Chapter 7

Analysis of Covariance: Comparing Regression Lines

Contents

7.1 ANCOVA ... 205
7.2 Generalizing the ANCOVA Model to Allow Unequal Slopes .. 210
 7.2.1 Unequal slopes ANCOVA model 211
 7.2.2 Equal slopes ANCOVA model 216
 7.2.3 Equal slopes and equal intercepts ANCOVA model 220
 7.2.4 No slopes, but intercepts ANCOVA model 223
7.3 Relating Models to Two-Factor ANOVA 227
7.4 Choosing Among Models 229
 7.4.1 Simultaneous testing of regression parameters 231
7.5 Comments on Comparing Regression Lines 237
7.6 Three-way interaction 239
Suppose that you are interested in comparing the typical lifetime (hours) of two tool types (A and B). A simple analysis of the data given below would consist of making side-by-side boxplots followed by a two-sample test of equal means (or medians). The standard two-sample test using the pooled variance estimator is a special case of the one-way ANOVA with two groups. The summaries suggest that the distribution of lifetimes for the tool types are different. In the output below, μ_i is population mean lifetime for tool type i ($i = A, B$).

```r
library(tidyverse)

# load ada functions
source("ada_functions.R")

### Example: Tool lifetime
dat_tools <-
  read_table2("http://statacumen.com/teach/ADA2/notes/ADA2_notes_Ch07_tools.dat") %>%
  mutate(
    # make type a factor variable
    type = factor(type)
  )

## Parsed with column specification:
## cols(
##   lifetime = col_double(),
##   rpm = col_double(),
##   type = col_character()
## )

str(dat_tools)
## Classes 'spec_tbl_df', 'tbl_df', 'tbl' and 'data.frame': 20 obs. of 3 variables:
## $ lifetime: num 18.7 14.5 17.4 14.5 13.4 ... 
## $ rpm : num 610 950 720 840 980 530 680 540 890 730 ... 
## $ type : Factor w/ 2 levels "A","B": 1 1 1 1 1 1 1 1 1 1 ... 

<table>
<thead>
<tr>
<th>lifetime</th>
<th>rpm</th>
<th>type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 18.73</td>
<td>610</td>
<td>A</td>
</tr>
<tr>
<td>2 14.52</td>
<td>950</td>
<td>A</td>
</tr>
<tr>
<td>3 17.43</td>
<td>720</td>
<td>A</td>
</tr>
<tr>
<td>4 14.54</td>
<td>840</td>
<td>A</td>
</tr>
<tr>
<td>5 13.44</td>
<td>980</td>
<td>A</td>
</tr>
<tr>
<td>6 24.39</td>
<td>530</td>
<td>A</td>
</tr>
<tr>
<td>7 13.34</td>
<td>680</td>
<td>A</td>
</tr>
<tr>
<td>8 22.71</td>
<td>540</td>
<td>A</td>
</tr>
<tr>
<td>9 12.68</td>
<td>890</td>
<td>A</td>
</tr>
<tr>
<td>10 19.32</td>
<td>730</td>
<td>A</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>lifetime</th>
<th>rpm</th>
<th>type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 30.16</td>
<td>670</td>
<td>B</td>
</tr>
<tr>
<td>2 27.09</td>
<td>770</td>
<td>B</td>
</tr>
<tr>
<td>3 25.40</td>
<td>880</td>
<td>B</td>
</tr>
<tr>
<td>4 26.05</td>
<td>1000</td>
<td>B</td>
</tr>
<tr>
<td>5 33.49</td>
<td>760</td>
<td>B</td>
</tr>
<tr>
<td>6 35.62</td>
<td>590</td>
<td>B</td>
</tr>
<tr>
<td>7 26.07</td>
<td>910</td>
<td>B</td>
</tr>
<tr>
<td>8 36.78</td>
<td>650</td>
<td>B</td>
</tr>
<tr>
<td>9 34.95</td>
<td>810</td>
<td>B</td>
</tr>
<tr>
<td>10 43.67</td>
<td>500</td>
<td>B</td>
</tr>
</tbody>
</table>
```
library(ggplot2)
p <- ggplot(dat_tools, aes(x = type, y = lifetime))
plot a reference line for the global mean (assuming no groups)
p <- p + geom_hline(aes(yintercept = mean(lifetime)),
 colour = "black", linetype = "dashed", size = 0.3, alpha = 0.5)
boxplot, size=.75 to stand out behind CI
p <- p + geom_boxplot(size = 0.75, alpha = 0.5)
points for observed data
p <- p + geom_point(position = position_jitter(w = 0.05, h = 0), alpha = 0.5)
diamond at mean for each group
p <- p + stat_summary(fun.y = mean, geom = "point", shape = 18, size = 6,
 colour="red", alpha = 0.8)
confidence limits based on normal distribution
p <- p + stat_summary(fun.data = "mean_cl_normal", geom = "errorbar",
 width = .2, colour="red", alpha = 0.8)
p <- p + labs(title = "Tool type lifetime") + ylab("lifetime (hours)")
p <- p + coord_flip()
p <- p + geom_point(position = position_jitter(w = 0.05, h = 0), alpha = 0.5)

A two sample \(t \)-test comparing mean lifetimes of tool types indicates a
difference between means.

```r
t.summary <- t.test(lifetime ~ type, data = dat_tools)
t.summary
```
```
##
## Welch Two Sample t-test
##
## data:  lifetime by type
## t = -6.435, df = 15.93, p-value = 8.422e-06
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -19.70128 -9.93472
## sample estimates:
## mean in group A mean in group B
## 17.110 31.928
```

This comparison is potentially misleading because the samples are not
comparable. A one-way ANOVA is most appropriate for designed experiments
where all the factors influencing the response, other than the treatment (tool
type), are fixed by the experimenter. The tools were operated at different speeds. If speed influences lifetime, then the observed differences in lifetimes could be due to differences in speeds at which the two tool types were operated.
Fake example For example, suppose speed is inversely related to lifetime of the tool. Then, the differences seen in the boxplots above could be due to tool type B being operated at lower speeds than tool type A. To see how this is possible, consider the data plot given below, where the relationship between lifetime and speed is identical in each sample. A simple linear regression model relating hours to speed, ignoring tool type, fits the data exactly, yet the lifetime distributions for the tool types, ignoring speed, differ dramatically. (The data were generated to fall exactly on a straight line). The regression model indicates that you would expect identical mean lifetimes for tool types A and B, if they were, or could be, operated at identical speeds. This is not exactly what happens in the actual data. However, I hope the point is clear.

```r
### Example: Tools, fake
dat_toolsfake <-
  read_table2("http://statacumen.com/teach/ADA2/notes/ADA2_notes_Ch07_toolsfake.dat") %>%
  mutate(
    # make type a factor variable
    type = factor(type)
  )

## Parsed with column specification:
## cols(
##   speed = col_double(),
##   hours = col_double(),
##   type = col_character()
## )
#str(dat_toolsfake)

library(ggplot2)
p <- ggplot(dat_toolsfake, aes(x = speed, y = hours, colour = type, label = type))
p <- p + geom_text()
p <- p + labs(title="Fake tools data, hours by speed with categorical type")
print(p)
```
As noted in the Chapter 6 SAT example, you should be wary of group comparisons where important factors that influence the response have not been accounted for or controlled. In the SAT example, the differences in scores were affected by a change in the ethnic composition over time. A two-way ANOVA with two factors, time and ethnicity, gave the most sensible analysis.

For the tool lifetime problem, you should compare groups (tools) after adjusting the lifetimes to account for the influence of a measurement variable, speed. The appropriate statistical technique for handling this problem is called **analysis of covariance** (ANCOVA).

7.1 ANCOVA

A natural way to account for the effect of speed is through a multiple regression model with lifetime as the response and two predictors, speed and tool type. A binary categorical variable, here tool type, is included in the model as an indicator variable (a \{0, 1\} variable), often referred to as a dummy variable but I dislike that term.

Consider the model

\[
\text{Tool lifetime} = \beta_0 + \beta_1 \text{typeB} + \beta_2 \text{rpm} + e, \\
\]

where typeB is 0 for type A tools, and 1 for type B tools. For type A tools, the model simplifies to:

\[
\text{Tool lifetime} = \beta_0 + \beta_1 (0) + \beta_2 \text{rpm} + e = \beta_0 + \beta_2 \text{rpm} + e.
\]

For type B tools, the model simplifies to:

\[
\text{Tool lifetime} = \beta_0 + \beta_1 (1) + \beta_2 \text{rpm} + e = (\beta_0 + \beta_1) + \beta_2 \text{rpm} + e.
\]

This ANCOVA model fits two regression lines, one for each tool type, but restricts the slopes of the regression lines to be identical. To see this, let us focus on the interpretation of the regression coefficients. For the ANCOVA model,

\[
\beta_2 = \text{slope of population regression lines for tool types A and B.}
\]

and

\[
\beta_0 = \text{intercept of population regression line for tool A (called the reference group).}
\]

Given that \(\beta_0 + \beta_1 = \text{intercept of population regression line for tool B,}\) it follows that

\[
\beta_1 = \text{difference between tool B and tool A intercepts.}
\]
A picture of the population regression lines for one version of the model is given below.

![Population Regression Lines](image)

An important feature of the ANCOVA model is that β_1 measures the difference in mean response for the tool types, regardless of the speed. A test of $H_0: \beta_1 = 0$ is the primary interest, and is interpreted as a comparison of the tool types, after adjusting or allowing for the speeds at which the tools were operated.

The ANCOVA model is plausible. The relationship between lifetime and speed is roughly linear within tool types, with similar slopes but unequal intercepts across groups. The plot of the studentized residuals against the fitted values shows no gross abnormalities, but suggests that the variability about the regression line for tool type A is somewhat smaller than the variability for tool type B. The model assumes that the variability of the responses is the same for each group. The QQ-plot does not show any gross deviations from a straight line.
lifetime ~ rpm + type
, data = dat_tools
)

#library(car)
#Anova(aov(lm_l_r_t), type=3)
summary(lm_l_r_t)

Call:
lm(formula = lifetime ~ rpm + type, data = dat_tools)
##
Residuals:
Min 1Q Median 3Q Max
-5.5527 -1.7868 -0.0016 1.8395 4.9838
##
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 36.98560 3.51038 10.536 7.16e-09 ***
rpm -0.02661 0.00452 -5.887 1.79e-05 ***
typeB 15.00425 1.35967 11.035 3.59e-09 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
Residual standard error: 3.039 on 17 degrees of freedom
Multiple R-squared: 0.9003, Adjusted R-squared: 0.8886
F-statistic: 76.75 on 2 and 17 DF, p-value: 3.086e-09

Put predicted values into the dataset for plotting
dat_tools$pred <- predict(lm_l_r_t)

Example: Tool lifetime
library(ggplot2)
p <- ggplot(dat_tools, aes(x = rpm, y = lifetime, colour = type, label = type))
p <- p + geom_text()
p <- p + geom_smooth(method = lm, se = FALSE, size = 1/4)
p <- p + geom_line(aes(y = pred), linetype = 2, size = 1)
p <- p + labs(
 title = "Tools data, lifetime by rpm with categorical type",
 caption = paste0("Solid lines are regression lines fit to each group separately (interaction model). \n" , "Dashed lines are regression lines from fitted model (additive model).")
)
print(p)
Tools data, lifetime by rpm with categorical type

Solid lines are regression lines fit to each group separately (interaction model).
Dashed lines are regression lines from fitted model (additive model).

```r
# plot diagnostics
lm_diag_plots(lm_l_r_t, sw_plot_set = "simple")
```

Prof. Erik B. Erhardt
The fitted relationship for the combined data set is

\[
\text{Predicted Lifetime} = 36.99 + 15.00 \text{ typeB} - 0.0266 \text{ rpm}.
\]

Assigning the LS estimates to the appropriate parameters, the fitted relationships for the two tool types must be, for tool type B:

\[
\text{Predicted Lifetime} = (36.99 + 15.00) - 0.0266 \text{ rpm} \\
= 51.99 - 0.0266 \text{ rpm},
\]

and for tool type A:

\[
\text{Predicted Lifetime} = 36.99 - 0.0266 \text{ rpm}.
\]

The \(t \)-test of \(H_0 : \beta_1 = 0 \) checks whether the intercepts for the population regression lines are equal, assuming equal slopes. The \(t \)-test p-value < 0.0001 suggests that the population regression lines for tools A and B have unequal intercepts. The LS lines indicate that the average lifetime of either type tool decreases by 0.0266 hours for each increase in 1 RPM. Regardless of the lathe speed, the model predicts that type B tools will last 15 hours longer (i.e., the regression coefficient for the typeB predictor) than type A tools. Summarizing this result another way, the \(t \)-test suggests that there is a significant difference between the lifetimes of the two tool types, after adjusting for the effect of the speeds at which the tools were operated. The estimated difference in average lifetime is 15 hours, regardless of the lathe speed.
7.2 Generalizing the ANCOVA Model to Allow Unequal Slopes

I will present a flexible approach for checking equal slopes and equal intercepts in ANCOVA-type models. The algorithm also provides a way to build regression models in studies where the primary interest is comparing the regression lines across groups rather than comparing groups after adjusting for a regression effect. The approach can be applied to an arbitrary number of groups and predictors. For simplicity, I will consider a problem with three groups and a single regression effect.

The data1 below are the IQ scores of identical twins, one raised in a foster home (IQF) and the other raised by natural parents (IQN). The 27 pairs are divided into three groups by social status of the natural parents (H=high, M=medium, L=low). I will examine the regression of IQF on IQN for each of the three social classes.

There is no \textit{a priori} reason to assume that the regression lines for the three groups have equal slopes or equal intercepts. These are, however, reasonable hypotheses to examine. The easiest way to check these hypotheses is to fit a multiple regression model to the combined data set, and check whether certain carefully defined regression effects are zero. The most general model has six parameters, and corresponds to fitting a simple linear regression model to the three groups separately (3×2 = 6).

Two indicator variables are needed to uniquely identify each observation by social class. For example, let $I_1 = 1$ for H status families and $I_1 = 0$ otherwise, and let $I_2 = 1$ for M status families and $I_2 = 0$ otherwise. The indicators I_1 and I_2 jointly assume 3 values:

<table>
<thead>
<tr>
<th>Status</th>
<th>I_1</th>
<th>I_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>L</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>M</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>H</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

1The data were originally analyzed (and possibly falsified) by Sir Cyril Burt.

Prof. Erik B. Erhardt
Given the indicators I_1 and I_2 and the predictor IQN, define two interaction or product effects: $I_1 \times \text{IQN}$ and $I_2 \times \text{IQN}$.

7.2.1 Unequal slopes ANCOVA model

The most general model allows separate slopes and intercepts for each group:

\[
\text{IQF} = \beta_0 + \beta_1 I_1 + \beta_2 I_2 + \beta_3 \text{IQN} + \beta_4 I_1 \text{IQN} + \beta_5 I_2 \text{IQN} + e. \tag{7.1}
\]

This model is best understood by considering the three status classes separately. If status = L, then $I_1 = I_2 = 0$. For these families

\[
\text{IQF} = \beta_0 + \beta_3 \text{IQN} + e.
\]

If status = M, then $I_1 = 0$ and $I_2 = 1$. For these families

\[
\begin{align*}
\text{IQF} & = \beta_0 + \beta_2(1) + \beta_3 \text{IQN} + \beta_5 \text{IQN} + e \\
& = (\beta_0 + \beta_2) + (\beta_3 + \beta_5) \text{IQN} + e.
\end{align*}
\]

Finally, if status = H, then $I_1 = 1$ and $I_2 = 0$. For these families

\[
\begin{align*}
\text{IQF} & = \beta_0 + \beta_1(1) + \beta_3 \text{IQN} + \beta_4 \text{IQN} + e \\
& = (\beta_0 + \beta_1) + (\beta_3 + \beta_4) \text{IQN} + e.
\end{align*}
\]

The regression coefficients β_0 and β_3 are the intercept and slope for the L status population regression line. The other parameters measure differences in intercepts and slopes across the three groups, using L status families as a baseline or reference group. In particular:

$\beta_1 =$ difference between the intercepts of the H and L population regression lines.

$\beta_2 =$ difference between the intercepts of the M and L population regression lines.

$\beta_4 =$ difference between the slopes of the H and L population regression lines.

$\beta_5 =$ difference between the slopes of the M and L population regression lines.
The plot gives a possible picture of the population regression lines corresponding to the general model (7.1).

We fit the general model to the twins data.

```r
### Example: Twins
dat_twins <-
  read_table2("http://statacumen.com/teach/ADA2/notes/ADA2_notes_Ch07_twins.dat") %>%
  mutate(
    status = factor(status),
    # set "L" as baseline level
    , status = relevel(status, "L")
  )

# Parsed with column specification:
# cols(
#   IQF = col_double(),
#   IQN = col_double(),
#   status = col_character()
# )
str(dat_twins)
```

Classes 'spec_tbl_df', 'tbl_df', 'tbl' and 'data.frame': 27 obs. of 3 variables:
$ IQF : num 82 80 88 108 116 117 132 71 75 93 ...
$ IQN : num 82 90 91 115 115 129 131 78 79 82 ...
$ status: Factor w/ 3 levels "L","H","M": 2 2 2 2 2 2 2 3 3 3 ...
7.2: Generalizing the ANCOVA Model to Allow Unequal Slopes

```r
lm_f_n_s_ns <-
  lm(
      IQF ~ IQN * status
    , data = dat_twins
  )
library(car)
Anova(aov(lm_f_n_s_ns), type=3)
## Anova Table (Type III tests)
##
## Response: IQF
## Sum Sq Df F value Pr(>F)
## (Intercept) 11.61 1 0.1850 0.6715
## IQN 1700.39 1 27.1035 3.69e-05 ***
## status 8.99 2 0.0716 0.9311
## IQN:status 0.93 2 0.0074 0.9926
## Residuals 1317.47 21
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

summary(lm_f_n_s_ns)
##
## Call:
## lm(formula = IQF ~ IQN * status, data = dat_twins)

## Residuals:
## Min 1Q Median 3Q Max
## -14.479 -5.248 -0.155 4.582 13.798

## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 7.20461 16.75126 0.430 0.672
## IQN 0.94842 0.18218 5.206 3.69e-05 ***
## statusH -9.07665 24.44870 -0.371 0.714
## statusM -6.38859 31.02087 -0.206 0.839
## IQN:statusH 0.02914 0.24458 0.119 0.906
## IQN:statusM 0.02414 0.33933 0.071 0.944

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

## Residual standard error: 7.921 on 21 degrees of freedom
## Multiple R-squared: 0.8041, Adjusted R-squared: 0.7574
## F-statistic: 17.24 on 5 and 21 DF, p-value: 8.31e-07

# Put predicted values into the dataset for plotting
data_twins$pred <- predict(lm_f_n_s_ns)
```

UNM, Stat 428/528 ADA2
Solid lines are regression lines fit to each group separately (interaction model).
Dashed lines are regression lines from fitted model (interaction model).

plot diagnostics
lm_diag_plots(lm_f_n_s_ns, sw_plot_set = "simple")
The natural way to express the fitted model is to give separate prediction equations for the three status groups. Here is an easy way to get the separate fits. For the general model (7.1), the predicted IQF satisfies

$$\text{Predicted IQF} = (\text{Intercept} + \text{Coeff for Status Indicator}) + (\text{Coeff for Status Product Effect} + \text{Coeff for IQN}) \times \text{IQN}.$$

For the baseline group, use 0 as the coefficients for the status indicator and product effect.

Thus, for the baseline group with status = L,

$$\text{Predicted IQF} = 7.20 + 0 + (0.948 + 0) \times \text{IQN} = 7.20 + 0.948 \times \text{IQN}.$$

For the M status group with indicator I_2 and product effect $I_2 \times \text{IQN}$:

$$\text{Predicted IQF} = 7.20 - 6.39 + (0.948 + 0.024) \times \text{IQN} = 0.81 + 0.972 \times \text{IQN}.$$

For the H status group with indicator I_1 and product effect $I_1 \times \text{IQN}$:

$$\text{Predicted IQF} = 7.20 - 9.08 + (0.948 + 0.029) \times \text{IQN} = -1.88 + 0.977 \times \text{IQN}.$$

The LS lines are identical to separately fitting simple linear regressions to the three groups.
7.2.2 Equal slopes ANCOVA model

There are three other models of potential interest besides the general model. The **equal slopes** ANCOVA model

\[
\text{IQF} = \beta_0 + \beta_1 I_1 + \beta_2 I_2 + \beta_3 \text{IQN} + e
\]

is a special case of (7.1) with \(\beta_4 = \beta_5 = 0\) (no interaction). In the ANCOVA model, \(\beta_3\) is the slope for all three regression lines. The other parameters have the same interpretation as in the general model (7.1), see the plot above. Output from the ANCOVA model is given below.

```
lm_f_n_s <-
  lm(
    IQF ~ IQN + status,
    , data = dat_twins
  )
library(car)
Anova(aov(lm_f_n_s), type=3)
## Anova Table (Type III tests)
##
## Response: IQF
```

![Plot showing the ANCOVA model](plot.png)
7.2: Generalizing the ANCOVA Model to Allow Unequal Slopes

Sum Sq Df F value Pr(>F)
(Intercept) 18.2 1 0.3181 0.5782
IQN 4674.7 1 81.5521 5.047e-09 ***
status 175.1 2 1.5276 0.2383
Residuals 1318.4 23

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

summary(lm_f_n_s)

Call:
lm(formula = IQF ~ IQN + status, data = dat_twins)
##
Residuals:
Min 1Q Median 3Q Max
-14.8235 -5.2366 -0.1111 4.4755 13.6978
##
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 5.6188 9.9628 0.564 0.578
IQN 0.9658 0.1069 9.031 5.05e-09 ***
statusH -6.2264 3.9171 -1.590 0.126
statusM -4.1911 3.6951 -1.134 0.268

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
Residual standard error: 7.571 on 23 degrees of freedom
Multiple R-squared: 0.8039, Adjusted R-squared: 0.7784
F-statistic: 31.44 on 3 and 23 DF, p-value: 2.604e-08

Put predicted values into the dataset for plotting
dat_twins$pred <- predict(lm_f_n_s)

library(ggplot2)
p <- ggplot(dat_twins, aes(x = IQN, y = IQF, colour = status, label = status))
p <- p + geom_text()
p <- p + geom_smooth(method = lm, se = FALSE, size = 1/4)
p <- p + geom_line(aes(y = pred), linetype = 2, size = 1)
p <- p + labs(
 title = "Twins data, IQF by IQN with categorical status",
 caption = paste0("Solid lines are regression lines fit to each group separately (interaction model).\n" , "Dashed lines are regression lines from fitted model (additive model.).")
)
equal axes since x- and y-variables are same quantity
dat.range <- range(dat_twins[,c("IQF","IQN")])
p <- p + xlim(dat.range) + ylim(dat.range) + coord_equal(ratio=1)
print(p)
Twins data, IQF by IQN with categorical status

Solid lines are regression lines fit to each group separately (interaction model).
Dashed lines are regression lines from fitted model (additive model).

```r
# plot diagnostics
lm_diag_plots(lm_f_n_s, sw_plot_set = "simple")
```
For the ANCOVA model, the predicted IQF for the three groups satisfies

\[
\text{Predicted IQF} = (\text{Intercept} + \text{Coeff for Status Indicator}) + (\text{Coeff for IQN}) \times \text{IQN}.
\]

As with the general model, use 0 as the coefficients for the status indicator and product effect for the baseline group.

For L status families:

\[
\text{Predicted IQF} = 5.62 + 0.966 \times \text{IQN},
\]

for M status:

\[
\begin{align*}
\text{Predicted IQF} &= 5.62 - 4.19 + 0.966 \times \text{IQN} \\
&= 1.43 + 0.966 \times \text{IQN},
\end{align*}
\]

and for H status:

\[
\begin{align*}
\text{Predicted IQF} &= 5.62 - 6.23 + 0.966 \times \text{IQN} \\
&= -0.61 + 0.966 \times \text{IQN}.
\end{align*}
\]
7.2.3 Equal slopes and equal intercepts ANCOVA model

The model with equal slopes and equal intercepts

\[\text{IQF} = \beta_0 + \beta_3 \text{IQN} + e \]

is a special case of the ANCOVA model with \(\beta_1 = \beta_2 = 0 \). This model does not distinguish among social classes. The common intercept and slope for the social classes are \(\beta_0 \) and \(\beta_3 \), respectively.

The predicted IQF for this model is

\[\text{IQF} = 9.21 + 0.901 \text{IQN} \]

for each social class.

```r
lm_f_n <- lm(IQF ~ IQN, data = dat_twins)
#library(car)
#Anova(aov(lm_f_n), type=3)
summary(lm_f_n)
```

- Call:
 - `lm(formula = IQF ~ IQN, data = dat_twins)`
- Residuals:
 - Min 1Q Median 3Q Max
 - -11.3512 -5.7311 0.0574 4.3244 16.3531
- Coefficients:
 - Estimate Std. Error t value Pr(>|t|)
 - (Intercept) 9.20760 9.29990 0.990 0.332
 - IQN 0.90144 0.09633 9.358 1.2e-09 ***
- Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
- Residual standard error: 7.729 on 25 degrees of freedom
- Multiple R-squared: 0.7779, Adjusted R-squared: 0.769
- F-statistic: 87.56 on 1 and 25 DF, p-value: 1.204e-09

Put predicted values into the dataset for plotting
dat_twins$pred <- predict(lm_f_n)
library(ggplot2)
p <- ggplot(dat_twins, aes(x = IQN, y = IQF, colour = status, label = status))
p <- p + geom_text()
p <- p + geom_smooth(method = lm, se = FALSE, size = 1/4)
p <- p + geom_line(aes(y = pred), linetype = 2, size = 1)
p <- p + labs(title = "Twins data, IQF by IQN with categorical status"
 , caption = paste("Solid lines are regression lines fit to each group separately (interaction model).
 Dashed line is regression line from fitted model (equal slope and intercepts model)."))
equal axes since x- and y-variables are same quantity
dat.range <- range(dat_twins[,c("IQF","IQN")])
p <- p + xlim(dat.range) + ylim(dat.range) + coord_equal(ratio=1)
print(p)

Twins data, IQF by IQN with categorical status

plot diagnostics
lm_diag_plots(lm_f_n, sw_plot_set = "simple")
7.2.4 No slopes, but intercepts ANCOVA model

The model with no predictor (IQN) effects

\[
\text{IQF} = \beta_0 + \beta_1 I_1 + \beta_2 I_2 + e
\]

is a special case of the ANCOVA model with \(\beta_3 = 0\). In this model, social status has an effect on IQF but IQN does not. This model of parallel regression lines with zero slopes is identical to a one-way ANOVA model for the three social classes, where the intercepts play the role of the population means, see the plot below.

For the ANOVA model, the predicted IQF for the three groups satisfies

\[
\text{Predicted IQF} = \text{Intercept} + \text{Coeff for Status Indicator}
\]

Again, use 0 as the coefficients for the baseline status indicator.

For L status families:

\[
\text{Predicted IQF} = 93.71,
\]
for M status:

\[
\text{Predicted IQF} = 93.71 - 4.88 \\
= 88.83,
\]

and for H status:

\[
\text{Predicted IQF} = 93.71 + 9.57 \\
= 103.28.
\]

The predicted IQFs are the mean IQFs for the three groups.

```r
lm_f_s <- lm(IQF ~ status, data = dat_twins)
library(car)
Anova(aov(lm_f_s), type=3)
## Anova Table (Type III tests)
##
## Response: IQF
## Sum Sq Df F value Pr(>F)
## (Intercept) 122953 1 492.3772 <2e-16 ***
## status 732 2 1.4648 0.2511
## Residuals 5993 24
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
summary(lm_f_s)
##
## Call:
## lm(formula = IQF ~ status, data = dat_twins)
##
## Residuals:
## Min 1Q Median 3Q Max
## -30.714 -12.274 2.286 12.500 28.714
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 93.714 4.223 22.190 <2e-16 ***
## statusH 9.571 7.315 1.308 0.203
## statusM -4.881 7.711 -0.633 0.533
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```
Residual standard error: 15.8 on 24 degrees of freedom
Multiple R-squared: 0.1088, Adjusted R-squared: 0.03452
F-statistic: 1.465 on 2 and 24 DF, p-value: 0.2511

Put predicted values into the dataset for plotting
dat_twins$pred <- predict(lm_f_s)

library(ggplot2)
p <- ggplot(dat_twins, aes(x = IQN, y = IQF, colour = status, label = status))
p <- p + geom_text()
p <- p + geom_smooth(method = lm, se = FALSE, size = 1/4)
p <- p + geom_line(aes(y = pred), linetype = 2, size = 1)
p <- p + labs(
 title = "Twins data, IQF by IQN with categorical status"
)

equal axes since x- and y-variables are same quantity
dat.range <- range(dat_twins[,c("IQF","IQN")])
p <- p + xlim(dat.range) + ylim(dat.range) + coord_equal(ratio=1)
print(p)

plot diagnostics
lm_diag_plots(lm_f_s, sw_plot_set = "simple")
QQ Plot

Residuals vs Fitted

Cook's distance

Cook's dist vs Leverage \(h_i/(1 - h_i) \)

Residuals vs status

Prof. Erik B. Erhardt
7.3 Relating Models to Two-Factor ANOVA

Recall the multiple regression formulation of the general model (7.1):

\[IQF = \beta_0 + \beta_1 I_1 + \beta_2 I_2 + \beta_3 IQN + \beta_4 I_1 IQN + \beta_5 I_2 IQN + e. \]

(7.2)

If you think of \(\beta_0 \) as a grand mean, \(\beta_1 I_1 + \beta_2 I_2 \) as the status effect (i.e., the two indicators \(I_1 \) and \(I_2 \) allow you to differentiate among social classes), \(\beta_3 \) IQN as the IQN effect and \(\beta_4 I_1 \) IQN + \(\beta_5 I_2 \) IQN as the status by IQN interaction, then you can represent the model as

\[IQF = \text{Grand Mean} + \text{Status Effect} + \text{IQN effect} \]
\[+ \text{Status} \times \text{IQN interaction} + \text{Residual}. \]

(7.3)

This representation has the same form as a two-factor ANOVA model with interaction, except that IQN is a quantitative effect rather than a qualitative (i.e., categorical) effect. The general model has the same structure as a two-factor interaction ANOVA model because the plot of the population means allows non-parallel profiles. However, the general model is a special case of the two-factor interaction ANOVA model because it restricts the means to change linearly with IQN.

The ANCOVA model has main effects for status and IQN but no interaction:

\[IQF = \text{Grand Mean} + \text{Status Effect} + \text{IQN effect} + \text{Residual}. \]

(7.4)

The ANCOVA model is a special case of the additive two-factor ANOVA model because the plot of the population means has parallel profiles, but is not equivalent to the additive two-factor ANOVA model.

The model with equal slopes and intercepts has no main effect for status nor an interaction between status and IQN:

\[IQF = \text{Grand Mean} + \text{IQN effect} + \text{Residual}. \]

(7.5)

The one-way ANOVA model has no main effect for IQN nor an interaction between status and IQN:

\[IQF = \text{Grand Mean} + \text{Status Effect} + \text{Residual}. \]

(7.6)
I will expand on these ideas later, as they are useful for understanding the connections between regression and ANOVA models.
7.4 Choosing Among Models

I will suggest a backward sequential method to select which of models (7.1), (7.4), and (7.5) fits best. You would typically be interested in the one-way ANOVA model (7.6) only when the effect of IQN was negligible.

Step 1: Fit the full model (7.1) and test the hypothesis of equal slopes \(H_0 : \beta_4 = \beta_5 = 0. \) (aside: \(t \)-tests are used to test either \(\beta_4 = 0 \) or \(\beta_5 = 0. \)) To test \(H_0 \), eliminate the predictor variables \(I_1 \) IQN and \(I_2 \) IQN associated with \(\beta_4 \) and \(\beta_5 \) from the full model (7.1). Then fit the reduced model (7.4) with equal slopes. Reject \(H_0 : \beta_4 = \beta_5 = 0 \) if the increase in the Residual SS obtained by deleting \(I_1 \) IQN and \(I_2 \) IQN from the full model is significant. Formally, compute the \(F \)-statistic:

\[
F_{obs} = \frac{(\text{ERROR SS for reduced model} - \text{ERROR SS for full model})/2}{\text{ERROR MS for full model}}
\]

and compare it to an upper-tail critical value for an \(F \)-distribution with 2 and \(df \) degrees of freedom, where \(df \) is the Residual \(df \) for the full model. The \(F \)-test is a direct extension of the single degree-of-freedom \(F \)-tests in the stepwise fits. A p-value for \(F \)-test is obtained from `library(car)` with `Anova(aov(LMOBJECT), type=3)` for the interaction. If \(H_0 \) is rejected, stop and conclude that the population regression lines have different slopes (and then I do not care whether the intercepts are equal). Otherwise, proceed to step 2.

Step 2: Fit the equal slopes or ANCOVA model (7.4) and test for equal intercepts \(H_0 : \beta_1 = \beta_2 = 0. \) Follow the procedure outlined in Step 1, treating the ANCOVA model as the full model and the model \(IQF = \beta_0 + \beta_3 \) IQN + \(e \) with equal slopes and intercepts as the reduced model. See the intercept term using `library(car)` with `Anova(aov(LMOBJECT), type=3)`. If \(H_0 \) is rejected, conclude that that population regression lines are parallel with unequal intercepts. Otherwise, conclude that regression lines are identical.

Step 3: Estimate the parameters under the appropriate model, and conduct a diagnostic analysis. Summarize the fitted model by status class.
A comparison of regression lines across \(k > 3 \) groups requires \(k-1 \) indicator variables to define the groups, and \(k-1 \) interaction variables, assuming the model has a single predictor. The comparison of models mimics the discussion above, except that the numerator of the \(F \)-statistic is divided by \(k-1 \) instead of 2, and the numerator \(df \) for the \(F \)-test is \(k-1 \) instead of 2. If \(k = 2 \), the \(F \)-tests for comparing the three models are equivalent to \(t \)-tests given with the parameter estimates summary. For example, recall how you tested for equal intercepts in the tools problems.

The plot of the twins data shows fairly linear relationships within each social class. The linear relationships appear to have similar slopes and similar intercepts. The p-value for testing the hypothesis that the slopes of the population regression lines are equal is essentially 1. The observed data are consistent with the reduced model of equal slopes.

The p-value for comparing the model of equal slopes and equal intercepts to the ANCOVA model is 0.238, so there is insufficient evidence to reject the reduced model with equal slopes and intercepts. The estimated regression line, regardless of social class, is:

\[
\text{Predicted IQF} = 9.21 + 0.901 \times \text{IQN}.
\]

There are no serious inadequacies with this model, based on a diagnostic analysis (not shown).

An interpretation of this analysis is that the natural parents’ social class has no impact on the relationship between the IQ scores of identical twins raised apart. What other interesting features of the data would be interesting to explore? For example, what values of the intercept and slope of the population regression line are of intrinsic interest?
7.4.1 Simultaneous testing of regression parameters

In the twins example, we have this full interaction model,

$$\text{IQF} = \beta_0 + \beta_1 I_1 + \beta_2 I_2 + \beta_3 \text{IQN} + \beta_4 I_1 \text{IQN} + \beta_5 I_2 \text{IQN} + e, \quad (7.7)$$

where $I_1 = 1$ indicates H, and $I_2 = 1$ indicates M, and L is the baseline status.

Consider these two specific hypotheses:

1. H_0: equal regression lines for status M and L
2. H_0: equal regression lines for status M and H

That is, the intercept and slope for the regression lines are equal for the pairs of status groups.

First, it is necessary to formulate these hypotheses in terms of testable parameters. That is, find the β values that make the null hypothesis true in terms of the model equation.

1. $H_0 : \beta_2 = 0$ and $\beta_5 = 0$
2. $H_0 : \beta_1 = \beta_2$ and $\beta_4 = \beta_5$

Using linear model theory, there are methods for testing these multiple-parameter hypothesis tests.

One strategy is to use the Wald test of null hypothesis $r\hat{\beta} = r$, where r is a matrix of contrast coefficients (typically +1 or −1), $\hat{\beta}$ is our vector of regression β coefficients, and r is a hypothesized vector of what the linear system $r\hat{\beta}$ equals.

For our first hypothesis test, the linear system we’re testing in matrix notation is

$$\begin{bmatrix} 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \beta_0 \\ \beta_1 \\ \beta_2 \\ \beta_3 \\ \beta_4 \\ \beta_5 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}. \quad (7.8)$$
Single hypothesis

Let’s go about testing another hypothesis, first, then we’ll test our two simultaneous hypotheses above.

- H_0: equal slopes for all status groups
- $H_0: \beta_4 = \beta_5 = 0$

```r
lm_f_n_s_ns <-
  lm(
    IQF ~ IQN * status
    , data = dat_twins
  )
library(car)
Anova(aov(lm_f_n_s_ns), type=3)
## Anova Table (Type III tests)
##
## Response: IQF
## Sum Sq Df F value Pr(>F)
## (Intercept) 11.61 1 0.1850 0.6715
## IQN 1700.39 1 27.1035 3.69e-05 ***
## status 8.99 2 0.0716 0.9311
## IQN:status 0.93 2 0.0074 0.9926
## Residuals 1317.47 21
##---
## Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
# beta coefficients (term positions: 1, 2, 3, 4, 5, 6)
coef(lm_f_n_s_ns)
## (Intercept) IQN statusH statusM IQN:statusH
## 7.20460986 0.94842244 -9.07665352 -6.38858548 0.02913971
## IQN:statusM
## 0.02414450
```

The test for the interaction above (IQN:status) has a p-value=0.9926, which indicates that common slope is reasonable. In the **Wald test** notation, we want to test whether those last two coefficients (term positions 5 and 6) both equal 0. Here we get the same result as the ANOVA table.
```r

test_wald <-
  wald.test(
    b = coef(lm_f_n_s_ns) - coef_test_values,
    Sigma = vcov(lm_f_n_s_ns),
    Terms = c(5, 6)
  )

test_wald
## Wald test:
## ------------
##
## Chi-squared test:
## X2 = 0.015, df = 2, P(> X2) = 0.99
```

Two simultaneous hypotheses

Now to our two simultaneous hypotheses. In Hypothesis 1 we are testing $\beta_2 = 0$ and $\beta_5 = 0$, which are the 3rd and 6th position for coefficients in our original equation (7.7). However, we need to choose the correct positions based on the `coef()` order, and these are positions 4 and 6. The *Wald test* result below has a large p-value=0.55 suggesting that M and L can be described by the same regression line, that is, they can have the same intercept and slope.

```r
library(aod)  # for wald.test()
coef_test_values <-
    rep(0, length(coef(lm_f_n_s_ns)))

test_wald <-
    wald.test(
        b = coef(lm_f_n_s_ns) - coef_test_values
        , Sigma = vcov(lm_f_n_s_ns)
        , Terms = c(4, 6)
    )
test_wald
```

```
## Wald test:
## ----------
##
## Chi-squared test:
## X2 = 1.2, df = 2, P(> X2) = 0.55
```

We can also define this in terms of Equation (7.8), using the $\mathbf{r} \beta = \mathbf{r}$ notation and defining the \mathbf{r} matrix and \mathbf{r} vectors explicitly.

```r
# Another way to do this is to define the matrix r and vector r, manually.
# We're testing whether the mR * beta = vR
mR <-
    rbind(
        c(0, 0, 0, 1, 0, 0)
        , c(0, 0, 0, 0, 0, 1)
    ) %>%
    as.matrix()
mR  
```

```
## [1,] 0 0 0 1 0 0
## [2,] 0 0 0 0 0 1
vR <- c(0, 0)
vR
```

```
## [1] 0 0
test_wald <-
    wald.test(
        b = coef(lm_f_n_s_ns)
    )
```
\[\Sigma = \text{vcov}(\text{lm}_f_n_s_ns) \]
\[L = mR \]
\[H_0 = vR \]

\text{test_wald}

Wald test:
[--]--
Chi-squared test:
X2 = 1.2, df = 2, P(> X2) = 0.55
Two simultaneous hypotheses, another example

In Hypothesis 2 we are testing $\beta_1 - \beta_2 = 0$ and $\beta_4 - \beta_5 = 0$ which are the difference of the 2nd and 3rd coefficients and the difference of the 5th and 6th coefficients. However, we need to choose the correct positions based on the `coef()` order, and these are positions 3 and 4, and 5 and 6. The large p-value=0.91 suggests that M and H can be described by the same regression line, same slope and intercept.

```r
library(aod) # for wald.test()
mR <-
  rbind(
    c(0, 0, 1, -1, 0, 0),
    c(0, 0, 0, 0, 1, -1)
  )
  as.matrix()
mR
## [1,] 0 0 1 -1 0 0
## [2,] 0 0 0 0 1 -1
vR <- c(0, 0)

vR
## [1] 0 0
test_wald <-
  wald.test(
    b = coef(lm_f_n_s_ns),
    Sigma = vcov(lm_f_n_s_ns),
    L = mR,
    H0 = vR
  )
test_wald
## Wald test:
## ----------
## ## Chi-squared test:
## X2 = 0.19, df = 2, P(> X2) = 0.91
```

The results of these tests are not surprising, given our previous analysis where we found that the status effect is not significant for all three groups.

Any simultaneous linear combination of parameters can be tested in this way.
7.5 Comments on Comparing Regression Lines

In the twins example, I defined two indicator variables (plus two interaction variables) from an ordinal categorical variable: status (H, M, L). Many researchers would assign numerical codes to the status groups and use the coding as a predictor in a regression model. For status, a “natural” coding might be to define NSTAT=0 for L, 1 for M, and 2 for H status families. This suggests building a multiple regression model with a single status variable (i.e., single df):

\[
IQF = \beta_0 + \beta_1 IQN + \beta_2 NSTAT + e.
\]

If you consider the status classes separately, the model implies that

\[
\begin{align*}
IQF &= \beta_0 + \beta_1 IQN + \beta_2(0) + e = \beta_0 + \beta_1 IQN + e \quad \text{for L status,} \\
IQF &= \beta_0 + \beta_1 IQN + \beta_2(1) + e = (\beta_0 + \beta_2) + \beta_1 IQN + e \quad \text{for M status,} \\
IQF &= \beta_0 + \beta_1 IQN + \beta_2(2) + e = (\beta_0 + 2\beta_2) + \beta_1 IQN + e \quad \text{for H status.}
\end{align*}
\]

The model assumes that the IQF by IQN regression lines are parallel for the three groups, and are separated by a constant \(\beta_2 \). This model is more restrictive (and less reasonable) than the ANCOVA model with equal slopes but arbitrary intercepts. Of course, this model is easier to work with because it requires keeping track of only one status variable instead of two status indicators.

A plot of the population regression lines under this model is given above, assuming \(\beta_2 < 0 \).

7.6 Three-way interaction

If a two-way interaction interpretation is that the effect of one covariate on the response depends on the value (or level) of another covariate, then a three-way interaction is more of the same. A three-way interaction means that the effect of one covariate on the response depends on the combination of the values of two other covariates. High-order interactions become increasingly complex to interpret.

In this example, a three-way interaction is illustrated with two categorical variables and one continuous variable. Let a take values 0 or 1 (it’s an indicator variable), let b take values 0 or 1, and let c be a continuous variable taking a range of numeric values.

Below are five models:

1. **Interactions: ab.** All lines parallel, different intercepts for each (a, b) combination.
2. **Interactions: ab, ac.** (a, c) combinations have parallel lines, different intercepts for each (a, b) combination.
3. **Interactions: ab, bc.** (b, c) combinations have parallel lines, different intercepts for each (a, b) combination.
4. **Interactions: ab, ac, bc.** All combinations may have different slope lines with different intercepts, but difference in slope between $b = 0$ and $b = 1$ is similar for each a group (and vice versa).
5. **Interactions: ab, ac, bc, abc.** All combinations may have different slope lines with different intercepts.

<table>
<thead>
<tr>
<th>Model</th>
<th>Intercepts</th>
<th>Slopes for c</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>$y = \beta_0 + \beta_1a + \beta_2b + \beta_3ab$</td>
<td>$+\beta_4c$</td>
</tr>
<tr>
<td>(2)</td>
<td>$y = \beta_0 + \beta_1a + \beta_2b + \beta_3ab$</td>
<td>$+\beta_4c + \beta_5ac$</td>
</tr>
<tr>
<td>(3)</td>
<td>$y = \beta_0 + \beta_1a + \beta_2b + \beta_3ab$</td>
<td>$+\beta_4c + \beta_5ac + \beta_6bc$</td>
</tr>
<tr>
<td>(4)</td>
<td>$y = \beta_0 + \beta_1a + \beta_2b + \beta_3ab$</td>
<td>$+\beta_4c + \beta_5ac + \beta_6bc + \beta_7abc$</td>
</tr>
</tbody>
</table>

```r
X <- bind_cols(
  one = rep(1, 2^3)
, expand.grid(
```
a = c(0, 1)
b = c(0, 1)
c = c(0, 1)

mutate(
 ab = a * b,
 ac = a * c,
 bc = b * c,
 abc = a * b * c
)

reorder columns to be consistent with table above
select(
 one, a, b, ab, c, ac, bc, abc
)

vbeta <- matrix(c(3, -1, 2, 2, 5, -4, -2, 8), ncol = 1)
rownames(vbeta) <- paste("beta", 0:7, sep="")

Beta <- matrix(vbeta, nrow = dim(vbeta)[1], ncol = 5)
rownames(Beta) <- rownames(vbeta)

Beta vector for each model
Beta[c(6,7,8), 1] <- 0
Beta[c(7,8), 2] <- 0
Beta[c(6, 8), 3] <- 0
Beta[c(8), 4] <- 0
colnames(Beta) <- 1:5

Calculate response values
Y <- X %*% Beta

YX <-
 Y %>%
 as_tibble() %>%
 bind_cols(
 obs = 1:nrow(X)
) %>%
 pivot_longer(
 cols = -one_of("obs")
) %>%
 arrange(
 Model, obs
) %>%
 bind_cols(
 do.call(
 rbind,
 replicate(
 5,
 X %>%
 as_tibble() %>%
 select(a, b, c)
 , simplify = FALSE
)
)
 mutate(
 a = factor(a),
 b = factor(b),
 c = factor(c)
)

YX

A tibble: 40 x 6
obs Model Y a b c
<int> <chr> <dbl> <fct> <fct> <fct>
1 1 1 3 0 0 0
2 2 1 2 1 0 0
3 3 1 5 0 1 0
4 4 1 6 1 1 0
5 5 1 8 0 0 1
6 6 1 7 1 0 1
These are the β values used for this example.

<table>
<thead>
<tr>
<th>β_0</th>
<th>β_1</th>
<th>β_2</th>
<th>β_3</th>
<th>β_4</th>
<th>β_5</th>
<th>β_6</th>
<th>β_7</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>-1</td>
<td>2</td>
<td>2</td>
<td>5</td>
<td>-4</td>
<td>-2</td>
<td>8</td>
</tr>
</tbody>
</table>

```r
library(ggplot2)
p <- ggplot(YX, aes(x = c, y = Y, group = a))
#p <- p + geom_point()
p <- p + geom_line(aes(linetype = a))
p <- p + facet_grid(Model ~ b, labeller = "label_both")
print(p)
```
Three-way Interaction

<table>
<thead>
<tr>
<th>b: 0</th>
<th>b: 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model 1</td>
<td>Model 1</td>
</tr>
<tr>
<td>Model 2</td>
<td>Model 2</td>
</tr>
<tr>
<td>Model 3</td>
<td>Model 3</td>
</tr>
<tr>
<td>Model 4</td>
<td>Model 4</td>
</tr>
<tr>
<td>Model 5</td>
<td>Model 5</td>
</tr>
</tbody>
</table>

Y

\(c\)

Prof. Erik B. Erhardt