- 1 Kangaroos skull measurements: mandible length
- 1.1
**(1 p)**Interpret plots of the data, distributional centers and shapes - 1.2
**(1 p)**Do the plots above suggest there is an interaction? - 1.3 Fit the two-way interaction model
- 1.4
**(1 p)**Check model assumptions for full model - 1.5
**(3 p)**ANOVA table, test for interaction and main effects - 1.6
**(1 p)**Reduce to final model, test assumptions - 1.7
**(2 p)**Summarize the differences - 1.8
**(1 p)**Summarize the results in a few sentences

- 1.1

*What effect does sex and species have on the mandible length of a kangaroo skull?*

The data to be analyzed here are selected skull measurements on 148 kangaroos of known sex and species. There are 11 columns of data, corresponding to the following features. The measurements are in meters/10000 (mm/10).

column | Variable name | Description |
---|---|---|

1 * | sex | sex (1=M, 2=F) |

2 * | species | species (0=M. giganteus, 1=M.f. melanops, 2=M.f. fuliginosus) |

3 | pow | post orbit width |

4 | rw | rostal width |

5 | sopd | supra-occipital - paroccipital depth |

6 | cw | crest width |

7 | ifl | incisive foramina length |

8 * | ml | mandible length |

9 | mw | mandible width |

10 | md | mandible depth |

11 | arh | ascending ramus height |

Some of the observations in the data set are missing (not available). These are represented by a period `.`

, which in the `read_csv()`

function is specified by the `na = "."`

option.

```
library(tidyverse)
# load ada functions
source("ada_functions.R")
# First, download the data to your computer,
# save in the same folder as this Rmd file.
dat_kang <-
read_csv(
"ADA2_WS_09_kang.csv"
, na = c("", ".")
) %>%
# subset only our columns of interest
select(
sex, species, ml
) %>%
# make dose a factor variable and label the levels
mutate(
sex = factor(sex , labels = c("M","F"))
, species = factor(species, labels = c("Mg", "Mfm", "Mff"))
)
# remove observations with missing values
n_start <- nrow(dat_kang)
dat_kang <- na.omit(dat_kang)
n_keep <- nrow(dat_kang)
n_drop <- n_start - n_keep
cat("Removed", n_start, "-", n_keep, "=", n_drop, "observations with missing values.")
```

`Removed 148 - 136 = 12 observations with missing values.`

```
# A tibble: 6 x 3
sex species ml
<fct> <fct> <dbl>
1 M Mg 1086
2 M Mg 1158
3 M Mg 1131
4 M Mg 1090
5 M Mg 1175
6 M Mg 901
```

The side-by-side boxplots of the data compare the mandible lengths across the 6 combinations of sex and species. Comment on the distributional shapes and compare the typical mandible lengths across groups.

[answer]

Do the lines for each group seem to be very different from parallel?

[answer]

[answer]

Recall that we assume that the full model is correct before we perform model reduction by backward selection.

[answer]

Test for the presence of interaction between sex and species. Also test for the presence of main effects, effects due to the sex and species.

[answer]

If the model can be simplified (because interaction is not significant), then refit the model with only the main effects. Test whether the main effects are significant, reduce further if sensible. Test model assumptions of your final model.

[answer]

Summarize differences, if any, in sexes and species using relevant multiple comparisons. Give clear interpretations of any significant effects.

*This code is here to get you started. Determine which comparisons you plan to make and modify the appropriate code. Make the code chunk active by moving the {R} to the end of the initial code chunk line.*

```
{R}
library(emmeans)
# Contrasts to perform pairwise comparisons
cont_kang <- emmeans(lm_object, specs = "sex")
cont_kang <- emmeans(lm_object, specs = "species")
cont_kang <- emmeans(lm_object, specs = "sex", by = c("species"))
cont_kang <- emmeans(lm_object, specs = "species", by = c("sex"))
# Means and CIs
confint(cont_kang, adjust = "bonferroni")
# Pairwise comparisons
cont_kang %>% pairs(adjust = "bonf") # adjust = "tukey" is default
```

**EMM plot interpretation**

This **EMM plot (Estimated Marginal Means, aka Least-Squares Means)** is only available when conditioning on one variable. The **blue bars** are confidence intervals for the EMMs; don’t ever use confidence intervals for EMMs to perform comparisons – they can be very misleading. The **red arrows** are for the comparisons among means; the degree to which the “comparison arrows” overlap reflects as much as possible the significance of the comparison of the two estimates. If an arrow from one mean overlaps an arrow from another group, the difference is not significant, based on the adjust setting (which defaults to “tukey”).

```
{R, fig.height = 5, fig.width = 6}
# Plot means and contrasts
p <- plot(cont_kang, comparisons = TRUE, adjust = "bonf")
p <- p + labs(title = "Bonferroni-adjusted contrasts")
p <- p + theme_bw()
print(p)
```

Please refer to the Chapter 5 section named ** emmeans and Bonferroni corrections** for how to appropriately calculate the Bonferroni p-values for a two-way interaction model.

[answer]

[answer]