + year + yd + sex:year + rank:yd +

## degree:year

##

## Df Sum of Sq RSS AIC F value Pr(>F)

## - degree:year 1 2585275 225494784 834.21 0.4755 0.4943

## - rank:yd 2 25367664 248277174 835.26 2.3330 0.1098

## - sex:year 1 14770974 237680484 836.94 2.7168 0.1069

## <none> 222909509 837.56

##

## Step: AIC=834.21

## salary ~ sex + rank + degree + year + yd + sex:year + rank:yd

##

## Df Sum of Sq RSS AIC F value Pr(>F)

## - rank:yd 2 24905278 250400062 831.75 2.3194 0.1108

## - degree 1 8902098 234396882 832.27 1.6581 0.2049

## - sex:year 1 14134386 239629170 833.42 2.6326 0.1122

## <none> 225494784 834.21

##

## Step: AIC=831.75

## salary ~ sex + rank + degree + year + yd + sex:year

##

## Df Sum of Sq RSS AIC F value Pr(>F)

## - sex:year 1 8458303 258858365 829.53 1.4863 0.22929

## - degree 1 11217823 261617885 830.08 1.9712 0.16734

## - yd 1 16309342 266709404 831.08 2.8659 0.09755 .

## <none> 250400062 831.75

## - rank 2 406263292 656663354 873.98 35.6941 6.144e-10 ***

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Step: AIC=829.53

## salary ~ sex + rank + degree + year + yd

##

## Df Sum of Sq RSS AIC F value Pr(>F)

## - sex 1 9134971 267993336 827.38 1.5880 0.2141

## - degree 1 10687589 269545954 827.68 1.8579 0.1796

## - yd 1 14868158 273726523 828.48 2.5847 0.1149

## <none> 258858365 829.53

## - year 1 144867403 403725768 848.69 25.1838 8.654e-06 ***

## - rank 2 399790682 658649047 870.19 34.7499 7.485e-10 ***

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Step: AIC=827.38

## salary ~ rank + degree + year + yd

##

## Df Sum of Sq RSS AIC F value Pr(>F)

## - degree 1 6684984 274678320 824.71 1.1475 0.2897
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## - yd 1 7871680 275865016 824.93 1.3511 0.2511

## <none> 267993336 827.38

## - year 1 147642871 415636208 846.25 25.3423 7.839e-06 ***

## - rank 2 404108665 672102002 867.29 34.6818 6.544e-10 ***

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Step: AIC=824.71

## salary ~ rank + year + yd

##

## Df Sum of Sq RSS AIC F value Pr(>F)

## - yd 1 2314414 276992734 821.19 0.396 0.5322

## <none> 274678320 824.71

## - year 1 141105647 415783967 842.32 24.145 1.126e-05 ***

## - rank 2 478539101 753217421 869.26 40.941 5.067e-11 ***

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Step: AIC=821.19

## salary ~ rank + year

##

## Df Sum of Sq RSS AIC F value Pr(>F)

## <none> 276992734 821.19

## - year 1 161953324 438946058 841.18 28.065 2.905e-06 ***

## - rank 2 632056217 909048951 875.09 54.764 4.103e-13 ***

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The add1() function will indicate whether a variable from the “full” model
should be added to the current model. In our case, our BIC-backward selected
model appears adequate.
add1(

lm_faculty_red_BIC

, . ~ (sex + rank + degree + year + yd)^2

, test="F"

)

## Single term additions

##

## Model:

## salary ~ rank + year

## Df Sum of Sq RSS AIC F value Pr(>F)

## <none> 276992734 813.39

## sex 1 2304648 274688086 814.95 0.3943 0.5331

## degree 1 1127718 275865016 815.18 0.1921 0.6632

## yd 1 2314414 274678320 814.95 0.3960 0.5322

## rank:year 2 15215454 261777280 814.45 1.3368 0.2727

No variables are suggested for addition, though sex is the first contender
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with a p-value = 0.5331.

Let’s look carefully at our resulting model.
# all are significant, stop.

# final model: salary ~ year + rank

lm_faculty_final <- lm_faculty_red_BIC

library(car)

Anova(lm_faculty_final, type=3)

## Anova Table (Type III tests)

##

## Response: salary

## Sum Sq Df F value Pr(>F)

## (Intercept) 4422688839 1 766.407 < 2.2e-16 ***

## rank 632056217 2 54.764 4.103e-13 ***

## year 161953324 1 28.065 2.905e-06 ***

## Residuals 276992734 48

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

summary(lm_faculty_final)

##

## Call:

## lm(formula = salary ~ rank + year, data = dat_faculty)

##

## Residuals:

## Min 1Q Median 3Q Max

## -3462.0 -1302.8 -299.2 783.5 9381.6

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 25657.79 926.81 27.684 < 2e-16 ***

## rankAssoc -5192.24 871.83 -5.956 2.93e-07 ***

## rankAsst -9454.52 905.83 -10.437 6.12e-14 ***

## year 375.70 70.92 5.298 2.90e-06 ***

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Residual standard error: 2402 on 48 degrees of freedom

## Multiple R-squared: 0.8449,Adjusted R-squared: 0.8352

## F-statistic: 87.15 on 3 and 48 DF, p-value: < 2.2e-16

# Put predicted values into the dataset for plotting

dat_faculty$pred <- predict(lm_faculty_final)

Parallel lines look reasonable. There are a few extreme salaries for Full

professor rank; the effect they will have is to shift up the entire regression line

and inflate the variance since they are in the middle of the range of the year
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variable with low leverage.
library(ggplot2)
p <- ggplot(dat_faculty, aes(x = year, y = salary, colour = rank, shape = rank))
p <- p + geom_point()
p <- p + geom_smooth(method = lm, se = FALSE, size = 1/4)
p <- p + geom_line(aes(y = pred), linetype = 2, size = 1)
p <- p + labs(

title = "Faculty data, year with categorical rank"
, caption = paste0( "Solid lines are regression lines fit to each group separately (interaction model).\n"

, "Dashed line is regression line from fitted model (additive equal slope model).")
)

print(p)
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Solid lines are regression lines fit to each group separately (interaction model).
Dashed line is regression line from fitted model (additive equal slope model).

# plot diagnistics
lm_diag_plots(lm_faculty_final, sw_plot_set = "simple")
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# Contrasts to perform pairwise comparisons

cont_f <-

emmeans::emmeans(

lm_faculty_final

, specs = "rank"

)

# Means and CIs

confint(cont_f, adjust = "bonferroni")

## rank emmean SE df lower.CL upper.CL

## Full 28468 582 48 27024 29913

## Assoc 23276 642 48 21683 24869

## Asst 19014 613 48 17493 20535

##

## Confidence level used: 0.95

## Conf-level adjustment: bonferroni method for 3 estimates

# Pairwise comparisons

cont_f %>% pairs(adjust = "bonf") # adjust = "tukey" is default

## contrast estimate SE df t.ratio p.value

## Full - Assoc 5192 872 48 5.956 <.0001

## Full - Asst 9455 906 48 10.437 <.0001

## Assoc - Asst 4262 883 48 4.828 <.0001

##

## P value adjustment: bonferroni method for 3 tests
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# Plot means and contrasts

p <- plot(cont_f, comparisons = TRUE, adjust = "bonf") # adjust = "tukey" is default

p <- p + labs(title = "Bonferroni-adjusted Salary by Rank contrasts")

p <- p + theme_bw()

print(p)
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9.2.4 Discussion of the Salary Analysis

The selected model is a simple ANCOVA model with a rank effect and a linear

effect due to years in rank. Note that the maximal model has 20 single df

effects with an R2 = 0.89 while the selected model has 3 single df effects with

R2 = 0.84.

Looking at the parameter estimates table, all of the single df effects in

the selected model are significant. The baseline group is Full Professors, with

rank=3. Predicted salaries for the different ranks are given by:

Full: ŝalary = 25658 + 375.70 year

Assoc: ŝalary = 25658 − 5192 + 375.70 year = 20466 + 375.70 year

Assis: ŝalary = 25658 − 9454 + 375.70 year = 16204 + 375.70 year

Do you remember how to interpret the lsmeans, and the p-values for compar-

ing lsmeans?

You might be tempted to conclude that rank and years in rank are the only

effects that are predictive of salaries, and that differences in salaries by sex are

insignificant, once these effects have been taken into account. However, you

must be careful because you have not done a diagnostic analysis. The following

two issues are also important to consider.

A sex effect may exist even though there is insufficient evidence to

support it based on these data. (Lack of power corrupts; and absolute

lack of power corrupts absolutely!) If we are interested in the possibility

of a sex effect, I think that we would do better by focusing on how large the effect

might be, and whether it is important. A simple way to check is by constructing

a confidence interval for the sex effect, based on a simple additive model that

includes sex plus the effects that were selected as statistically significant, rank

and year in rank. I am choosing this model because the omitted effects are

hopefully small, and because the regression coefficient for a sex indicator is

easy to interpret in an additive model. Other models might be considered for

comparison. Summary output from this model is given below.
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# add sex to the model

lm_faculty_final_sex <-

update(

lm_faculty_final

, . ~ . + sex

)

summary(lm_faculty_final_sex)

##

## Call:

## lm(formula = salary ~ rank + year + sex, data = dat_faculty)

##

## Residuals:

## Min 1Q Median 3Q Max

## -3286.3 -1311.8 -178.4 939.1 9002.7

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 25390.65 1025.14 24.768 < 2e-16 ***

## rankAssoc -5109.93 887.12 -5.760 6.20e-07 ***

## rankAsst -9483.84 912.79 -10.390 9.19e-14 ***

## year 390.94 75.38 5.186 4.47e-06 ***

## sexFemale 524.15 834.69 0.628 0.533

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Residual standard error: 2418 on 47 degrees of freedom

## Multiple R-squared: 0.8462,Adjusted R-squared: 0.8331

## F-statistic: 64.64 on 4 and 47 DF, p-value: < 2.2e-16

# Put predicted values into the dataset for plotting

dat_faculty$pred <- predict(lm_faculty_final_sex)

Parallel lines look reasonable. There are a few extreme salaries for Full

professor rank; the effect they will have is to shift up the entire regression line

and inflate the variance since they are in the middle of the range of the year

variable with low leverage.
library(ggplot2)
p <- ggplot(dat_faculty, aes(x = year, y = salary, colour = sex))
p <- p + geom_point(size = 2)
p <- p + geom_smooth(method = lm, se = FALSE, size = 1/4)
p <- p + geom_line(aes(y = pred), linetype = 2, size = 1)
p <- p + facet_wrap(~ rank, nrow = 1)
p <- p + theme(legend.position="bottom")
p <- p + labs(

title = "Faculty data, year with categorical rank by sex"
, caption = paste0( "Solid lines are regression lines fit to each group separately (interaction model).\n"

, "Dashed line is regression line from fitted model (additive equal slope model).")
)

print(p)
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Solid lines are regression lines fit to each group separately (interaction model).
Dashed line is regression line from fitted model (additive equal slope model).

Men are the baseline group for the sex effect, so the predicted salaries for

men are 524 dollars less than that for women, adjusting for rank and year.

A rough 95% CI for the sex differential is the estimated sex coefficient plus or

minus two standard errors, or 524 ± 2 ∗ (835), or −1146 to 2194 dollars. The

range of plausible values for the sex effect would appear to contain values of

practical importance, so further analysis is warranted here.

Another concern, and potentially a more important issue, was raised by M.

O. Finkelstein in a 1980 discussion in the Columbia Law Review on the

use of regression in discrimination cases: “. . . [a] variable may reflect a

position or status bestowed by the employer, in which case if

there is discrimination in the award of the position or status,

the variable may be ‘tainted’.” Thus, if women are unfairly held back

from promotion through the faculty ranks, then using faculty rank to adjust

salary before comparing sexes may not be acceptable to the courts. This

suggests that an analysis comparing sexes but ignoring rank effects might be

justifiable. What happens if this is done?
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lm_faculty_sex_yd <-

lm(

salary ~ sex + yd

, data = dat_faculty

)

library(car)

Anova(lm_faculty_sex_yd, type=3)

## Anova Table (Type III tests)

##

## Response: salary

## Sum Sq Df F value Pr(>F)

## (Intercept) 4275963832 1 231.4448 < 2.2e-16 ***

## sex 67178787 1 3.6362 0.06241 .

## yd 766344185 1 41.4799 4.883e-08 ***

## Residuals 905279453 49

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

summary(lm_faculty_sex_yd)

##

## Call:

## lm(formula = salary ~ sex + yd, data = dat_faculty)

##

## Residuals:

## Min 1Q Median 3Q Max

## -9631.7 -2529.4 3.5 2298.0 13125.7

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 18355.23 1206.52 15.213 < 2e-16 ***

## sexFemale -2572.53 1349.08 -1.907 0.0624 .

## yd 380.69 59.11 6.440 4.88e-08 ***

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Residual standard error: 4298 on 49 degrees of freedom

## Multiple R-squared: 0.493,Adjusted R-squared: 0.4724

## F-statistic: 23.83 on 2 and 49 DF, p-value: 5.911e-08

# Put predicted values into the dataset for plotting

dat_faculty$pred <- predict(lm_faculty_sex_yd)

Parallel lines look reasonable. There are a few extreme salaries for Full

professor rank; the effect they will have is to shift up the entire regression line

and inflate the variance since they are in the middle of the range of the year

variable with low leverage.
library(ggplot2)
p <- ggplot(dat_faculty, aes(x = yd, y = salary, colour = sex))
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p <- p + geom_point(size = 2)
p <- p + geom_smooth(method = lm, se = FALSE, size = 1/4)
p <- p + geom_line(aes(y = pred), linetype = 2, size = 1)
p <- p + labs(

title = "Faculty data, yd with categorical rank by sex"
, caption = paste0( "Solid lines are regression lines fit to each group separately (interaction model).\n"

, "Dashed line is regression line from fitted model (additive equal slope model).")
)

print(p)
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Faculty data, yd with categorical rank by sex

Solid lines are regression lines fit to each group separately (interaction model).
Dashed line is regression line from fitted model (additive equal slope model).

Similar result as before, insufficient evidence between sexes (due to large

proportion of variability in salary explained by yd [which I’m using in place

of year since year is paired with rank]). Furthermore (not shown), there is

insufficient evidence for a sex:yd interaction. However, rank and sex are (po-

tentially) confounded. This data can not resolve this question. Instead, data

on promotions would help resolve this issue.
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