Chapter 5
Paired Experiments and Randomized Block Experiments

Contents
5.1 Analysis of a Randomized Block Design 111
5.2 Extending the One-Factor Design to Multiple Factors . . 124
 5.2.1 Example: Beetle insecticide two-factor design 125
 5.2.2 The Interaction Model for a Two-Factor Experiment . . 130
 5.2.3 Example: Survival Times of Beetles 138
 5.2.4 Example: Output voltage for batteries 151
 5.2.5 emmeans and Bonferroni corrections for multi-way interac-
 tion models . 158
 5.2.6 Checking assumptions in a two-factor experiment . . . 160
 5.2.7 A Remedy for Non-Constant Variance 164
5.3 Multiple comparisons: balanced (means) vs unbalanced
 (emmeans) . 173
5.4 Unbalanced Two-Factor Designs and Analysis 174
 5.4.1 Example: Rat insulin . 174
5.5 Writing factor model equations and interpreting coeffi-
 cients . 186

Prof. Erik B. Erhardt
A randomized block design is often used instead of a completely randomized design in studies where there is extraneous variation among the experimental units that may influence the response. A significant amount of the extraneous variation may be removed from the comparison of treatments by partitioning the experimental units into fairly homogeneous subgroups or blocks.

For example, suppose you are interested in comparing the effectiveness of four antibiotics for a bacterial infection. The recovery time after administering an antibiotic may be influenced by a patient’s general health, the extent of their infection, or their age. Randomly allocating experimental subjects to the treatments (and then comparing them using a one-way ANOVA) may produce one treatment having a “favorable” sample of patients with features that naturally lead to a speedy recovery. Alternatively, if the characteristics that affect the recovery time are spread across treatments, then the variation within samples due to these uncontrolled features can dominate the effects of the treatment, leading to an inconclusive result.

A better way to design this experiment would be to block the subjects into groups of four patients who are alike as possible on factors other than the treatment that influence the recovery time. The four treatments are then randomly assigned to the patients (one per patient) within a block, and the recovery time measured. The blocking of patients usually produces a more sensitive comparison of treatments than does a completely randomized design because the variation in recovery times due to the blocks is eliminated from the comparison of treatments.

A randomized block design is a paired experiment when two treatments are compared. The usual analysis for a paired experiment is a parametric or
Randomized block (RB) designs were developed to account for soil fertility gradients in agricultural experiments. The experimental field would be separated into strips (blocks) of fairly constant fertility. Each strip is partitioned into equal size plots. The treatments, say varieties of corn, are randomly assigned to the plots, with each treatment occurring the same number of times (usually once) per block. All other factors that are known to influence the response would be controlled or fixed by the experimenter. For example, when comparing the mean yields, each plot would receive the same type and amount of fertilizer and the same irrigation plan.

The discussion will be limited to randomized block experiments with one factor. Two or more factors can be used with a randomized block design. For example, the agricultural experiment could be modified to compare four combinations of two corn varieties and two levels of fertilizer in each block instead of the original four varieties. In certain experiments, each experimental unit receives each treatment. The experimental units are “natural” blocks for the analysis.
Example: Comparison of Treatments for Itching Ten

1 male volunteers between 20 and 30 years old were used as a study group to compare seven treatments (5 drugs, a placebo, and no drug) to relieve itching. Each subject was given a different treatment on seven study days. The time ordering of the treatments was randomized across days. Except on the no-drug day, the subjects were given the treatment intravenously, and then itching was induced on their forearms using an effective itch stimulus called cowage. The subjects recorded the duration of itching, in seconds. The data are given in the table below. From left to right the drugs are: papaverine, morphine, aminophylline, pentobarbitol, tripelenamine.

The volunteers in the study were treated as blocks in the analysis. At best, the volunteers might be considered a representative sample of males between the ages of 20 and 30. This limits the extent of inferences from the experiment. The scientists can not, without sound medical justification, extrapolate the results to children or to senior citizens.

```r
library(tidyverse)
# load ada functions
source("ada_functions.R")

### Example: Itching
dat_itch <- read_csv("http://statacumen.com/teach/ADA2/notes/ADA2_notes_Ch05_itch.csv")

# Parsed with column specification:
# cols(
#   Patient = col_double(),
#   Nodrug = col_double(),
#   Placebo = col_double(),
#   Papv = col_double(),
#   Morp = col_double(),
#   Amino = col_double(),
#   Pento = col_double(),
#   Tripel = col_double()
# )

1 Beefcher, 1959

UNM, Stat 428/528 ADA2
<table>
<thead>
<tr>
<th>Patient</th>
<th>Nodrug</th>
<th>Placebo</th>
<th>Papv</th>
<th>Morp</th>
<th>Amino</th>
<th>Pento</th>
<th>Tripel</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>174</td>
<td>263</td>
<td>105</td>
<td>199</td>
<td>141</td>
<td>108</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>224</td>
<td>213</td>
<td>103</td>
<td>143</td>
<td>168</td>
<td>341</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>260</td>
<td>231</td>
<td>145</td>
<td>113</td>
<td>78</td>
<td>159</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>255</td>
<td>291</td>
<td>103</td>
<td>225</td>
<td>164</td>
<td>135</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>165</td>
<td>168</td>
<td>144</td>
<td>176</td>
<td>127</td>
<td>239</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>237</td>
<td>121</td>
<td>94</td>
<td>144</td>
<td>114</td>
<td>136</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>191</td>
<td>137</td>
<td>35</td>
<td>87</td>
<td>96</td>
<td>140</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>100</td>
<td>102</td>
<td>133</td>
<td>120</td>
<td>222</td>
<td>134</td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td>115</td>
<td>89</td>
<td>83</td>
<td>100</td>
<td>165</td>
<td>185</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>189</td>
<td>433</td>
<td>237</td>
<td>173</td>
<td>168</td>
<td>188</td>
</tr>
</tbody>
</table>
5.1 Analysis of a Randomized Block Design

Assume that you designed a randomized block experiment with $I$ blocks and $J$ treatments, where each treatment occurs once in each block. Let $y_{ij}$ be the response for the $j^{th}$ treatment within the $i^{th}$ block. The model for the experiment is

$$y_{ij} = \mu_{ij} + e_{ij},$$

where $\mu_{ij}$ is the population mean response for the $j^{th}$ treatment in the $i^{th}$ block and $e_{ij}$ is the deviation of the response from the mean. The population means are assumed to satisfy the additive model

$$\mu_{ij} = \mu + \alpha_i + \beta_j$$

where $\mu$ is a grand mean, $\alpha_i$ is the effect for the $i^{th}$ block, and $\beta_j$ is the effect for the $j^{th}$ treatment. The responses are assumed to be independent across blocks, normally distributed and with constant variance. The randomized block model does not require the observations within a block to be independent, but does assume that the correlation between responses within a block is identical for each pair of treatments.

The model is sometimes written as

Response = Grand Mean + Treatment Effect + Block Effect + Residual.

Given the data, let $\bar{y}_i.$ be the $i^{th}$ block sample mean (the average of the responses in the $i^{th}$ block), $\bar{y}_j.$ be the $j^{th}$ treatment sample mean (the average of the responses on the $j^{th}$ treatment), and $\bar{y}.$ be the average response of all $IJ$ observations in the experiment.

An ANOVA table for the randomized block experiment partitions the Model SS into SS for Blocks and Treatments.

<table>
<thead>
<tr>
<th>Source</th>
<th>df</th>
<th>SS</th>
<th>MS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blocks</td>
<td>$I - 1$</td>
<td>$J \sum_i (\bar{y}_i. - \bar{y}..)^2$</td>
<td></td>
</tr>
<tr>
<td>Treats</td>
<td>$J - 1$</td>
<td>$I \sum_j (\bar{y}_j. - \bar{y}..)^2$</td>
<td></td>
</tr>
<tr>
<td>Error</td>
<td>$(I - 1)(J - 1)$</td>
<td>$\sum_{ij} (y_{ij} - \bar{y}_i. - \bar{y}_j. + \bar{y}..)^2$</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>$IJ - 1$</td>
<td>$\sum_{ij} (y_{ij} - \bar{y}..)^2$.</td>
<td></td>
</tr>
</tbody>
</table>
A primary interest is testing whether the treatment effects are zero: $H_0 : \beta_1 = \cdots = \beta_J = 0$. The treatment effects are zero if in each block the population mean responses are identical for each treatment. A formal test of no treatment effects is based on the p-value from the $F$-statistic $F_{obs} = \text{MS Treat}/\text{MS Error}$. The p-value is evaluated in the usual way (i.e., as an upper tail area from an $F$-distribution with $J - 1$ and $(I - 1)(J - 1)$ df.) This $H_0$ is rejected when the treatment averages $\bar{y}_{.j}$ vary significantly relative to the error variation.

A test for no block effects ($H_0 : \alpha_1 = \cdots = \alpha_I = 0$) is often a secondary interest, because, if the experiment is designed well, the blocks will be, by construction, noticeably different. There are no block effects if the population mean response for an arbitrary treatment is identical across blocks. A formal test of no block effects is based on the p-value from the the $F$-statistic $F_{obs} = \text{MS Blocks}/\text{MS Error}$. This $H_0$ is rejected when the block averages $\bar{y}_{i.}$ vary significantly relative to the error variation.

The randomized block model is easily fitted in the `lm()` function. Before illustrating the analysis on the itching data, let me mention five important points about randomized block analyses:

1. The $F$-test p-value for comparing $J = 2$ treatments is identical to the p-value for comparing the two treatments using a paired t-test.
2. The Block SS plus the Error SS is the Error SS from a one-way ANOVA comparing the $J$ treatments. If the Block SS is large relative to the Error SS from the two-factor model, then the experimenter has eliminated a substantial portion of the variation that is used to assess the differences among the treatments. This leads to a more sensitive comparison of treatments than would have been obtained using a one-way ANOVA.
3. The RB model is equivalent to an additive or no interaction model for a two-factor experiment, where the blocks are levels of one of the factors. The analysis of a randomized block experiment under this model is the same analysis used for a two-factor experiment with no replication (one observation per cell). We will discuss the two-factor design soon.
4. Under the sum constraint on the parameters (i.e., $\sum_i \alpha_i = \sum_j \beta_j = 0$), the estimates of the grand mean, block effects, and treatment effects are $\hat{\mu} = \bar{y}_\cdot$, $\hat{\alpha}_i = \bar{y}_i - \bar{y}_\cdot$, and $\hat{\beta}_j = \bar{y}_{.j} - \bar{y}_\cdot$, respectively. The estimated mean response for the $(i,j)^{th}$ cell is $\hat{\mu}_{ij} = \hat{\mu} + \hat{\alpha}_i + \hat{\beta}_j = \bar{y}_i + \bar{y}_{.j} - \bar{y}_\cdot$.

5. The $F$-test for comparing treatments is appropriate when the responses within a block have the same correlation. This is a reasonable working assumption in many analyses. A multivariate repeated measures model can be used to compare treatments when the constant correlation assumption is unrealistic, for example when the same treatment is given to an individual over time.

**RB Analysis of the Itching Data** First we reshape the data to long format so each observation is its own row in the `data.frame` and indexed by the `Patient` and `Treatment` variables.

```r
dat_itch_long <-
 dat_itch %>%
 pivot_longer(
 cols = -1, # all but the first column
 names_to = "Treatment",
 values_to = "Seconds",
 values_drop_na = TRUE # drop the NA values in long format
) %>%
 mutate(
 Patient = factor(Patient),
 Treatment = factor(Treatment)
)

str(dat_itch_long)
Classes 'tbl_df', 'tbl' and 'data.frame': 70 obs. of 3 variables:
$ Patient : Factor w/ 10 levels "1","2","3","4",...: 1 1 1 1 1 1 1 2 2 2 ...
$ Treatment: Factor w/ 7 levels "Amino","Morp",...: 3 6 4 2 1 5 7 3 6 4 ...
$ Seconds : num 174 263 105 199 141 108 141 224 213 103 ...

head(dat_itch_long, 3)
A tibble: 3 x 3
Patient Treatment Seconds
<fct> <fct> <dbl>
1 1 Nodrug 174
2 1 Placebo 263
3 1 Papv 105

tail(dat_itch_long, 3)
A tibble: 3 x 3
Patient Treatment Seconds
<fct> <fct> <dbl>
1 4 4 Placebo 232
2 5 4 Placebo 199
3 6 4 Placebo 147
```

UNM, Stat 428/528 ADA2
As a first step, I made side-by-side boxplots of the itching durations across treatments. The boxplots are helpful for informally comparing treatments and visualizing the data. The differences in the level of the boxplots will usually be magnified by the $F$-test for comparing treatments because the variability within the boxplots includes block differences which are moved from the Error SS to the Block SS. The plot also includes the 10 Patients with lines connecting their measurements to see how common the treatment differences were over patients. I admit, this plot is a little too busy.

Each of the five drugs appears to have an effect, compared to the placebo and to no drug. Papaverine appears to be the most effective drug. The placebo and no drug have similar medians. The relatively large spread in the placebo group suggests that some patients responded adversely to the placebo compared to no drug, whereas others responded positively.

```r
Plot the data using ggplot
library(ggplot2)
p <- ggplot(dat_itch_long, aes(x = Treatment, y = Seconds))
plot a reference line for the global mean (assuming no groups)
p <- p + geom_hline(aes(yintercept = 0),
 colour = "black", linetype = "solid", size = 0.2, alpha = 0.3)
p <- p + geom_hline(aes(yintercept = mean(Seconds)),
 colour = "black", linetype = "dashed", size = 0.3, alpha = 0.5)
colored line for each patient
p <- p + geom_line(aes(group = Patient, colour = Patient), alpha = 0.5)
boxplot, size=.75 to stand out behind CI
p <- p + geom_boxplot(size = 0.75, alpha = 0.5)
points for observed data
p <- p + geom_point(aes(colour = Patient))
diamond at mean for each group
p <- p + stat_summary(fun.y = mean, geom = "point", shape = 18, size = 6,
 alpha = 0.5)
confidence limits based on normal distribution
p <- p + stat_summary(fun.data = "mean_cl_normal", geom = "errorbar",
 width = .2, aes(colour=Treatment), alpha = 0.8)
p <- p + labs(title = "Comparison of Treatments for Itching, Treatment means")
p <- p + ylab("Duration of itching (seconds)")
removes legend
p <- p + theme(legend.position="none")
print(p)
```
To fit the RB model in `lm()`, you need to specify blocks (Patient) and treatments (Treatment) as factor variables, and include each to the right of the tilde symbol in the formula statement. The response variable Seconds appears to the left of the tilde.

```r
lm_s_t_p <-
 lm(
 Seconds ~ Treatment + Patient
 , data = dat_itch_long
)
library(car)
Anova(lm_s_t_p, type=3)
```

```r
Anova Table (Type III tests)
##
Response: Seconds
Sum Sq Df F value Pr(>F)
(Intercept) 87704 1 28.3372 2.019e-06 ***
Treatment 53013 6 2.8548 0.017303 *
```
The order to look at output follows the hierarchy of multi-parameter tests down to single-parameter tests.

1. The F-test at the bottom of the `summary()` tests for both no block effects and no treatment effects. If there are no block effects and no treatment effects then the mean itching time is independent of treatment and patients. The p-value of 0.0005 strongly suggests that the population mean
itching times are not all equal.

2. The ANOVA table at top from `Anova()` partitions the Model SS into the SS for Blocks (Patients) and Treatments. The Mean Squares, F-statistics, and p-values for testing these effects are given. For a RB design with the same number of responses per block (i.e., no missing data), the Type I and Type III SS are identical, and correspond to the formulas given earlier. The distinction between Type I and Type III SS is important for unbalanced problems, an issue we discuss later. The $F$-tests show significant differences among the treatments (p-value=0.017) and among patients (p-value=0.001).

3. The individual parameter (coefficient) estimates in the `summary()` are likely of less interest since they test differences from the baseline group, only. The multiple comparisons in the next section will indicate which factor levels are different from others.

**Multiple comparisons**  Multiple comparison and contrasts are not typically straightforward in R, though some newer packages are helping make them easier. Below I show one way that I think is relatively easy.

The package `emmeans` is used to specify which factor to perform multiple comparisons over and which p-value adjustment method to use. The default is to use Tukey adjustments.

```r
Contrasts to perform pairwise comparisons
cont_s <-
 emmeans::emmeans(
 lm_s_t_p
 , specs = "Treatment"
 , by = c("Patient")
)

Means and CIs
cont_s
adjust = "tukey" is default

Treatment emmean SE df lower.CL upper.CL
Amino 144 17.6 54 109.0 180
Morp 148 17.6 54 112.7 183
Nodrug 191 17.6 54 155.7 226
Papv 118 17.6 54 82.9 153
Pento 176 17.6 54 141.2 212
```

UNM, Stat 428/528 ADA2
### Placebo 205 17.6 54 169.5 240
### Tripel 167 17.6 54 131.9 202

### Results are averaged over the levels of: Patient
### Confidence level used: 0.95

```r
#confint(cont_s, adjust = "bonferroni")
```

```r
Pairwise comparisons
cont_s %>% pairs() #adjust = "bonf") # adjust = "tukey" is default
```

<table>
<thead>
<tr>
<th>contrast</th>
<th>estimate</th>
<th>SE</th>
<th>df</th>
<th>t.ratio</th>
<th>p.value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amino - Morp</td>
<td>-3.7</td>
<td>24.9</td>
<td>54</td>
<td>-0.149</td>
<td>1.0000</td>
</tr>
<tr>
<td>Amino - Nodrug</td>
<td>-46.7</td>
<td>24.9</td>
<td>54</td>
<td>-1.877</td>
<td>0.5039</td>
</tr>
<tr>
<td>Amino - Papv</td>
<td>26.1</td>
<td>24.9</td>
<td>54</td>
<td>1.049</td>
<td>0.3094</td>
</tr>
<tr>
<td>Amino - Pento</td>
<td>-32.2</td>
<td>24.9</td>
<td>54</td>
<td>-1.294</td>
<td>0.8516</td>
</tr>
<tr>
<td>Amino - Placebo</td>
<td>-60.5</td>
<td>24.9</td>
<td>54</td>
<td>-2.432</td>
<td>0.2057</td>
</tr>
<tr>
<td>Amino - Tripel</td>
<td>-22.9</td>
<td>24.9</td>
<td>54</td>
<td>-0.920</td>
<td>0.9676</td>
</tr>
<tr>
<td>Morp - Nodrug</td>
<td>-43.0</td>
<td>24.9</td>
<td>54</td>
<td>-1.728</td>
<td>0.6006</td>
</tr>
<tr>
<td>Morp - Papv</td>
<td>29.8</td>
<td>24.9</td>
<td>54</td>
<td>1.198</td>
<td>0.8920</td>
</tr>
<tr>
<td>Morp - Pento</td>
<td>-28.5</td>
<td>24.9</td>
<td>54</td>
<td>-1.146</td>
<td>0.9108</td>
</tr>
<tr>
<td>Morp - Placebo</td>
<td>-56.8</td>
<td>24.9</td>
<td>54</td>
<td>-2.283</td>
<td>0.2710</td>
</tr>
<tr>
<td>Morp - Tripel</td>
<td>-19.2</td>
<td>24.9</td>
<td>54</td>
<td>-0.772</td>
<td>0.4637</td>
</tr>
<tr>
<td>Nodrug - Papv</td>
<td>72.8</td>
<td>24.9</td>
<td>54</td>
<td>2.926</td>
<td>0.0700</td>
</tr>
<tr>
<td>Nodrug - Pento</td>
<td>14.5</td>
<td>24.9</td>
<td>54</td>
<td>0.583</td>
<td>0.9971</td>
</tr>
<tr>
<td>Nodrug - Placebo</td>
<td>-13.8</td>
<td>24.9</td>
<td>54</td>
<td>-0.555</td>
<td>0.9978</td>
</tr>
<tr>
<td>Nodrug - Tripel</td>
<td>23.8</td>
<td>24.9</td>
<td>54</td>
<td>0.957</td>
<td>0.9610</td>
</tr>
<tr>
<td>Papv - Pento</td>
<td>-58.3</td>
<td>24.9</td>
<td>54</td>
<td>-2.343</td>
<td>0.2431</td>
</tr>
<tr>
<td>Papv - Placebo</td>
<td>-86.6</td>
<td>24.9</td>
<td>54</td>
<td>-3.481</td>
<td>0.0163</td>
</tr>
<tr>
<td>Papv - Tripel</td>
<td>-49.0</td>
<td>24.9</td>
<td>54</td>
<td>-1.969</td>
<td>0.4454</td>
</tr>
<tr>
<td>Pento - Placebo</td>
<td>-28.3</td>
<td>24.9</td>
<td>54</td>
<td>-1.137</td>
<td>0.9135</td>
</tr>
<tr>
<td>Pento - Tripel</td>
<td>9.3</td>
<td>24.9</td>
<td>54</td>
<td>0.374</td>
<td>0.9998</td>
</tr>
<tr>
<td>Placebo - Tripel</td>
<td>37.6</td>
<td>24.9</td>
<td>54</td>
<td>1.511</td>
<td>0.7369</td>
</tr>
</tbody>
</table>

## EMM plot interpretation

This **EMM plot (Estimated Marginal Means, aka Least-Squares Means)** is only available when conditioning on one variable. The **blue bars** are confidence intervals for the EMMs; don’t ever use confidence intervals for EMMs to perform comparisons – they can be very misleading. The **red arrows** are for the comparisons among means; the degree to which the “comparison arrows” overlap reflects as much as possible the significance of the comparison of the two estimates. If an arrow from one mean overlaps an arrow from an-
other group, the difference is not significant, based on the adjust setting (which defaults to “tukey”).

```
Plot means and contrasts
p <- plot(cont_s, comparisons = TRUE) # adjust = "bonf") # adjust = "tukey" is default
p <- p + labs(title = "Tukey-adjusted Treatment contrasts")
p <- p + theme_bw()
print(p)
```

With `summary()`, the p-value adjustment can be coerced into one of several popular methods, such as Bonferroni. Notice that the significance is lower (larger p-value) for Bonferroni below than Tukey above.

Recall how the **Bonferroni** correction works. A comparison of $c$ pairs of levels from one factor having a family error rate of 0.05 or less is attained by comparing pairs of treatments at the $0.05/c$ level. Using this criteria, the population mean response for factor levels (averaged over the other factor) are significantly different if the p-value for the test is $0.05/c$ or less. The output actually adjusts the p-values by reporting p-value×$c$, so that the reported adjusted p-value can be compared to the 0.05 significance level. Also, the red “comparison arrows” in the plot are longer making it more likely that Treatment comparison arrows overlap.

```
Means and CIs
confint(cont_s, adjust = "bonferroni")
```
## Treatment emmean  SE  df  lower.CL  upper.CL
## Amino    144.000  17.600  54   95.100    193.000
## Morp     148.000  17.600  54   98.800    197.000
## Nodrug   191.000  17.600  54  141.800    240.000
## Papv     118.000  17.600  54   69.000    167.000
## Pento    176.000  17.600  54  127.300    226.000
## Placebo  205.000  17.600  54  155.600    254.000
## Tripel   167.000  17.600  54  118.000    216.000
##
## Results are averaged over the levels of: Patient
## Confidence level used: 0.95
## Conf-level adjustment: bonferroni method for 7 estimates

# Pairwise comparisons
cont_s %>% pairs(adjust = "bonf")

## contrast  estimate  SE  df   t.ratio  p.value
## Amino - Morp -3.700  24.900  54  -0.1490    1.0000
## Amino - Nodrug -46.700  24.900  54  -1.8770    1.0000
## Amino - Papv  26.100  24.900  54   1.0490    1.0000
## Amino - Pento -32.200  24.900  54  -1.2940    1.0000
## Amino - Placebo -60.500  24.900  54  -2.4320   0.3859
## Amino - Tripel -22.900  24.900  54  -0.9200    1.0000
## Morp - Nodrug -43.000  24.900  54  -1.7280    1.0000
## Morp - Papv  29.800  24.900  54   1.1980    1.0000
## Morp - Pento -28.500  24.900  54  -1.1460    1.0000
## Morp - Placebo -56.800  24.900  54  -2.2830   0.5543
## Morp - Tripel -19.200  24.900  54  -0.7720    1.0000
## Nodrug - Papv  72.800  24.900  54   2.9260   0.1053
## Nodrug - Pento 14.500  24.900  54   0.5830    1.0000
## Nodrug - Placebo -13.800  24.900  54  -0.5550    1.0000
## Nodrug - Tripel  23.800  24.900  54   0.9570    1.0000
## Papv - Pento -58.300  24.900  54  -2.3430   0.4794
## Papv - Placebo -86.600  24.900  54  -3.4810   0.0210
## Papv - Tripel -49.000  24.900  54  -1.9690    1.0000
## Pento - Placebo -28.300  24.900  54  -1.1370    1.0000
## Pento - Tripel   9.300  24.900  54   0.3740    1.0000
## Placebo - Tripel  37.600  24.900  54   1.5110    1.0000
##
## Results are averaged over the levels of: Patient
## P value adjustment: bonferroni method for 21 tests

# Plot means and contrasts
p <- plot(cont_s, comparisons = TRUE, adjust = "bonf")  # adjust = "tukey" is default
p <- p + labs(title = "Tukey-adjusted Treatment contrasts")
p <- p + theme_bw()
print(p)
The Bonferroni comparisons for Treatment suggest that Papaverine induces a lower mean itching time than Placebo. All the other comparisons of treatments are insignificant. The comparison of Patient blocks is of less interest.

**Diagnostic Analysis for the RB Analysis**  A diagnostic analysis of ANOVA-type models, including the RB model, is easily performed using the `lm()` output. The normal quantile (or QQ-plot) shows the residual distribution is slightly skewed to the right, in part, due to three cases that are not fitted well by the model (the outliers in the boxplots). Except for these cases, which are also the most influential cases (Cook’s distance), the plot of the studentized residuals against fitted values shows no gross abnormalities.

```r
plot diagnostics
lm_diag_plots(lm_s_t_p, sw_plot_set = "simple")
```
Although the $F$-test for comparing treatments is not overly sensitive to modest deviations from normality, I will present a non-parametric analysis as a backup, to see whether similar conclusions are reached about the treatments.
Non-parametric Analysis of a RB Experiment Milton Friedman developed a non-parametric test for comparing treatments in an unreplicated randomized block design where the normality assumption may be violated. An unreplicated complete block design has exactly one observation in $y$ for each combination of levels of groups and blocks. The null hypothesis is that apart from an effect of blocks, the location parameter of $y$ is the same in each of the groups.

The output suggests significant differences among treatments, which supports the earlier conclusion.

```r
Friedman test for differences between groups conditional on blocks.
The formula is of the form a ~ b / c,
where a, b and c give the data values (a)
and corresponding groups (b) and blocks (c), respectively.
friedman.test(Seconds ~ Treatment | Patient, data = dat_itch_long)

Friedman rank sum test
data: Seconds and Treatment and Patient
Friedman chi-squared = 14.887, df = 6, p-value = 0.02115

Quade test is very similar to the Friedman test (compare the help pages).
quade.test(Seconds ~ Treatment | Patient, data = dat_itch_long)

Quade test
data: Seconds and Treatment and Patient
Quade F = 3.7321, num df = 6, denom df = 54, p-value = 0.003542
```
5.2 Extending the One-Factor Design to Multiple Factors

The CRD (completely randomized design) for comparing insecticides below varies the levels of one factor (insecticide), while controlling other factors that influence survival time. The inferences from the one-way ANOVA apply to beetles with a given age from the selected strain that might be given the selected concentration of the insecticides. Any generalization of the conclusions to other situations must be justified scientifically, typically through further experimentation.

There are several ways to broaden the scope of the study. For example, several strains of beetles or several concentrations of the insecticide might be used. For simplicity, consider a simple two-factor experiment where three concentrations (Low, Medium, and High) are applied with each of the four insecticides. This is a completely crossed **two-factor experiment** where each of the $4 \times 3 = 12$ combinations of the two factors (insecticide and dose) are included in the comparison of survival times. With this experiment, the scientist can compare insecticides, compare concentrations, and check for an interaction between dose and insecticide.

Assuming that 48 beetles are available, the scientist would randomly assign them to the 12 experimental groups, giving prespecified numbers of beetles to the 12 groups. For simplicity, assume that the experiment is **balanced**, that is, the same number of beetles (4) is assigned to each group ($12 \times 4 = 48$). This is a CRD with two factors.
5.2.1 Example: Beetle insecticide two-factor design

The data below were collected using the experimental design just described. The table gives survival times of groups of four beetles randomly allocated to twelve treatment groups obtained by crossing the levels of four insecticides (A, B, C, D) at each of three concentrations of the insecticides (1=Low, 2=Medium, 3=High). This is a balanced 4-by-3 factorial design (two-factor design) that is replicated four times. The unit of measure for the survival times is 10 hours, that is, 0.3 is a survival time of 3 hours.

```r
Example: Beetles
dat_beetles <-
 read_table2("http://statacumen.com/teach/ADA2/notes/ADA2_notes_Ch05_beetles.dat") %>%
 mutate(
 # make dose a factor variable and label the levels
 dose = factor(dose,
 , levels = c(1, 2, 3)
 , labels = c("low", "medium", "high")
 , ordered = TRUE
), insecticide = factor(insecticide)
)

Parsed with column specification:
cols(
dose = col_double(),
insecticide = col_character(),
t1 = col_double(),
t2 = col_double(),
t3 = col_double(),
t4 = col_double()
)
```
<table>
<thead>
<tr>
<th>dose</th>
<th>insecticide</th>
<th>t1</th>
<th>t2</th>
<th>t3</th>
<th>t4</th>
</tr>
</thead>
<tbody>
<tr>
<td>low</td>
<td>A</td>
<td>0.31</td>
<td>0.45</td>
<td>0.46</td>
<td>0.43</td>
</tr>
<tr>
<td>low</td>
<td>B</td>
<td>0.82</td>
<td>1.10</td>
<td>0.88</td>
<td>0.72</td>
</tr>
<tr>
<td>low</td>
<td>C</td>
<td>0.43</td>
<td>0.45</td>
<td>0.63</td>
<td>0.76</td>
</tr>
<tr>
<td>low</td>
<td>D</td>
<td>0.45</td>
<td>0.71</td>
<td>0.66</td>
<td>0.62</td>
</tr>
<tr>
<td>medium</td>
<td>A</td>
<td>0.36</td>
<td>0.29</td>
<td>0.40</td>
<td>0.23</td>
</tr>
<tr>
<td>medium</td>
<td>B</td>
<td>0.92</td>
<td>0.61</td>
<td>0.49</td>
<td>1.24</td>
</tr>
<tr>
<td>medium</td>
<td>C</td>
<td>0.44</td>
<td>0.35</td>
<td>0.31</td>
<td>0.40</td>
</tr>
<tr>
<td>medium</td>
<td>D</td>
<td>0.56</td>
<td>1.02</td>
<td>0.71</td>
<td>0.38</td>
</tr>
<tr>
<td>high</td>
<td>A</td>
<td>0.22</td>
<td>0.21</td>
<td>0.18</td>
<td>0.23</td>
</tr>
<tr>
<td>high</td>
<td>B</td>
<td>0.30</td>
<td>0.37</td>
<td>0.38</td>
<td>0.29</td>
</tr>
<tr>
<td>high</td>
<td>C</td>
<td>0.23</td>
<td>0.25</td>
<td>0.24</td>
<td>0.22</td>
</tr>
<tr>
<td>high</td>
<td>D</td>
<td>0.30</td>
<td>0.36</td>
<td>0.31</td>
<td>0.33</td>
</tr>
</tbody>
</table>

First we reshape the data to long format so each observation is its own row in the data.frame and indexed by the dose and insecticide variables.

```r
dat_beetles_long <-
dat_beetles %>%
pivot_longer(
 cols = starts_with("t"),
 names_to = "number",
 values_to = "hours10"
) %>%
mutate(
 number = factor(number)
)
```

```r
str(dat_beetles_long)
Classes 'tbl_df', 'tbl' and 'data.frame': 48 obs. of 4 variables:
$ dose : Ord.factor w/ 3 levels "low"<"medium"<..: 1 1 1 1 1 1 1 1 1 1 ...
$ insecticide: Factor w/ 4 levels "A","B","C","D": 1 1 1 1 2 2 2 2 3 3 ...
$ number : Factor w/ 4 levels "t1","t2","t3","t4": 1 2 3 4 1 2 3 4 1 2 ...
$ hours10 : num 0.31 0.45 0.46 0.43 0.82 1.1 0.88 0.72 0.43 0.45 ...
```

```r
head(dat_beetles_long)
A tibble: 6 x 4
dose insecticide number hours10
<ord> <fct> <fct> <dbl>
1 low A t1 0.31
2 low A t2 0.45
3 low A t3 0.46
4 low A t4 0.43
5 low B t1 0.82
6 low B t2 1.1
```

The basic unit of analysis is the cell means, which are the averages of

Prof. Erik B. Erhardt
the 4 observations in each of the 12 treatment combinations. For example, in the table below, the sample mean survival for the 4 beetles given a low dose (dose=1) of insecticide A is 0.413. From the cell means we obtain the dose and insecticide **marginal means** by averaging over the levels of the other factor. For example, the marginal mean for insecticide A is the average of the cell means for the 3 treatment combinations involving insecticide A: 0.314 = (0.413 + 0.320 + 0.210)/3.

```r
sum_beetles <-
 dat_beetles_long %>%
 group_by(dose, insecticide) %>%
 summarize(
 m = mean(hours10)
) %>%
 pivot_wider(
 id_cols = insecticide,
 names_from = dose,
 values_from = m
)

sum_beetles
A tibble: 4 x 4
insecticide low medium high
<fct> <dbl> <dbl> <dbl>
1 A 0.412 0.32 0.21
2 B 0.88 0.815 0.335
3 C 0.568 0.375 0.235
4 D 0.61 0.668 0.325

sum_beetles_margin1 <-
 dat_beetles_long %>%
 group_by(dose) %>%
 summarize(
 margin = mean(hours10)
) %>%
 pivot_wider(
 id_cols = NULL,
 names_from = dose,
 values_from = margin
)

sum_beetles_margin1
A tibble: 1 x 3
low medium high
<dbl> <dbl> <dbl>
#1 0.618 0.544 0.276

sum_beetles_margin2 <-
 dat_beetles_long %>%
 group_by(dose, insecticide) %>%
 summarize(m = mean(hours10)) %>%
 pivot_wider(
 id_cols = insecticide,
 names_from = dose,
 values_from = m
)
```

UNM, Stat 428/528 ADA2
group_by(insecticide) %>%
  summarize(
    margin = mean(hours10)
  )

sum_beetles_margin2
## # A tibble: 4 x 2
## #  insecticide  margin
## #      <fct>     <dbl>
## 1        A   0.314
## 2        B   0.677
## 3        C   0.392
## 4        D   0.534

sum_beetles_margin0 <-
  dat_beetles_long %>%
  summarize(
    margin = mean(hours10)
  )

sum_beetles_margin0
## # A tibble: 1 x 1
## #  margin
## #    <dbl>
## 1  0.479

# It's possible to combine all into a single table,
# but it's probably not worth the effort

sum_beetles_table <-
  sum_beetles %>%
  bind_cols(
    sum_beetles_margin2 %>% select(margin)
  ) %>%
  bind_rows(
    data.frame(
      insecticide = "margin",
      sum_beetles_margin1,
      sum_beetles_margin0
    )
  )

# Warning in bind_rows(x, .id): Unequal factor levels: coercing to character
# Warning in bind_rows(x, .id): binding character and factor vector, coercing into character vector
# Warning in bind_rows(x, .id): binding character and factor vector, coercing into character vector

#knitr::kable(sum_beetles_table)
Because the experiment is balanced, a marginal mean is the average of all observations that receive a given treatment. For example, the marginal mean for insecticide A is the average survival time for the 16 beetles given insecticide A.

Looking at the table of means, the insecticides have noticeably different mean survival times averaged over doses, with insecticide A having the lowest mean survival time averaged over doses. Similarly, higher doses tend to produce lower survival times. A more formal approach to analyzing the table of means is given in the next section.
5.2.2 The Interaction Model for a Two-Factor Experiment

Assume that you designed a balanced two-factor experiment with $K$ responses at each combination of the $I$ levels of factor 1 (F1) with the $J$ levels of factor 2 (F2). The total number of responses is $KIJ$, or $K$ times the $IJ$ treatment combinations.

Let $y_{ijk}$ be the $k^{th}$ response at the $i^{th}$ level of F1 and the $j^{th}$ level of F2. A generic model for the experiment expresses $y_{ijk}$ as a mean response plus a residual:

$$y_{ijk} = \mu_{ij} + e_{ijk},$$

where $\mu_{ij}$ is the population mean response for the treatment defined by the $i^{th}$ level of F1 combined with the $j^{th}$ level of F2. As in a one-way ANOVA, the responses within and across treatment groups are assumed to be independent, normally distributed, and have constant variance.

The interaction model expresses the population means as

$$\mu_{ij} = \mu + \alpha_i + \beta_j + (\alpha\beta)_{ij},$$

where $\mu$ is a grand mean, $\alpha_i$ is the effect for the $i^{th}$ level of F1, $\beta_j$ is the effect for the $j^{th}$ level of F2, and $(\alpha\beta)_{ij}$ is the interaction between the $i^{th}$ level of F1 and the $j^{th}$ level of F2. (Note that $(\alpha\beta)$ is an individual term distinct from $\alpha$ and $\beta$, $(\alpha\beta)$ is not their product.) The model is often written

$$y_{ijk} = \mu + \alpha_i + \beta_j + (\alpha\beta)_{ij} + e_{ijk},$$

meaning

Response $= \text{Grand Mean} + \text{F1 effect} + \text{F2 effect} + \text{F1-by-F2 interaction} + \text{Residual}.$

The additive model having only main effects, no interaction terms, is $y_{ijk} = \mu + \alpha_i + \beta_j + e_{ijk}$, meaning

Response $= \text{Grand Mean} + \text{F1 effect} + \text{F2 effect} + \text{Residual}.$

The effects of F1 and F2 on the mean are additive.
Defining effects from cell means

The effects that define the population means and the usual hypotheses of interest can be formulated from the table of population means, given here.

<table>
<thead>
<tr>
<th>Level of F1</th>
<th>Level of F2</th>
<th>F1 marg</th>
<th>F2 marg</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>μ₁₁</td>
<td>µ₁.</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>μ₁₂</td>
<td>µ₂.</td>
</tr>
<tr>
<td>:</td>
<td>:</td>
<td>:</td>
<td>:</td>
</tr>
<tr>
<td>I</td>
<td>1</td>
<td>μ₁I</td>
<td>µₙI.</td>
</tr>
</tbody>
</table>

The F1 marginal population means are averages within rows (over columns) of the table:

\[
\bar{\mu}_i = \frac{1}{J} \sum_c \mu_{ic}.
\]

The F2 marginal population means are averages within columns (over rows):

\[
\bar{\mu}_j = \frac{1}{I} \sum_r \mu_{rj}.
\]

The overall or grand population mean is the average of the cell means

\[
\bar{\mu}_{..} = \frac{1}{IJ} \sum_{rc} \mu_{rc} = \frac{1}{I} \sum_i \bar{\mu}_i = \frac{1}{J} \sum_j \bar{\mu}_j.
\]

Using this notation, the effects in the interaction model are \( \mu = \bar{\mu}_{..}, \alpha_i = \bar{\mu}_i. - \bar{\mu}_{..}, \beta_j = \bar{\mu}_j. - \bar{\mu}_{..}, \) and \((\alpha\beta)_{ij} = \mu_{ij} - \bar{\mu}_i. - \bar{\mu}_j. + \bar{\mu}_{..}. \) The effects sum to zero:

\[
\sum_i \alpha_i = \sum_j \beta_j = \sum_{ij} (\alpha\beta)_{ij} = 0,
\]

and satisfy \( \mu_{ij} = \mu + \alpha_i + \beta_j + (\alpha\beta)_{ij} \) (i.e., cell mean is sum of effects) required under the model.

The F1 and F2 effects are analogous to treatment effects in a one-factor experiment, except that here the treatment means are averaged over the levels of the other factor. The interaction effect will be interpreted later.
Estimating effects from the data

Let
\[ \bar{y}_{ij} = \frac{1}{K} \sum_k y_{ijk} \quad \text{and} \quad s_{ij}^2 \]
be the sample mean and variance, respectively, for the \( K \) responses at the \( i^{th} \) level of F1 and the \( j^{th} \) level of F2. Inferences about the population means are based on the table of sample means:

<table>
<thead>
<tr>
<th>Level of F1</th>
<th>1</th>
<th>2</th>
<th>\cdots</th>
<th>J</th>
<th>F1 marg</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>\bar{y}_{11}</td>
<td>\bar{y}_{12}</td>
<td>\cdots</td>
<td>\bar{y}_{1J}</td>
<td>\bar{y}_1.</td>
</tr>
<tr>
<td>2</td>
<td>\bar{y}_{21}</td>
<td>\bar{y}_{22}</td>
<td>\cdots</td>
<td>\bar{y}_{2J}</td>
<td>\bar{y}_2.</td>
</tr>
<tr>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
<td>\cdots</td>
<td>\vdots</td>
<td>\vdots</td>
</tr>
<tr>
<td>I</td>
<td>\bar{y}_{I1}</td>
<td>\bar{y}_{I2}</td>
<td>\cdots</td>
<td>\bar{y}_{IJ}</td>
<td>\bar{y}_I.</td>
</tr>
<tr>
<td>F2 marg</td>
<td>\bar{y}_1.</td>
<td>\bar{y}_2.</td>
<td>\cdots</td>
<td>\bar{y}_J.</td>
<td>\bar{y}_{..}</td>
</tr>
</tbody>
</table>

The F1 marginal sample means are averages within rows of the table:
\[ \bar{y}_i. = \frac{1}{J} \sum_c \bar{y}_{ic}. \]

The F2 marginal sample means are averages within columns:
\[ \bar{y}_{..} = \frac{1}{I} \sum_r \bar{y}_{rj}. \]

Finally, \( \bar{y}_{..} \) is the average of the cell sample means:
\[ \bar{y}_{..} = \frac{1}{IJ} \sum_{ij} \bar{y}_{ij} = \frac{1}{I} \sum_i \bar{y}_i. = \frac{1}{J} \sum_j \bar{y}_{..}. \]

The sample sizes in each of the \( IJ \) treatment groups are equal \( (K) \), so \( \bar{y}_i. \) is the sample average of all responses at the \( i^{th} \) level of F1, \( \bar{y}_{..} \) is the sample average of all responses at the \( j^{th} \) level of F2, and \( \bar{y}_{..} \) is the average response in the experiment.
Under the interaction model, the estimated population mean for the \((i, j)^{th}\) cell is the observed cell mean: \(\hat{\mu}_{ij} = \bar{y}_{ij}\). This can be partitioned into estimated effects

\[
\hat{\mu} = \bar{y} \quad \text{the estimated grand mean}
\]
\[
\hat{\alpha}_i = \bar{y}_i - \bar{y} \quad \text{the estimated F1 effect } i = 1, 2, \ldots, I
\]
\[
\hat{\beta}_j = \bar{y}_j - \bar{y} \quad \text{the estimated F2 effect } j = 1, 2, \ldots, J
\]
\[
\hat{(\alpha \beta)}_{ij} = \bar{y}_{ij} - \bar{y}_i - \bar{y}_j + \bar{y} \quad \text{the estimated cell interaction (5.1)}
\]

that satisfy

\[
\hat{\mu}_{ij} = \hat{\mu} + \hat{\alpha}_i + \hat{\beta}_j + \hat{(\alpha \beta)}_{ij}.
\]

The ANOVA table

The ANOVA table for a balanced two-factor design decomposes the total variation in the data, as measured by the Total SS, into components that measure the variation of marginal sample means for F1 and F2 (the F1 SS and F2 SS), a component that measures the degree to which the factors interact (the F1-by-F2 Interaction SS), and a component that pools the sample variances across the \(IJ\) samples (the Error SS). Each SS has a df, given in the following ANOVA table. As usual, the MS for each source of variation is the corresponding SS divided by the df. The MS Error estimates the common population variance for the \(IJ\) treatments.

<table>
<thead>
<tr>
<th>Source</th>
<th>df</th>
<th>SS</th>
<th>MS</th>
</tr>
</thead>
<tbody>
<tr>
<td>F1</td>
<td>(I - 1)</td>
<td>(KJ \sum_i (\bar{y}_i - \bar{y}.)^2)</td>
<td>MS F1=SS/df</td>
</tr>
<tr>
<td>F2</td>
<td>(J - 1)</td>
<td>(KI \sum_j (\bar{y}_j - \bar{y}.)^2)</td>
<td>MS F2=SS/df</td>
</tr>
<tr>
<td>Interaction</td>
<td>((I - 1)(J - 1))</td>
<td>(K \sum_{ij} (y_{ij} - \bar{y}_i - \bar{y}_j + \bar{y}.)^2)</td>
<td>MS Inter=SS/df</td>
</tr>
<tr>
<td>Error</td>
<td>(IJ(K - 1))</td>
<td>((K - 1) \sum_{ij} s_{ij}^2)</td>
<td>MSE=SS/df</td>
</tr>
<tr>
<td>Total</td>
<td>(IJK - 1)</td>
<td>(\sum_{ijk} (y_{ijk} - \bar{y}.)^2).</td>
<td></td>
</tr>
</tbody>
</table>

The standard tests in the two-factor analysis, and their interpretations are:
The test of no F1 effect: \( H_0 : \alpha_1 = \cdots = \alpha_I = 0 \) is equivalent to testing \( H_0 : \bar{\mu}_1 = \bar{\mu}_2 = \cdots = \bar{\mu}_I \). The absence of an F1 effect implies that each level of F1 has the same population mean response when the means are averaged over levels of F2. The test for no F1 effect is based on MS F1/MS Error, which is compared to the upper tail of an F-distribution with numerator and denominator df of \( I - 1 \) and \( IJ(K - 1) \), respectively. \( H_0 \) is rejected when the F1 marginal means \( \bar{y}_i \) vary significantly relative to the within sample variation. Equivalently, \( H_0 \) is rejected when the sum of squared F1 effects (between sample variation) is large relative to the within sample variation.

The test of no F2 effect: \( H_0 : \beta_1 = \cdots = \beta_J = 0 \) is equivalent to testing \( H_0 : \bar{\mu}_1 = \bar{\mu}_2 = \cdots = \bar{\mu}_J \). The absence of a F2 effect implies that each level of F2 has the same population mean response when the means are averaged over levels of F1. The test for no F2 effect is based on MS F2/MS Error, which is compared to an F-distribution with numerator and denominator df of \( J - 1 \) and \( IJ(K - 1) \), respectively. \( H_0 \) is rejected when the F2 marginal means \( \bar{y}_j \) vary significantly relative to the within sample variation. Equivalently, \( H_0 \) is rejected when the sum of squared F2 effects (between sample variation) is large relative to the within sample variation.

The test of no interaction: \( H_0 : (\alpha\beta)_{ij} = 0 \) for all \( i \) and \( j \) is based on MS Interact/MS Error, which is compared to an F-distribution with numerator and denominator df of \( (I - 1)(J - 1) \) and \( IJ(K - 1) \), respectively.

The interaction model places no restrictions on the population means \( \mu_{ij} \). Since the population means can be arbitrary, the interaction model can be viewed as a one factor model with \( IJ \) treatments. One connection between the two ways of viewing the two-factor analysis is that the F1, F2, and Interaction SS for the two-way interaction model sum to the Treatment or Model SS for comparing the \( IJ \) treatments. The Error SS for the two-way interaction model is identical to the Error SS for a one-way ANOVA of the \( IJ \) treatments. An overall test of no differences in the \( IJ \) population means is part of the two-way
analysis.

I always summarize the data using the cell and marginal means instead of the estimated effects, primarily because means are the basic building blocks for the analysis. My discussion of the model and tests emphasizes both approaches to help you make the connection with the two ways this material is often presented in texts.

Understanding interaction

To understand interaction, suppose you (conceptually) plot the means in each row of the population table, giving what is known as the population mean profile plot. The F1 marginal population means average the population means within the F1 profiles. At each F2 level, the F2 marginal mean averages the population cell means across F1 profiles.

No interaction is present if the plot has perfectly parallel F1 profiles, as in the plot below for a $3 \times 5$ experiment. The levels of F1 and F2 do not interact. That is,

parallel profiles $\Leftrightarrow \mu_{ij} - \mu_{hj}$ is independent of $j$ for each $i$ and $h$

\[ \Leftrightarrow \mu_{ij} - \bar{\mu}_i = \mu_{hj} - \bar{\mu}_h \quad \text{for all } i, j, h \]

difference between levels of F1 does not depend on level of F2

\[ \Leftrightarrow \mu_{ij} - \bar{\mu}_i = \bar{\mu}_j - \bar{\mu}_... \quad \text{for all } i, j \]

difference between level of F2 $j$ and F2 mean does not depend on level of F1

\[ \Leftrightarrow \mu_{ij} - \bar{\mu}_i - \bar{\mu}_j + \bar{\mu}_... = 0 \quad \text{for all } i, j \]

interaction effect is 0

\[ \Leftrightarrow (\alpha \beta)_{ij} = 0 \quad \text{for all } i, j \]

interaction effect is 0

\[ \Leftrightarrow \text{no interaction term in model.} \]
Interaction is present if the profiles are not perfectly parallel. An example of a profile plot for two-factor experiment (3 × 5) with interaction is given below.
The roles of F1 and F2 can be reversed in these plots without changing the assessment of a presence or absence of interaction. It is often helpful to view the interaction plot from both perspectives.

A qualitative check for interaction can be based on the **sample means profile plot**, but keep in mind that profiles of sample means are never perfectly parallel even when the factors do not interact in the population. The Interaction SS measures the extent of non-parallelism in the sample mean profiles. In particular, the Interaction SS is zero when the sample mean profiles are perfectly parallel because $(\alpha \beta)_{ij} = 0$ for all $i$ and $j$. 
5.2.3 Example: Survival Times of Beetles

First we generate cell means and a sample means profile plot (interaction plot) for the beetle experiment. The 12 treatment cell means we calculated. Three variables were needed to represent each response in the data set: dose (1-3, categorical), insecticide (A-D, categorical), and time (the survival time).

As noted earlier, the insecticides have noticeably different mean survival times averaged over doses, with insecticide A having the lowest mean. Similarly, higher doses tend to produce lower survival times. The sample means profile plot shows some evidence of interaction.

```r
Calculate the cell means for each (dose, insecticide) combination
sum_beetles_mean <-
 dat_beetles_long %>%
 summarize(
 m = mean(hours10)
)
sum_beetles_mean
A tibble: 1 x 1
m
<dbl>
1 0.479

sum_beetles_mean_d <-
 dat_beetles_long %>%
 group_by(dose) %>%
 summarize(
 m = mean(hours10)
)
sum_beetles_mean_d
A tibble: 3 x 2
dose m
<ord> <dbl>
1 low 0.618
2 medium 0.544
3 high 0.276

sum_beetles_mean_i <-
 dat_beetles_long %>%
 group_by(insecticide) %>%
 summarize(
 m = mean(hours10)
)
sum_beetles_mean_i
A tibble: 4 x 2
insecticide m
<ord> <dbl>
1 B 0.547
2 C 0.584
3 D 0.584
4 A 0.479
```
5.2: Extending the One-Factor Design to Multiple Factors

```r
<fct> <dbl>
1 A 0.314
2 B 0.677
3 C 0.392
4 D 0.534

sum_beetles_mean_di <-
 dat_beetles_long %>%
 group_by(dose, insecticide) %>%
 summarize(
 m = mean(hours10)
)

sum_beetles_mean_di

Interaction plots, ggplot
p <- ggplot(dat_beetles_long, aes(x = dose, y = hours10, colour = insecticide, shape = insecticide))
p <- p + geom_hline(aes(yintercept = 0), colour = "black", linetype = "solid", size = 0.2, alpha = 0.3)
p <- p + geom_boxplot(alpha = 0.25, outlier.size=0.1)
p <- p + geom_point(alpha = 0.5, position=position_dodge(width=0.75))
p <- p + geom_point(data = sum_beetles_mean_di, aes(y = m), size = 4)
p <- p + geom_line(data = sum_beetles_mean_di, aes(y = m, group = insecticide), size = 1.5)
p <- p + labs(title = "Beetles interaction plot, insecticide by dose")
print(p)

p <- ggplot(dat_beetles_long, aes(x = insecticide, y = hours10, colour = dose, shape = dose))
p <- p + geom_hline(aes(yintercept = 0), colour = "black", linetype = "solid", size = 0.2, alpha = 0.3)
p <- p + geom_boxplot(alpha = 0.25, outlier.size=0.1)
p <- p + geom_point(alpha = 0.5, position=position_dodge(width=0.75))
p <- p + geom_point(data = sum_beetles_mean_di, aes(y = m, group = insecticide), size = 4)
p <- p + geom_line(data = sum_beetles_mean_di, aes(y = m, group = dose), size = 1.5)
p <- p + scale_colour_hue() # ordered factor gives bad colors, reset color for dose
```

UNM, Stat 428/528 ADA2
Base R has interaction plots, too.

```r
Interaction plots, base graphics
interaction.plot(dat_beetles_long$dose, dat_beetles_long$insecticide, dat_beetles_long$hours10,
 main = "Beetles interaction plot, insecticide by dose")
interaction.plot(dat_beetles_long$insecticide, dat_beetles_long$dose, dat_beetles_long$hours10,
 main = "Beetles interaction plot, dose by insecticide")
```
In the \texttt{lm()} function below we specify a first-order model with interactions, including the main effects and two-way interactions. The interaction between dose and insecticide is indicated with \texttt{dose:insecticide}. The shorthand \texttt{dose*insecticide} expands to “dose + insecticide + dose:insecticide” for this first-order model.

The $F$-test at the bottom of the \texttt{summary()} tests for no differences among the population mean survival times for the 12 dose and insecticide combinations. The p-value of < 0.0001 strongly suggests that the population mean survival times are not all equal.

The next summary at the top gives two partitionings of the one-way ANOVA Treatment SS into the SS for Dose, Insecticide, and the Dose by Insecticide interaction. The Mean Squares, F-statistics and p-values for testing these effects are given. The p-values for the F-statistics indicate that the dose and insecticide effects are significant at the 0.01 level. The F-test for no dose by insecticide interaction is not significant at the 0.10 level (p-value=0.112). Thus, the interaction seen in the profile plot of the sample means might be due solely to chance or sampling variability.

\begin{verbatim}
  lm_h_d_i_di <-
  lm(
      hours10 ~ dose + insecticide + dose:insecticide
  )
\end{verbatim}
library(car)
Anova(lm_h_d_i_di, type=3)

# Anova Table (Type III tests)
### Response: hours10
### Sum Sq Df F value Pr(>F)
(Intercept) 1.18441 1 53.2501 1.343e-08 ***
dose  0.08222  2  1.8482  0.1722
insecticide 0.92121  3 13.8056  3.777e-06 ***
dose:insecticide 0.25014  6  1.8743  0.1123
Residuals  0.80073  36
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

summary(lm_h_d_i_di)
### Call:
lm(formula = hours10 ~ dose + insecticide + dose:insecticide, 
    data = dat_beetles_long)
### Residuals:
###    Min 1Q Median 3Q Max
### -0.32500 -0.04875 0.00500 0.04313 0.42500
### Coefficients:
### Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.314167 0.043053 7.297 1.34e-08 ***
dose.L -0.143189 0.074569 -1.920 0.062781 .
dose.Q -0.007144 0.074569 -0.096 0.924204
insecticideB 0.362500 0.060886 5.954 8.01e-07 ***
insecticideC 0.078333 0.060886 1.287 0.206458
insecticideD 0.220000 0.060886 3.613 0.000916 ***
dose.L:insecticideB -0.242184 0.105457 -2.297 0.027572 *
dose.Q:insecticideB -0.162279 0.105457 -1.539 0.132594
...
shows an “S” shape rather than a straight line, suggesting the residuals are not normal, but have higher kurtosis (more peaky) than a normal distribution. The residuals vs the fitted (predicted) values show that the higher the predicted value the more variability (horn shaped). The plot of the Cook’s distances indicate a few influential observations. For the sake of the example, we will ignore the model assumption deviations for now and address them later in Section 5.2.7. In practice, you would stop here and address the deviations prior to model selection, as we’ll do in Section 5.2.7.

```
plot diagnostics
lm_diag_plots(lm_h_d_i_di, sw_plot_set = "simple")
```

```
Warning in if ((class(fit$model[, var_names[1]plot]) %in% c("numeric", : the condition has length > 1 and only the first element will be used
```

Since the interaction is not significant, I’ll drop the interaction term and fit the additive model with main effects only. I update the model by removing the interaction term.

```
lm_h_d_i <- update(lm_h_d_i_di, ~ . - dose:insecticide)
library(car)
Anova(lm_h_d_i, type=3)
Anova Table (Type III tests)
```

As mentioned above, for the diagnostics below, we will ignore the model assumption deviations for now and address them later in Section 5.2.7.

```r
plot diagnostics
lm_diag_plots(lm_h_d_i, sw_plot_set = "simple")
```

```
Warning in if ((class(fit$model[, var_names[i_plot]]) %in% c("numeric", : the condition has length > 1 and only the first element will be used
```
The Bonferroni multiple comparisons indicate which treatment effects are different.

```r
Contrasts to perform pairwise comparisons
cont_d <-
 emmeans::emmeans(
 lm_h_d_i
 , specs = "dose"
)
cont_i <-
 emmeans::emmeans(
 lm_h_d_i
 , specs = "insecticide"
)

Means and CIs
#confint(cont_h, adjust = "bonferroni")

Pairwise comparisons
cont_d %>% pairs(adjust = "bonf") # adjust = "tukey" is default
contrast estimate SE df t.ratio p.value
low - medium 0.0731 0.0559 42 1.308 0.5944
low - high 0.3412 0.0559 42 6.102 <.0001
medium - high 0.2681 0.0559 42 4.794 0.0001
##
```

UNM, Stat 428/528 ADA2
Specifying Contrasts in \texttt{emmeans}

Note that testing multiple factors is of interest here. The code \textbf{above} corrects the p-values for all the tests done for each factor \textit{separately}. However, we may want all of the tests over both factors are corrected \textit{together}, in this case the Bonferroni-corrected significance level would be \( \alpha/(d + i) \), where \( d \) = number of dose comparisons and \( i \) = number of insecticide comparisons. We can specify a custom contrast using the code below. Custom contrasts will be a powerful tool that we will continue to use with multiple regression models.
# Contrasts to perform pairwise comparisons

```r
cont_di <-
 emmeans::emmeans(
 lm_h_d_i
 , specs = ~ dose + insecticide
)
```

```r
cont_di
```

## dose insecticide emmean SE df lower.CL upper.CL
## low A 0.452 0.0559 42 0.33943 0.565
## medium A 0.379 0.0559 42 0.26631 0.492
## high A 0.111 0.0559 42 -0.00182 0.224
## low B 0.815 0.0559 42 0.70193 0.928
## medium B 0.742 0.0559 42 0.62881 0.855
## high B 0.474 0.0559 42 0.36068 0.586
## low C 0.531 0.0559 42 0.41768 0.643
## medium C 0.458 0.0559 42 0.34464 0.570
## high C 0.189 0.0559 42 0.07651 0.302
## low D 0.672 0.0559 42 0.55943 0.785
## medium D 0.599 0.0559 42 0.48631 0.712
## high D 0.331 0.0559 42 0.21818 0.444

## Confidence level used: 0.95

# define contrasts
# indicate each position with a 1 and divide by the number of parameters included
```r
c_dose_low = c(1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0) / 4
c_dose_medium = c(0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0) / 4
c_dose_high = c(0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1) / 4
c_insecticide_A = c(1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0) / 3
```

```r
c_insecticide_B = c(0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0) / 3
```

```r
c_insecticide_C = c(0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0) / 3
```

```r
c_insecticide_D = c(0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1) / 3
```

# Specified contrasts performed together
```r
cont_di_c <-
 emmeans::contrast(
 cont_di
 , method = list(
 "dose: medium - low " = c_dose_medium - c_dose_low
 , "dose: high - low " = c_dose_high - c_dose_low
 , "dose: high - medium" = c_dose_high - c_dose_medium
 , "insecticide: B - A " = c_insecticide_B - c_insecticide_A
 , "insecticide: C - A " = c_insecticide_C - c_insecticide_A
 , "insecticide: C - B " = c_insecticide_C - c_insecticide_B
 , "insecticide: D - A " = c_insecticide_D - c_insecticide_A
 , "insecticide: D - B " = c_insecticide_D - c_insecticide_B
 , "insecticide: D - C " = c_insecticide_D - c_insecticide_C
)
)
```

```r
Adjusted contrasts
cont_di_c

contrast estimate SE df t.ratio p.value
dose: medium - low -0.0731 0.0559 42 -1.308 1.0000
dose: high - low -0.3412 0.0559 42 -6.102 <.0001
dose: high - medium -0.2681 0.0559 42 -4.794 0.0002
insecticide: B - A 0.3625 0.0646 42 5.614 <.0001
insecticide: C - A 0.0783 0.0646 42 1.213 1.0000
insecticide: C - B -0.2842 0.0646 42 -4.400 0.0007
insecticide: D - A 0.2200 0.0646 42 3.407 0.0131
insecticide: D - B -0.1425 0.0646 42 -2.207 0.2957
insecticide: D - C 0.1417 0.0646 42 2.194 0.3045

P value adjustment: bonferroni method for 9 tests

Plot means and contrasts
p <- plot(cont_di_c, comparisons = TRUE, adjust = "bonf") # adjust = "tukey" is default
p <- p + labs(title = "Bonferroni-adjusted Dose and Insecticide contrasts")
p <- p + theme_bw()
print(p)
```

Bonferroni-adjusted Dose and Insecticide contrasts

- **insecticide:** D - C
- **insecticide:** D - B
- **insecticide:** D - A
- **insecticide:** C - B
- **insecticide:** C - A
- **insecticide:** B - A
- **dose:** high - medium
- **dose:** high - low
- **dose:** medium - low
Interpretation of the Dose and Insecticide Effects

The interpretation of the dose and insecticide main effects depends on whether interaction is present. The distinction is important, so I will give both interpretations to emphasize the differences. Given the test for interaction, I would likely summarize the main effects assuming no interaction.

The average survival time decreases as the dose increases, with estimated mean survival times of 0.618, 0.544, and 0.276, respectively. A Bonferroni comparison shows that the population mean survival time for the high dose (averaged over insecticides) is significantly less than the population mean survival times for the low and medium doses (averaged over insecticides). The two lower doses are not significantly different from each other. This leads to two dose groups:

<table>
<thead>
<tr>
<th>Dose:</th>
<th>1=Low</th>
<th>2=Med</th>
<th>3=Hig</th>
</tr>
</thead>
<tbody>
<tr>
<td>Marg Mean:</td>
<td>0.618</td>
<td>0.544</td>
<td>0.276</td>
</tr>
<tr>
<td>Groups:</td>
<td>------</td>
<td>------</td>
<td>------</td>
</tr>
</tbody>
</table>

If dose and insecticide interact, you can conclude that beetles given a high dose of the insecticide typically survive for shorter periods of time averaged over insecticides. You can not, in general, conclude that the highest dose yields the lowest survival time regardless of insecticide. For example, the difference in the medium and high dose marginal means (0.544 - 0.276 = 0.268) estimates the typical decrease in survival time achieved by using the high dose instead of the medium dose, averaged over insecticides. If the two factors interact, then the difference in mean times between the medium and high doses on a given insecticide may be significantly greater than 0.268, significantly less than 0.268, or even negative. In the latter case the medium dose would be better than the high dose for the given insecticide, even though the high dose gives better performance averaged over insecticides. An interaction forces you to use the cell means to decide which combination of dose and insecticide gives the best results (and the multiple comparisons as they were done above do not give multiple comparisons of cell means; a single factor variable combining both factors would need to be created). Of course, our profile plot tells us that this hypothetical situation is probably not tenable here, but it could be so when a significant interaction is present.
If dose and insecticide do not interact, then the difference in marginal dose means averaged over insecticides also estimates the difference in population mean survival times between two doses, regardless of the insecticide. This follows from the parallel profiles definition of no interaction. Thus, the difference in the medium and high dose marginal means (0.544 - 0.276 = 0.268) estimates the expected decrease in survival time anticipated from using the high dose instead of the medium dose, regardless of the insecticide (and hence also when averaged over insecticides). A practical implication of no interaction is that you can conclude that the high dose is best, regardless of the insecticide used. The difference in marginal means for two doses estimates the difference in average survival expected, regardless of the insecticide.

An ordering of the mean survival times on the four insecticides (averaged over the three doses) is given below. Three groups are obtained from the Bonferroni comparisons, with any two insecticides separated by one or more other insecticides in the ordered string having significantly different mean survival times averaged over doses.

If interaction is present, you can conclude that insecticide A is no better than C, but significantly better than B or D, when performance is averaged over doses. If the interaction is absent, then A is not significantly better than C, but is significantly better than B or D, regardless of the dose. Furthermore, for example, the difference in marginal means for insecticides B and A of 0.677 - 0.314 = 0.363 is the expected decrease in survival time from using A instead of B, regardless of dose. This is also the expected decrease in survival times when averaged over doses.

<table>
<thead>
<tr>
<th>Insect:</th>
<th>B</th>
<th>D</th>
<th>C</th>
<th>A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Marg Mean:</td>
<td>0.677</td>
<td>0.534</td>
<td>0.393</td>
<td>0.314</td>
</tr>
<tr>
<td>Groups:</td>
<td>------------</td>
<td>------------------------</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
5.2.4 Example: Output voltage for batteries

The maximum output voltage for storage batteries is thought to be influenced
by the temperature in the location at which the battery is operated and the
material used in the plates. A scientist designed a two-factor study to examine
this hypothesis, using three temperatures (50, 65, 80), and three materials for
the plates (1, 2, 3). Four batteries were tested at each of the 9 combinations
of temperature and material type. The maximum output voltage was recorded
for each battery. This is a balanced 3-by-3 factorial experiment with four
observations per treatment.

```r
Example: Output voltage for batteries
dat_battery <-
 read_table2("http://statacumen.com/teach/ADA2/notes/ADA2_notes_Ch05_battery.dat") %>%
 mutate(
 material = factor(material),
 temp = factor(temp)
)

Parsed with column specification:
cols(
material = col_double(),
temp = col_double(),
v1 = col_double(),
v2 = col_double(),
v3 = col_double(),
v4 = col_double()
)

<table>
<thead>
<tr>
<th>material</th>
<th>temp</th>
<th>v1</th>
<th>v2</th>
<th>v3</th>
<th>v4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>50</td>
<td>130</td>
<td>155</td>
<td>74</td>
<td>180</td>
</tr>
<tr>
<td>2</td>
<td>65</td>
<td>34</td>
<td>40</td>
<td>80</td>
<td>75</td>
</tr>
<tr>
<td>3</td>
<td>80</td>
<td>20</td>
<td>70</td>
<td>82</td>
<td>58</td>
</tr>
<tr>
<td>4</td>
<td>50</td>
<td>150</td>
<td>188</td>
<td>159</td>
<td>126</td>
</tr>
<tr>
<td>5</td>
<td>65</td>
<td>136</td>
<td>122</td>
<td>106</td>
<td>115</td>
</tr>
<tr>
<td>6</td>
<td>80</td>
<td>25</td>
<td>70</td>
<td>58</td>
<td>45</td>
</tr>
<tr>
<td>7</td>
<td>50</td>
<td>138</td>
<td>110</td>
<td>168</td>
<td>160</td>
</tr>
<tr>
<td>8</td>
<td>65</td>
<td>174</td>
<td>120</td>
<td>150</td>
<td>139</td>
</tr>
<tr>
<td>9</td>
<td>80</td>
<td>96</td>
<td>104</td>
<td>82</td>
<td>60</td>
</tr>
</tbody>
</table>

dat_battery_long <-
dat_battery %>%
pivot_longer(
 cols = starts_with("v")
)
```
names_to = "battery"
values_to = "maxvolt"

mutate(
  battery = factor(battery)
)

str(dat_battery_long)

## Classes 'tbl_df', 'tbl' and 'data.frame': 36 obs. of 4 variables:
## $ material: Factor w/ 3 levels "1","2","3": 1 1 1 1 1 1 1 1 1 1 ... 
## $ temp : Factor w/ 3 levels "50","65","80": 1 1 1 1 2 2 2 2 3 3 ... 
## $ battery : Factor w/ 4 levels "v1","v2","v3",...: 1 2 3 4 1 2 3 4 1 2 ... 
## $ maxvolt : num 130 155 74 180 34 40 80 75 20 70 ... 

The overall $F$-test at the bottom indicates at least one parameter in the model is significant. The two-way ANOVA table indicates that the main effect of temperature and the interaction are significant at the 0.05 level, the main effect of material is not.

```r
lm_m_m_t_mt <- lm(maxvolt ~ material * temp, data = dat_battery_long)
library(car)
Anova(lm_m_m_t_mt, type=3)

Anova Table (Type III tests)
##
Response: maxvolt
Sum Sq Df F value Pr(>F)
(Intercept) 72630 1 107.5664 6.456e-11 ***
material 886 2 0.6562 0.5268904
temp 15965 2 11.8223 0.0002052 ***
material:temp 9614 4 3.5595 0.0186112 *
Residuals 18231 27

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

summary(lm_m_m_t_mt)

Call:
lm(formula = maxvolt ~ material * temp, data = dat_battery_long)
##
Residuals:
Min 1Q Median 3Q Max
-60.750 -14.625 1.375 17.938 45.250
##
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 134.75 12.99 10.371 6.46e-11 ***
material2 21.00 18.37 1.143 0.263107
```
## Example Results

|            | Estimate | Std. Error | t value | Pr(>|t|) |
|------------|----------|------------|---------|----------|
| Material 3 | 9.25     | 18.37      | 0.503   | 0.618747 |
| Temp 65    | -77.50   | 18.37      | -4.218  | 0.000248 *** |
| Temp 80    | -77.25   | 18.37      | -4.204  | 0.000257 *** |
| Material 2: Temp 65 | 41.50 | 25.98 | 1.597 | 0.121886 |
| Material 3: Temp 65 | 79.25 | 25.98 | 3.050 | 0.005083 ** |
| Material 2: Temp 80 | -29.00 | 25.98 | -1.116 | 0.274242 |
| Material 3: Temp 80 | 18.75 | 25.98 | 0.722 | 0.476759 |

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 25.98 on 27 degrees of freedom
Multiple R-squared: 0.7652, Adjusted R-squared: 0.6956
F-statistic: 11 on 8 and 27 DF, p-value: 9.426e-07

The cell means plots of the material profiles have different slopes, which is consistent with the presence of a temperature-by-material interaction.

```r
Calculate the cell means for each (temp, material) combination
sum_battery_mean <-
 dat_battery_long %>%
 summarize(m = mean(maxvolt))
sum_battery_mean

A tibble: 1 x 1
m
<dbl>
1 106.

sum_battery_mean_m <-
 dat_battery_long %>%
 group_by(material) %>%
 summarize(m = mean(maxvolt))
sum_battery_mean_m

A tibble: 3 x 2
material m
<fct> <dbl>
1 83.2
2 108.
3 125.

sum_battery_mean_t <-
 dat_battery_long %>%
 group_by(temp) %>%
 summarize(m = mean(maxvolt))
sum_battery_mean_t

A tibble: 3 x 2
temp m
<fct> <dbl>
1 145.
2 108.
3 64.2

sum_battery_mean_mt <-
 dat_battery_long %>%
 group_by(material, temp) %>%
 summarize(m = mean(maxvolt))
sum_battery_mean_mt
```
A tibble: 9 x 3
## Groups: material [3]
## material temp m
## <fct> <fct> <dbl>
## 1 1 50 135.  
## 2 1 65 57.2 
## 3 1 80 57.5 
## 4 2 50 156.  
## 5 2 65 120. 
## 6 2 80 49.5 
## 7 3 50 144  
## 8 3 65 146. 
## 9 3 80 85.5 

Interaction plots, ggplot

```r
p <- ggplot(dat_battery_long, aes(x = material, y = maxvolt, colour = temp, shape = temp))
p <- p + geom_hline(aes(yintercept = 0), colour = "black"
 , linetype = "solid", size = 0.2, alpha = 0.3)
p <- p + geom_boxplot(alpha = 0.25, outlier.size=0.1)
p <- p + geom_point(alpha = 0.5, position=position_dodge(width=0.75))
p <- p + geom_point(data = sum_battery_mean_mt, aes(y = m), size = 4)
p <- p + geom_line(data = sum_battery_mean_mt, aes(y = m, group = temp), size = 1.5)
p <- p + labs(title = "Battery interaction plot, temp by material")
print(p)

p <- ggplot(dat_battery_long, aes(x = temp, y = maxvolt, colour = material, shape = material))
p <- p + geom_hline(aes(yintercept = 0), colour = "black"
 , linetype = "solid", size = 0.2, alpha = 0.3)
p <- p + geom_boxplot(alpha = 0.25, outlier.size=0.1)
p <- p + geom_point(alpha = 0.5, position=position_dodge(width=0.75))
p <- p + geom_point(data = sum_battery_mean_mt, aes(y = m), size = 4)
p <- p + geom_line(data = sum_battery_mean_mt, aes(y = m, group = material), size = 1.5)
p <- p + labs(title = "Battery interaction plot, material by temp")
print(p)
```
The Bonferroni multiple comparisons may be inappropriate because of covariate interactions. That is, interactions make the main effects less meaningful (or their interpretation unclear) since the change in response when one factor is changed depends on what the second factor is.

The significant interaction between temperature and material implies that you cannot directly conclude that batteries stored at 50 degrees have the highest average output regardless of the material. Nor can you directly conclude that material 3 has a higher average output than material 1 regardless of the temperature. You can only conclude that the differences are significant when averaged over the levels of the other factor.

However, you can compare materials at each temperature, and you can compare temperatures for each material. Below, considering the situation where we want to know the sensitivity to temperature for each material, we condition on material and compare temperatures. Material 1 has a large reduction of maxvolt from temp 50 to 65. Materials 2 and 3 do not reduce their maxvolt until temp 80. There’s a suggestion that Material 3 is the most robust to higher temperatures, but probably insufficient statistical evidence to claim this.

```r
Contrasts to perform pairwise comparisons
cont_t <-
 emmeans::emmeans(UNM, Stat 428/528 ADA2
```
```r
lm_m_m_t_mt
 , specs = "temp"
 , by = "material"
)

Means and CIs
cconfint(cont_t, adjust = "bonferroni")

material = 1:
temp emmean SE df lower.CL upper.CL
50 134.8 13 27 101.6 167.9
65 57.2 13 27 24.1 90.4
80 57.5 13 27 24.3 90.7
##
material = 2:
temp emmean SE df lower.CL upper.CL
50 155.8 13 27 122.6 188.9
65 119.8 13 27 86.6 152.9
80 49.5 13 27 16.3 82.7
##
material = 3:
temp emmean SE df lower.CL upper.CL
50 144.0 13 27 110.8 177.2
65 145.8 13 27 112.6 178.9
80 85.5 13 27 52.3 118.7
##
Confidence level used: 0.95
Conf-level adjustment: bonferroni method for 3 estimates

Pairwise comparisons
cconfint(cont_t) %>% pairs(adjust = "bonf") # adjust = "tukey" is default

material = 1:
contrast estimate SE df t.ratio p.value
50 - 65 77.50 18.4 27 4.218 0.0007
50 - 80 77.25 18.4 27 4.204 0.0008
65 - 80 -0.25 18.4 27 -0.014 1.0000
##
material = 2:
contrast estimate SE df t.ratio p.value
50 - 65 36.00 18.4 27 1.959 0.1814
50 - 80 106.25 18.4 27 5.783 <.0001
65 - 80 70.25 18.4 27 3.823 0.0021
##
material = 3:
contrast estimate SE df t.ratio p.value
50 - 65 -1.75 18.4 27 -0.095 1.0000
50 - 80 58.50 18.4 27 3.184 0.0109
65 - 80 60.25 18.4 27 3.279 0.0086
##
P value adjustment: bonferroni method for 3 tests
```

Prof. Erik B. Erhardt
The Bonferroni comparisons indicate that the population mean max voltage for the three temperatures by material types decreases as the temperature increases, but differently for each material:

<table>
<thead>
<tr>
<th>Temp</th>
<th>80</th>
<th>65</th>
<th>50</th>
</tr>
</thead>
<tbody>
<tr>
<td>Material 1</td>
<td>57.5</td>
<td>57.2</td>
<td>134.8</td>
</tr>
<tr>
<td>Group</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Material 2</td>
<td>49.5</td>
<td>119.8</td>
<td>155.8</td>
</tr>
<tr>
<td>Group</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Material 3</td>
<td>85.5</td>
<td>145.8</td>
<td>144.0</td>
</tr>
<tr>
<td>Group</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
</tbody>
</table>
5.2.5 \textbf{emmeans} and Bonferroni corrections for multi-way interaction models

Note that the p-value adjustment is not performed for all of the tests, but only among the variable levels named in the \texttt{specs=} option separately for each level of the \texttt{by=} variable. Thus, each set above is corrected for 3 tests, but not all 9 tests together. An easy solution to this has not been found in the \texttt{emmeans} package. However, an easy workaround (only for Bonferroni corrections) is to multiply the p-values by the number of levels of the \texttt{by=} variable. Thus, because there are 3 material levels, each of the p-values would be multiplied by 3.

Below we convert the contrast table to a tibble (a modern version of the data.frame) in order to multiply the p-values by 3. The resulting p-values have the correct Bonferroni adjustment.

\begin{verbatim}
# Original table
cont_t %>% pairs(adjust = "bonf") %>%
as_tibble()
## # A tibble: 9 x 7
## contrast material estimate  SE  df  t.ratio p.value
## <fct>  <fct>      <dbl> <dbl> <dbl>   <dbl> <dbl>
## 1 50 - 65 1  77.5 18.4 27  4.22     0.000744
## 2 50 - 80 1  77.3 18.4 27  4.20     0.000772
## 3 65 - 80 1 -0.25 18.4 27 -0.0136   1
## 4 50 - 65 2  36.0 18.4 27  1.96     0.181
## 5 50 - 80 2 106. 18.4 27  5.78     0.0000113
## 6 65 - 80 2  70.3 18.4 27  3.82     0.00211
## 7 50 - 65 3 -1.75 18.4 27 -0.0952   1
## 8 50 - 80 3  58.5 18.4 27  3.18     0.0109
## 9 65 - 80 3  60.2 18.4 27  3.28     0.00861

# Corrected table
cont_t %>% pairs(adjust = "bonf") %>%
as_tibble() %>%
mutate(
  p.value = 3 * p.value
  # Restrict p-values to have a maximum value of 1
  , p.value = ifelse(p.value > 1, 1, p.value)
)
## # A tibble: 9 x 7
## contrast material estimate  SE  df  t.ratio p.value
## <fct>  <fct>      <dbl> <dbl> <dbl>   <dbl>
## 1 50 - 65 1  77.5 18.4 27  4.22     0.00223
## 2 50 - 80 1  77.3 18.4 27  4.20     0.00232
## 3 65 - 80 1 -0.25 18.4 27 -0.0136   1
## 4 50 - 65 2  36.0 18.4 27  1.96     0.181
## 5 50 - 80 2 106. 18.4 27  5.78     0.0000113
## 6 65 - 80 2  70.3 18.4 27  3.82     0.00211
## 7 50 - 65 3 -1.75 18.4 27 -0.0952   1
## 8 50 - 80 3  58.5 18.4 27  3.18     0.0109
## 9 65 - 80 3  60.2 18.4 27  3.28     0.00861
\end{verbatim}
This only works for Bonferroni adjustments because of the simple multiplicative method of correction based on the number of comparisons. The alternative for other methods is to specify the full set of contrasts as in Section 5.2.3. As was demonstrated, this is not too painful and will give you the appropriate multiple comparisons correction.

Note that the plots will not reflect the correction applied in this way, but you will be able to make correct decisions for your hypothesis tests.
5.2.6 Checking assumptions in a two-factor experiment

The normality and constant variance assumptions for a two-factor design can be visually checked using side-by-side boxplots (as was produced in the `ggplot()` interaction plots) and residual plots. Another useful tool for checking constant variances is to plot the sample deviations for each group against the group means.

Let us check the distributional assumptions for the insecticide experiment. The sampling design suggests that the independence assumptions are reasonable. The group sample sizes are small, so the residual plots are likely to be more informative than the side-by-side boxplots and the plot of the standard deviations.

The code below generates plots and summary statistics for the survival times. The means $\bar{y}_{ij}$ and standard deviations $s_{ij}$ for the 12 treatment combinations were calculated. The diagnostic plots we’ve been using for `lm()` displays residual plots. Only the relevant output is presented.

The set of box plots (each representing 4 points) for each insecticide/dose combination indicates both that means and standard deviations of treatments seem different. Also, there appears to be less variability for dose=3 (high) than for doses 1 and 2 in the table; the model assumes that variability is the same and does not depend on treatment. The plot of the standard deviation vs mean shows an increasing trend.

```r
Example: Beetles, checking assumptions
boxplots, ggplot
p <- ggplot(dat_beetles_long, aes(x = dose, y = hours10, colour = insecticide))
p <- p + geom_boxplot()
print(p)

means and standard deviations for each dose/interaction cell
sum_beetles_di <-
 dat_beetles_long %>%
 group_by(dose, insecticide) %>%
 summarize(
 m = mean(hours10),
 s = sd(hours10)
)
```
Recall the model assumption diagnostics deviations in Section 5.2.3.

Diagnostic plots show the following features. The normal quantile plot
shows an “S” shape rather than a straight line, suggesting the residuals are not normal, but have higher kurtosis (more peaky) than a normal distribution. The residuals vs the fitted (predicted) values show that the higher the predicted value the more variability (horn shaped). The plot of the Cook’s distances indicate a few influential observations.

```
plot diagnostics
lm_diag_plots(lm_h_d_i_di, sw_plot_set = "simple")
```

Survival times are usually right skewed, with the spread or variability in the distribution increasing as the mean or median increases. Ideally, the distributions should be symmetric, normal, and the standard deviation should be fairly constant across groups.

The boxplots (note the ordering) and the plot of the $s_{ij}$ against $\bar{y}_{ij}$ show the tendency for the spread to increase with the mean. This is reinforced by the residual plot, where the variability increases as the predicted values (the cell means under the two-factor interaction model) increase.

As noted earlier, the QQ-plot of the studentized residuals is better suited to

Prof. Erik B. Erhardt
examine normality here than the boxplots which are constructed from 4 observations. Not surprisingly, the boxplots do not suggest non-normality. Looking at the QQ-plot we clearly see evidence of non-normality.
5.2.7 A Remedy for Non-Constant Variance

A plot of cell standard deviations against the cell means is sometimes used as a diagnostic tool for suggesting transformations of the data. Here are some suggestions for transforming non-negative measurements to make the variability independent of the mean (i.e., stabilize the variance). The transformations also tend to reduce skewness, if present (and may induce skewness if absent!). As an aside, some statisticians prefer to plot the IQR against the median to get a more robust view of the dependence of spread on typical level because $s_{ij}$ and $\bar{y}_{ij}$ are sensitive to outliers.

1. If $s_{ij}$ increases linearly with $\bar{y}_{ij}$, use a log transformation of the response.
2. If $s_{ij}$ increases as a quadratic function of $\bar{y}_{ij}$, use a reciprocal (inverse) transformation of the response.
3. If $s_{ij}$ increases as a square root function of $\bar{y}_{ij}$, use a square root transformation of the response.
4. If $s_{ij}$ is roughly independent of $\bar{y}_{ij}$, do not transform the response. This idea does not require the response to be non-negative!

A logarithmic transformation or a reciprocal (inverse) transformation of the survival times might help to stabilize the variance. The survival time distributions are fairly symmetric, so these nonlinear transformations may destroy the symmetry. As a first pass, I will consider the reciprocal transformation because the inverse survival time has a natural interpretation as the dying rate. For example, if you survive 2 hours, then $1/2$ is the proportion of your remaining lifetime expired in the next hour. The unit of time is actually 10 hours, so $0.1/time$ is the actual rate. The 0.1 scaling factor has no effect on the analysis provided you appropriately rescale the results on the mean responses.

Create the rate variable.

```r
Example: Beetles, non-constant variance
create the rate variable (1/hours10)
dat_beetles_long <-
 dat_beetles_long %>%
 mutate(
 rate = 1 / hours10
)
```

Prof. Erik B. Erhardt
Redo the analysis replacing `hours10` by `rate`.

The standard deviations of `rate` appear much more similar than those of `time` did.

```r
boxplots, ggplot
p <- ggplot(dat_beetles_long, aes(x = dose, y = rate, colour = insecticide))
p <- p + geom_boxplot()
print(p)

means and standard deviations for each dose/interaction cell
sum_beetles_di_rate <-
 dat_beetles_long %>%
 group_by(dose, insecticide) %>%
 summarize(
 m = mean(rate),
 s = sd(rate)
)

sum_beetles_di_rate
A tibble: 12 x 4
Groups: dose [3]
dose insecticide m s
<ord> <fct> <dbl> <dbl>
1 low A 2.49 0.497
2 low B 1.16 0.199
3 low C 1.86 0.489
4 low D 1.69 0.365
5 medium A 3.27 0.822
6 medium B 1.39 0.553
7 medium C 2.71 0.418
8 medium D 1.70 0.702
9 high A 4.80 0.530
##10 high B 3.03 0.421
##11 high C 4.26 0.235
##12 high D 3.09 0.244

mean vs sd plot
p <- ggplot(sum_beetles_di_rate, aes(x = m, y = s, shape = dose,
 colour = insecticide))
p <- p + geom_point(size=4)
p <- p + labs(title = "Beetles rate standard deviation vs mean")
print(p)
```

## Warning: Using shapes for an ordinal variable is not advised
The profile plots and ANOVA table indicate that the main effects are significant but the interaction is not.

```r
Calculate the cell means for each (dose, insecticide) combination
sum_beetles_mean <-
 dat_beetles_long %>%
 summarize(m = mean(rate))
sum_beetles_mean
A tibble: 1 x 1
m
<dbl>
1 2.62

sum_beetles_mean_i <-
 dat_beetles_long %>%
 group_by(insecticide) %>%
 summarize(m = mean(rate))
sum_beetles_mean_i
A tibble: 4 x 2
insecticide m
<fct> <dbl>
1 A 3.52
2 B 1.86
3 C 2.95
4 D 2.16

sum_beetles_mean_d <-
 dat_beetles_long %>%
 group_by(dose) %>%
 summarize(m = mean(rate))
sum_beetles_mean_d
A tibble: 3 x 2
dose m
<ord> <dbl>
1 low 1.80
2 medium 2.27
3 high 3.80

sum_beetles_mean_di <-
 dat_beetles_long %>%
 group_by(dose, insecticide) %>%
 summarize(m = mean(rate))
sum_beetles_mean_di
A tibble: 12 x 3
Groups: dose [3]
dose insecticide m
<ord> <fct> <dbl>
1 low A 2.49
2 low B 1.16
3 low C 1.86
4 low D 1.69
5 medium A 2.95
6 medium B 1.86
7 medium C 2.16
8 medium D 1.86
9 high A 3.52
##10 high B 2.95
##11 high C 3.52
##12 high D 3.52
```
5.2: Extending the One-Factor Design to Multiple Factors

---

# Interaction plots, ggplot

```r
p <- ggplot(dat_beetles_long, aes(x = dose, y = rate, colour = insecticide, shape = insecticide))
p <- p + geom_hline(aes(yintercept = 0), colour = "black", linetype = "solid", size = 0.2, alpha = 0.3)
p <- p + geom_boxplot(alpha = 0.25, outlier.size=0.1)
p <- p + geom_point(alpha = 0.5, position=position_dodge(width=0.75))
p <- p + geom_point(data = sum_beetles_mean_di, aes(y = m), size = 4)
p <- p + geom_line(data = sum_beetles_mean_di, aes(y = m, group = insecticide), size = 1.5)
p <- p + scale_colour_hue() # ordered factor gives bad colors, reset color for dose
p <- p + labs(title = "Beetles interaction plot, insecticide by dose")
print(p)
```

```r
p <- ggplot(dat_beetles_long, aes(x = insecticide, y = rate, colour = dose, shape = dose))
p <- p + geom_hline(aes(yintercept = 0), colour = "black", linetype = "solid", size = 0.2, alpha = 0.3)
p <- p + geom_boxplot(alpha = 0.25, outlier.size=0.1)
p <- p + geom_point(alpha = 0.5, position=position_dodge(width=0.75))
p <- p + geom_point(data = sum_beetles_mean_di, aes(y = m), size = 4)
p <- p + geom_line(data = sum_beetles_mean_di, aes(y = m, group = dose), size = 1.5)
p <- p + scale_colour_hue() # ordered factor gives bad colors, reset color for dose
p <- p + labs(title = "Beetles interaction plot, dose by insecticide")
print(p)
```

---

### Warning: Using shapes for an ordinal variable is not advised

---

```r
lm_r_d_i_di <- lm(rate ~ dose*insecticide, data = dat_beetles_long) # equivalent
library(car)
Anova(lm_r_d_i_di, type=3)
```

---

## Anova Table (Type III tests)

### Response: rate

<table>
<thead>
<tr>
<th></th>
<th>Sum Sq</th>
<th>Df</th>
<th>F value</th>
<th>Pr(&gt;F)</th>
</tr>
</thead>
</table>

---

UNM, Stat 428/528 ADA2
## (Intercept) 148.629 1 619.0687 < 2.2e-16 ***
## dose 11.104 2 23.1241 3.477e-07 ***
## insecticide 20.414 3 28.3431 1.376e-09 ***
## dose:insecticide 1.571 6 1.0904 0.3867
## Residuals 8.643 36
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

```
summary(lm_r_d_i_di)
```

## Call:
```
lm(formula = rate ~ dose * insecticide, data = dat_beetles_long)
```

## Residuals:
```
 Min 1Q Median 3Q Max
-0.76847 -0.29642 -0.06914 0.25458 1.07936
```

## Coefficients:
```
 Estimate Std. Error t value Pr(>|t|)
(Intercept) 3.51935 0.14145 24.881 < 2e-16 ***
dose.L 1.63752 0.24499 6.684 8.56e-08 ***
dose.Q 0.30726 0.24499 1.254 0.21787
insecticideB -1.65740 0.20004 -8.286 7.32e-10 ***
insecticideC -0.57214 0.20004 -2.860 0.00701 **
insecticideD -1.35834 0.20004 -6.790 6.19e-08 ***
dose.L:insecticideB -0.31841 0.34647 -0.919 0.36421
dose.Q:insecticideB 0.26660 0.34647 0.769 0.44664
dose.L:insecticideC 0.06114 0.34647 0.176 0.86093
dose.Q:insecticideC -0.02154 0.34647 -0.062 0.95078
dose.L:insecticideD -0.64607 0.34647 -1.865 0.07039 .
dose.Q:insecticideD 0.25548 0.34647 0.737 0.46568
```

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

## Residual standard error: 0.49 on 36 degrees of freedom
## Multiple R-squared: 0.8681, Adjusted R-squared: 0.8277
## F-statistic: 21.53 on 11 and 36 DF, p-value: 1.289e-12

```
plot diagnistics
lm_diag_plots(lm_h_d_i_di, sw_plot_set = "simple")
```
Drop the nonsignificant interaction term.

```r
lm_r_d_i <- update(lm_r_d_i_di, ~ . - dose:insecticide)
library(car)
Anova(lm_r_d_i, type=3)
```

## Anova Table (Type III tests)

<table>
<thead>
<tr>
<th>Sum Sq</th>
<th>Df</th>
<th>F value</th>
<th>Pr(&gt;F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Intercept)</td>
<td>168.629</td>
<td>611.174</td>
<td>&lt; 2.2e-16 ***</td>
</tr>
<tr>
<td>dose</td>
<td>34.877</td>
<td>71.708</td>
<td>2.865e-14 ***</td>
</tr>
<tr>
<td>insecticide</td>
<td>20.414</td>
<td>27.982</td>
<td>4.192e-10 ***</td>
</tr>
<tr>
<td>Residuals</td>
<td>10.214</td>
<td>42</td>
<td></td>
</tr>
</tbody>
</table>

---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

summary(lm_r_d_i)

## Call:
# lm(formula = rate ~ dose + insecticide, data = dat_beetles_long)

## Residuals:
# Min 1Q Median 3Q Max
# -0.82757 -0.37619 0.02116 0.27568 1.18153

## Coefficients:

UNM, Stat 428/528 ADA2
Unlike the original analysis, the residual plots do not show any gross deviations from assumptions. Also, no case seems relatively influential.

Bonferroni multiple comparisons imply differences about the mean rates.
```r
lm_r_d_i
, specs = "dose"
)
cont_i <-
 emmeans::emmeans(
 lm_r_d_i
, specs = "insecticide"
)

Means and CIs
#confint(cont_h, adjust = "bonferroni")

Pairwise comparisons
cont_d %>% pairs(adjust = "bonf") # adjust = "tukey" is default
contrast estimate SE df t.ratio p.value
low - medium -0.469 0.174 42 -2.688 0.0308
low - high -1.996 0.174 42 -11.451 <.0001
medium - high -1.528 0.174 42 -8.763 <.0001

Results are averaged over the levels of: insecticide
P value adjustment: bonferroni method for 3 tests
cont_i %>% pairs(adjust = "bonf") # adjust = "tukey" is default
contrast estimate SE df t.ratio p.value
A - B 1.657 0.201 42 8.233 <.0001
A - C 0.572 0.201 42 2.842 0.0414
A - D 1.358 0.201 42 6.747 <.0001
B - C -1.085 0.201 42 -5.391 <.0001
B - D -0.299 0.201 42 -1.485 0.8693
C - D 0.786 0.201 42 3.905 0.0020

Results are averaged over the levels of: dose
P value adjustment: bonferroni method for 6 tests

Plot means and contrasts
p1 <- plot(cont_d, comparisons = TRUE) # adjust = "bonf") # adjust = "tukey" is default
p1 <- p1 + labs(title = "Bonferroni-adjusted Dose contrasts")
p1 <- p1 + theme_bw()
print(p1)
p2 <- plot(cont_i, comparisons = TRUE) # adjust = "bonf") # adjust = "tukey" is default
p2 <- p2 + labs(title = "Bonferroni-adjusted Insecticide contrasts")
p2 <- p2 + theme_bw()
print(p2)
```
Comments on the Two Analyses of Survival Times

The effects of the transformation are noticeable. For example, the comparisons among doses and insecticides are less sensitive (differences harder to distinguish) on the original scale (look at the Bonferroni groupings). A comparison of the interaction p-values and profile plots for the two analyses suggests that the transformation eliminates much of the observed interaction between the main effects. Although the interaction in the original analysis was not significant at the 10% level (p-value=0.112), the small sample sizes suggest that power for detecting interaction might be low. To be on the safe side, one might interpret the main effects in the original analysis as if an interaction were present. This need appears to be less pressing with the rates.

The statistical assumptions are reasonable for an analysis of the rates. I think that the simplicity of the main effects interpretation is a strong motivating factor for preferring the analysis of the transformed data to the original analysis. You might disagree, especially if you believe that the original time scale is most relevant for analysis.

Given the suitability of the inverse transformation, I did not consider the logarithmic transformation.
5.3 Multiple comparisons: balanced (means) vs unbalanced (emmeans)

The `emmeans` provides a way to compare cell means (combinations of factors), something that is not possible directly with other strategies, such as `glht()`, which compares marginal means.

Using the battery example, we compare the multiple comparison methods using means (`glht()`) and `emmeans`\(^2\) (`emmeans()`). When there are only main effects, the two methods agree. When there are model interactions, the comparisons of the main effects are inappropriate, and the results differ depending on the method of comparison. When there are model interactions and you want to compare cell means, levels of one factor at each level of another factor separately, then you must use `emmeans()`.

Finally, an important point demonstrated in the next section is that the cell and marginal averages given by the `means` and `emmeans` methods agree here for the main effects model because the design is balanced. For unbalanced designs with two or more factors, `emmeans` and `means` compute different averages. I will argue that `emmeans` are the appropriate averages for unbalanced analyses. You should use the `means` statement with caution — it is OK for balanced or unbalanced one-factor designs, and for the balanced two-factor designs (including the RB) that we have discussed.

\(^2\)`emmeans` is a package written by Russell V. Lenth, PhD of UNM 1975, and well-known for his online power calculators.
5.4 Unbalanced Two-Factor Designs and Analysis

Sample sizes are usually unequal, or unbalanced, for the different treatment groups in an experiment. Although this has no consequence on the specification of a model, you have to be more careful with the analysis of unbalanced experiments that have two or more factors. With unbalanced designs, the Type I and Type III SS differ, as do the main effect averages given by means and emmeans. Inferences might critically depend on which summaries are used. I will use the following example to emphasize the differences between the types of SS and averages.

5.4.1 Example: Rat insulin

The experiment consists of measuring insulin levels in rats a certain length of time after a fixed dose of insulin was injected into their jugular or portal veins. This is a two-factor study with two vein types (jugular, portal) and three time levels (0, 30, and 60). An unusual feature of this experiment is that the rats used in the six vein and time combinations are distinct. I will fit a two-factor interaction model, which assumes that the responses are independent within and across treatments (other models may be preferred). The design is unbalanced, with sample sizes varying from 3 to 12.

An alternative experimental design might randomly assign rats to the two vein groups, and then measure the insulin levels of each rat at the three time points. Depending on the questions of interest, you could compare veins using a one-way MANOVA, or use other multivariate techniques that allow correlated responses within rats.

```r
Example: Rat insulin
dat_rat <-
 read_table2("http://statacumen.com/teach/ADA2/notes/ADA2_notes_Ch05_ratinsulin.dat") %>%
 mutate(
 vein = factor(vein),
 time = factor(time)
)
```

Prof. Erik B. Erhardt
It appears the standard deviation increases with the mean.

```r
boxplots, ggplot
p <- ggplot(dat_rat, aes(x = time, y = insulin, colour = vein))
p <- p + geom_boxplot()
print(p)
```

```r
means and standard deviations for each time/interaction cell
sum_rat_tv <-
 dat_rat %>%
 group_by(time, vein) %>%
 summarize(
 m = mean(insulin),
 s = sd(insulin),
 n = length(insulin)
)
```

```
It appears the standard deviation increases with the mean.
```
We take the log of insulin to correct the problem. The variances are more constant now, except for one sample with only 3 observations which has a larger standard deviation than the others, but because this is based on such a small sample size, it’s not of much concern.

dat_rat <-
  dat_rat %>%
  mutate(
    loginsulin = log(insulin)
  )

# boxplots, ggplot
p <- ggplot(dat_rat, aes(x = time, y = loginsulin, colour = vein))
p <- p + geom_boxplot()
print(p)

# means and standard deviations for each time/interaction cell
sum_rat_tv <-
  dat_rat %>%
  group_by(time, vein) %>%
  summarize(
    m = mean(loginsulin),
    s = sd(loginsulin),
    n = length(loginsulin)
  )

sum_rat_tv

## # A tibble: 6 x 5
## # Groups: time [3]
##   time vein m    s   n
##  <fct> <fct> <dbl> <dbl> <int>
## 1 0    j     3.18 0.517  5
## 2 0    p     4.34 0.410 12
## 3 30   j     4.29 0.466  6
## 4 30   p     5.07 0.419 10
## 5 60   j     3.76 1.03  3
## 6 60   p     4.79 0.395 12

# mean vs sd plot
p <- ggplot(sum_rat_tv, aes(x = m, y = s, shape = time, colour = vein, label=n))
p <- p + geom_point(size=4)
# labels are sample sizes
p <- p + geom_text(hjust = 0.5, vjust = -0.5)
p <- p + labs(title = "Rats standard deviation vs mean")
print(p)
Type I and Type III SS

We can request ANOVA tables including Type I or Type III SS\(^3\) for each effect in a model. The Type I SS is the \textbf{sequential reduction} in Error SS achieved when an effect is added to a model that includes only the prior effects listed in the \texttt{model} statement. The Type III SS are more difficult to define explicitly, but they roughly correspond to the reduction in Error SS achieved when an effect is added \textbf{last} to the model (or conditional on all other effects being in the model).

Type I SS and Type III SS are equal for balanced designs and for one-way ANOVA, but are typically different for unbalanced designs, where there is no unique way to define the SS for an effect. The problem here is similar to multiple regression, where the SS for a predictor \(X\) is the decrease in Residual SS when \(X\) is added to a model. This SS is not unique because the change in the Residual SS depends on which predictors are included in the model prior to \(X\). In a regression analysis, the standard tests for effects in a model are based on Type III SS and not on the Type I SS.

\(^3\)For the ugly details, see http://goanna.cs.rmit.edu.au/~fscholer/anova.php.
For the insulin analysis, the Type I and Type III interaction SS are identical because this effect was added last to the model statement. The Type I and III SS for the main effects are not equal. Also note that the Type I SS for the main effects and interaction add to the model SS, but the Type III SS do not.

Looking at the output, we see the Type I and Type III SS are different, except for the interaction term.

```
lm_i_t_v_tv <-
lm(
 loginsulin ~ time*vein
 , data = dat_rat
 , contrasts = list(time = contr.sum, vein = contr.sum)
)
CRITICAL!!! Unbalanced design warning.
The contrast statement above must be included identifying
each main effect with "contr.sum" in order for the correct
Type III SS to be computed.
library(car)
Type I SS (intercept SS not shown)
summary(aov(lm_i_t_v_tv))
Df Sum Sq Mean Sq F value Pr(>F)
time 2 5.450 2.7250 12.183 6.74e-05 ***
vein 1 9.321 9.3210 41.658 8.82e-08 ***
time:vein 2 0.259 0.1300 0.584 0.565
Residuals 42 9.399 0.2238

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Type III SS
Anova(lm_i_t_v_tv, type=3)
Anova Table (Type III tests)
Response: loginsulin
Sum Sq Df F value Pr(>F)
(Intercept) 668.54 1 2987.58 <2e-16 ***
time 6.18 2 13.799 6.74e-05 ***
vein 9.13 1 40.796 1.10e-07 ***
time:vein 0.26 2 0.579 0.5645
Residuals 9.40 42

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

Because the profile plot lines all seem parallel, and because of the interaction Type III SS p-value above, it appears there is not sufficient evidence for a vein-by-time interaction. For now we’ll keep the interaction in the model for the
purpose of discussing differences between means and emmeans and Type I and Type III SS.

```r
Interaction plots, ggplot
p <- ggplot(dat_rat, aes(x = time, y = loginsulin, colour = vein, shape = vein))
p <- p + geom_hline(aes(yintercept = 0), colour = "black",
 linetype = "solid", size = 0.2, alpha = 0.3)
p <- p + geom_boxplot(alpha = 0.25, outlier.size=0.1)
p <- p + geom_point(alpha = 0.5, position=position_dodge(width=0.75))
p <- p + geom_point(data = sum_rat_tv, aes(y = m), size = 4)
p <- p + geom_line(data = sum_rat_tv, aes(y = m, group = vein), size = 1.5)
p <- p + labs(title = "Rats interaction plot, vein by time")
print(p)

p <- ggplot(dat_rat, aes(x = vein, y = loginsulin, colour = time, shape = time))
p <- p + geom_hline(aes(yintercept = 0), colour = "black",
 linetype = "solid", size = 0.2, alpha = 0.3)
p <- p + geom_boxplot(alpha = 0.25, outlier.size=0.1)
p <- p + geom_point(alpha = 0.5, position=position_dodge(width=0.75))
p <- p + geom_point(data = sum_rat_tv, aes(y = m), size = 4)
p <- p + geom_line(data = sum_rat_tv, aes(y = m, group = vein), size = 1.5)
p <- p + labs(title = "Rats interaction plot, time by vein")
print(p)
```

Prof. Erik B. Erhardt
Means versus emmeans

The emmeans (estimated marginal means, sometimes called adjusted means) for a single factor is an arithmetic average of cell means. For example, the mean responses in the jugular vein at times 0, 30, and 60 are 3.18, 4.29, and 3.76, respectively. The emmeans for the jugular vein is thus $3.74 = (3.18 + 4.29 + 3.76)/3$. This average gives equal weight to the 3 times even though the sample sizes at these times differ (5, 6, and 3). The means of 3.78 for the jugular is the average of the 14 jugular responses, ignoring time. If the cell sample sizes were equal, the emmeans and means averages would agree.

The means and emmeans for individual cells (i.e., for the 6 vein*time combinations) are identical, and equal to cell means.

```r
unbalanced, group means vs emmeans don't match
sum_rat_t <-
 dat_rat %>%
 group_by(time) %>%
 summarize(
 m = mean(loginsulin)
)
sum_rat_t
A tibble: 3 x 2
time m
<fct> <dbl>
1 0 4.00
2 30 4.78
3 60 4.58
cont_t <-
 emmeans::emmeans(
 lm_i_t_v_tv,
 specs = "time"
)
NOTE: Results may be misleading due to involvement in interactions
cont_t
time emmean SE df lower.CL upper.CL
0 3.76 0.126 42 3.50 4.01
30 4.68 0.122 42 4.43 4.93
60 4.27 0.153 42 3.96 4.58
##
Results are averaged over the levels of: vein
Confidence level used: 0.95
```
# unbalanced, group means vs emmeans don’t match

```r
sum_rat_v <-
 dat_rat %>%
 group_by(vein) %>%
 summarize(
 m = mean(loginsulin)
)
sum_rat_v
A tibble: 2 x 2
vein m
<fct> <dbl>
1 j 3.78
2 p 4.71

cont_v <-
 emmeans::emmeans(
 lm_i_t_v_tv,
 specs = "vein"
)
NOTE: Results may be misleading due to involvement in interactions
cont_v
A tibble: 2 x 2
vein emmean SE df lower.CL upper.CL
<fct> <dbl> <dbl> <int> <dbl> <dbl>
1 j 3.74 0.131 42 3.48 4.01
2 p 4.73 0.081 42 4.57 4.90

Results are averaged over the levels of: time
Confidence level used: 0.95

compare jugular mean above (3.778) with the emmeans average below (3.742)
(3.179610 + 4.286804 + 3.759076)/3
[1] 3.74183

unbalanced, but highest-order interaction cell means will match

sum_rat_tv <-
 dat_rat %>%
 group_by(vein, time) %>%
 summarize(
 m = mean(loginsulin)
)
sum_rat_tv
A tibble: 6 x 3
Groups: vein [2]
vein time m
<fct> <dbl> <dbl>
1 j 0 3.18
2 j 30 4.29
3 j 60 3.76
4 p 0 4.34
```

Prof. Erik B. Erhardt
## 5.4: Unbalanced Two-Factor Designs and Analysis

```
5 p 30 5.07
6 p 60 4.79

cont_tv <-
 emmeans::emmeans(
 lm_i_t_v_tv
 , specs = "time"
 , by = "vein"
)
cont_tv

vein = j:
time emmean SE df lower.CL upper.CL
0 3.18 0.212 42 2.75 3.61
30 4.29 0.193 42 3.90 4.68
60 3.76 0.273 42 3.21 4.31

vein = p:
time emmean SE df lower.CL upper.CL
0 4.34 0.137 42 4.06 4.61
30 5.07 0.150 42 4.77 5.37
60 4.79 0.137 42 4.51 5.06

Confidence level used: 0.95
```

For completeness, these diagnostic plots are mostly fine, though the plot of the Cook’s distances indicate a couple influential observations.

```
interaction model
lm_i_t_v_tv <-
 lm(
 loginsulin ~ time*vein
 , data = dat_rat
 , contrasts = list(time = contr.sum, vein = contr.sum)
)

plot diagnostics
lm_diag_plots(lm_i_t_v_tv, sw_plot_set = "simple")
```
Should I use means or emmeans, Type I or Type III SS?

Use emmeans and Type III SS.

Regardless of whether the design is balanced, the basic building blocks for a two-factor analysis are cell means, and the marginal means, defined as the average of the cell means over the levels of the other factor.

The $F$-statistics based on Type III SSs are appropriate for unbalanced two-factor designs because they test the same hypotheses that were considered in balanced designs. That is, the Type III $F$-tests on the main effects check for equality in population means averaged over levels of the other factor. The Type III $F$-test for no interaction checks for parallel profiles. Given that the Type III $F$-tests for the main effects check for equal population cell means averaged over the levels of the other factor, multiple comparisons for main effects should be based on emmeans.

The Type I SS and $F$-tests and the multiple comparisons based on means should be ignored because they do not, in general, test meaningful hypotheses. The problem with using the means output is that the experimenter has fixed the sample sizes for a two-factor experiment, so comparisons of means, which ignore the second factor, introduces a potential bias due to choice of sample sizes. Put another way, any differences seen in the means in the jugular and portal could be solely due to the sample sizes used in the experiment and not due to differences in the veins.

Focusing on the Type III SS, the $F$-tests indicate that the vein and time effects are significant, but that the interaction is not significant. The jugular and portal profiles are reasonably parallel, which is consistent with a lack of interaction. What can you conclude from the emmeans comparisons of veins and times?

Answer: significant differences between veins, and between times 0 and 30.
5.5 Writing factor model equations and interpreting coefficients

This section is an exercise in writing statistical factor models, plotting predicted values, and interpreting model coefficients. You’ll need pen (preferably multi-colored) and paper.

In class I’ll discuss indicator variables and writing these models. Together, we’ll plot the model predicted values, write the model for each factor combination, and indicate the $\beta$ coefficients on the plot ($\beta$s are vertical differences)\(^4\). From the exercise, I hope that coefficient interpretation will become clear. Assume a balanced design with $n_i$ observations for each treatment combination.

5.5.1 One-way ANOVA, 1 factor with 3 levels

1. Write ANOVA factor model (general and indicator-variables)
2. Write model for each factor level with $\beta$s and predicted values
3. Plot the predicted values on axes
4. Label the $\beta$s on the plot
5. Calculate marginal and grand means in table and label in plot

<table>
<thead>
<tr>
<th>Level</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\hat{y}$</td>
<td>5</td>
<td>4</td>
<td>6</td>
</tr>
</tbody>
</table>

5.5.2 Two-way ANOVA, 2 factors with 3 and 2 levels, additive model

1. Write two-way ANOVA factor model (general and indicator-variables)
2. Write model for each factor level with $\beta$s and predicted values
3. Plot the predicted values on axes
4. Label the $\beta$s on the plot
5. Calculate marginal and grand means in table and label in plot

---

### 5.5.3 Two-way ANOVA, 2 factors with 3 and 2 levels, interaction model

1. Write two-way ANOVA factor model (general and indicator-variables)
2. Write model for each factor level with $\beta$s and predicted values
3. Plot the predicted values on axes
4. Label the $\beta$s on the plot
5. Calculate marginal and grand means in table and label in plot

<table>
<thead>
<tr>
<th>$\hat{y}$</th>
<th>Factor 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Factor 2</td>
<td>1 2 3</td>
</tr>
<tr>
<td>1</td>
<td>5 4 6</td>
</tr>
<tr>
<td>2</td>
<td>8 7 9</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$\hat{y}$</th>
<th>Factor 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Factor 2</td>
<td>1 2 3</td>
</tr>
<tr>
<td>1</td>
<td>5 4 6</td>
</tr>
<tr>
<td>2</td>
<td>8 10 3</td>
</tr>
</tbody>
</table>