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Learning objectives

After completing this topic, you should be able to:

select the appropriate procedure based on assumptions.
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196 Ch 6: Nonparametric Methods

explain reason for using one procedure over another.

decide whether the medians between multiple populations are different.

Achieving these goals contributes to mastery in these course learning outcomes:

3. select correct statistical procedure.

5. define parameters of interest and hypotheses in words and notation.

6. summarize data visually, numerically, and descriptively.

8. use statistical software.

10. identify and explain statistical methods, assumptions, and limitations.

12. make evidence-based decisions.

6.1 Introduction

Nonparametric methods do not require the normality assumption of classical

techniques. When the normality assumption is met, the ANOVA and t-test are

most powerful, in that if the alternative is true these methods will make the

correct decision with highest probability. However, if the normality assumption

is not met, results from the ANOVA and t-test can be misleading and too

liberal. I will describe and illustrate selected non-parametric methods,

and compare them with classical methods. Some motivation and discussion of

the strengths and weaknesses of non-parametric methods is given.

6.2 The Sign Test and CI for a Population
Median

The sign test assumes that you have a random sample from a population,

but makes no assumption about the population shape. The standard t-test

provides inferences on a population mean. The sign test, in contrast, provides

inferences about a population median.

If the population frequency curve is symmetric (see below), then the popu-

lation median, identified by η, and the population mean µ are identical. In this
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6.2: The Sign Test and CI for a Population Median 197

case the sign procedures provide inferences for the population mean, though

less powerfully than the t-test.

The idea behind the sign test is straightforward. Suppose you have a sample

of size m from the population, and you wish to test H0 : η = η0 (a given value).

Let S be the number of sampled observations above η0. If H0 is true, you expect

S to be approximately one-half the sample size, 0.5m. If S is much greater than

0.5m, the data suggests that η > η0. If S is much less than 0.5m, the data

suggests that η < η0.

Mean = µMedian = η

50%

Mean and Median differ with skewed distributions

Mean = Median

Mean and Median are the same with symmetric distributions

S has a Binomial distribution when H0 is true. The Binomial distri-

bution is used to construct a test with size α (approximately). For a two-sided

alternative HA : η 6= η0, the test rejects H0 when S is significantly different

from 0.5m, as determined from the reference Binomial distribution. One-sided

tests use the corresponding lower or upper tail of the distribution. To generate

a CI for η, you can exploit the duality between CI and tests. A 100(1 − α)%

CI for η consists of all values η0 not rejected by a two-sided size α test of

H0 : η = η0.

Not all test sizes and confidence levels are possible because the test statistic

S is discrete valued. R’s SIGN.test() in the BSDA package gives an exact p-

value for the test, and approximates the desired confidence level using a linear
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198 Ch 6: Nonparametric Methods

interpolation algorithm.

Example: Income Data Recall that the income distribution is extremely
skewed, with two extreme outliers at 46 and 1110.
#### Example: Income Data

income <- c(7, 1110, 7, 5, 8, 12, 0, 5, 2, 2, 46, 7)

# sort in decreasing order

income <- sort(income, decreasing = TRUE)

income

## [1] 1110 46 12 8 7 7 7 5 5 2 2 0

summary(income)

## Min. 1st Qu. Median Mean 3rd Qu. Max.

## 0.00 4.25 7.00 100.92 9.00 1110.00

sd(income)

## [1] 318.0078

The income data is unimodal, skewed right, with two extreme outliers.
par(mfrow=c(3,1))

# Histogram overlaid with kernel density curve

hist(income, freq = FALSE, breaks = 1000)

points(density(income), type = "l")

rug(income)

# violin plot

library(vioplot)

vioplot(income, horizontal=TRUE, col="gray")

## [1] 0 1110

# boxplot

boxplot(income, horizontal=TRUE)
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6.2: The Sign Test and CI for a Population Median 199

Histogram of income

income
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The normal QQ-plot of the sample data indicates strong deviation from
normality, and the CLT can’t save us: even the bootstrap sampling distribution
of the mean indicates strong deviation from normality.
library(car)

qqPlot(income, las = 1, id = list(n = 0, cex = 1), lwd = 1, main="QQ Plot, Income")

bs.one.samp.dist(income)
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Plot of data with smoothed density curve
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Bootstrap sampling distribution of the mean

Data: n = 12 , mean = 100.92 , se = 91.801 5
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The presence of the outliers has a dramatic effect on the 95% CI for the
population mean income µ, which goes from −101 to 303 (in 1000 dollar units).
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200 Ch 6: Nonparametric Methods

This t-CI is suspect because the normality assumption is unreasonable. A CI
for the population median income η is more sensible because the median is likely
to be a more reasonable measure of typical value. Using the sign procedure,
you are 95% confident that the population median income is between 2.32 and
11.57 (times $1000).
library(BSDA)

t.test(income)

##

## One Sample t-test

##

## data: income

## t = 1.0993, df = 11, p-value = 0.2951

## alternative hypothesis: true mean is not equal to 0

## 95 percent confidence interval:

## -101.1359 302.9692

## sample estimates:

## mean of x

## 100.9167

SIGN.test(income)

##

## One-sample Sign-Test

##

## data: income

## s = 11, p-value = 0.0009766

## alternative hypothesis: true median is not equal to 0

## 95 percent confidence interval:

## 2.319091 11.574545

## sample estimates:

## median of x

## 7

##

## Achieved and Interpolated Confidence Intervals:

##

## Conf.Level L.E.pt U.E.pt

## Lower Achieved CI 0.8540 5.0000 8.0000

## Interpolated CI 0.9500 2.3191 11.5745

## Upper Achieved CI 0.9614 2.0000 12.0000

Example: Age at First Heart Transplant Recall that the distribution
of ages is skewed to the left with a lower outlier. A question of interest is whether
the “typical age” at first transplant is 50. This can be formulated as a test about
the population median η or as a test about the population mean µ, depending
on the interpretation.
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6.2: The Sign Test and CI for a Population Median 201

#### Example: Age at First Heart Transplant

age <- c(54, 42, 51, 54, 49, 56, 33, 58, 54, 64, 49)

# sort in decreasing order

age <- sort(age, decreasing = TRUE)

age

## [1] 64 58 56 54 54 54 51 49 49 42 33

summary(age)

## Min. 1st Qu. Median Mean 3rd Qu. Max.

## 33.00 49.00 54.00 51.27 55.00 64.00

sd(age)

## [1] 8.25943

The age data is unimodal, skewed left, no extreme outliers.
par(mfrow=c(3,1))

# Histogram overlaid with kernel density curve

hist(age, freq = FALSE, breaks = 10)

points(density(age), type = "l")

rug(age)

# violin plot

library(vioplot)

vioplot(age, horizontal=TRUE, col="gray")

## [1] 33 64

# boxplot

boxplot(age, horizontal=TRUE)
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The normal QQ-plot of the sample data indicates mild deviation from nor-
mality in the left tail (2 points of 11 outside the bands), and the bootstrap
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202 Ch 6: Nonparametric Methods

sampling distribution of the mean indicates weak deviation from normality. It
is good practice in this case to use the nonparametric test as a double-check of
the t-test, with the nonparametric test being the more conservative test.
library(car)

qqPlot(age, las = 1, id = list(n = 0, cex = 1), lwd = 1, main="QQ Plot, Income")

bs.one.samp.dist(age)

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5

35

40

45

50

55

60

65

QQ Plot, Income

norm quantiles

ag
e

●

●

● ●

●

● ● ●

●

●

●
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Data: n = 11 , mean = 51.273 , se = 2.49031 5
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The sign test for H0 : η = 50 against HA : η 6= 50 has a p-value of 0.549,
which is not sufficient to reject H0. A 95% CI for η is 47.0 to 56.6 years, which
includes the hypothesized median age of 50. Similar conclusions are reached
with the t-CI and the test on µ, but you should have less confidence in these
results because the normality assumption is tenuous.
library(BSDA)

t.test(age, mu=50)

##

## One Sample t-test

##

## data: age

## t = 0.51107, df = 10, p-value = 0.6204

## alternative hypothesis: true mean is not equal to 50

## 95 percent confidence interval:

## 45.72397 56.82149

## sample estimates:

## mean of x

## 51.27273

SIGN.test(age, md=50)

##
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6.3: Wilcoxon Signed-Rank Procedures 203

## One-sample Sign-Test

##

## data: age

## s = 7, p-value = 0.5488

## alternative hypothesis: true median is not equal to 50

## 95 percent confidence interval:

## 46.98909 56.57455

## sample estimates:

## median of x

## 54

##

## Achieved and Interpolated Confidence Intervals:

##

## Conf.Level L.E.pt U.E.pt

## Lower Achieved CI 0.9346 49.0000 56.0000

## Interpolated CI 0.9500 46.9891 56.5745

## Upper Achieved CI 0.9883 42.0000 58.0000

6.3 Wilcoxon Signed-Rank Procedures

The Wilcoxon procedure assumes you have a random sample from a popula-

tion with a symmetric frequency curve. The curve need not be normal. The

test and CI can be viewed as procedures for either the population median or

mean.

To illustrate the computation of the Wilcoxon statistic W , suppose you

wish to test H0 : µ = µ0 = 10 on the made-up data below. The test statistic

requires us to compute the signs of Xi− µ0 and the ranks of |Xi− µ0|. Ties

in |Xi − µ0| get the average rank and observations at µ0 (here 10) are always

discarded. The Wilcoxon statistic is the sum of the signed ranks for

observations above µ0 = 10. For us

W = 6 + 4.5 + 8 + 2 + 4.5 + 7 = 32.
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204 Ch 6: Nonparametric Methods

Xi Xi − 10 sign |Xi − 10| rank sign× rank

20 10 + 10 6 6

18 8 + 8 4.5 4.5

23 13 + 13 8 8

5 −5 − 5 3 −3

14 4 + 4 2 2

8 −2 − 2 1 −1

18 8 + 8 4.5 4.5

22 12 + 12 7 7

The sum of all ranks is always 0.5m(m+1), wherem is the sample size. IfH0

is true, you expect W to be approximately 0.5×0.5m(m+1) = 0.25m(m+1).

Why? Recall that W adds up the ranks for observations above µ0. If H0 is

true, you expect 1/2 of all observations to be above µ0, assuming the population

distribution is symmetric. The ranks of observations above µ0 should add

to approximately 1/2 times the sum of all ranks. You reject H0 in favor of

HA : µ 6= µ0 if W is much larger than, or much smaller than 0.25m(m + 1).

One sided tests can also be constructed. The Wilcoxon CI for µ is computed

in a manner analogous to that described for the sign CI.

Here, m = 8 so the sum of all ranks is 0.5 × 8 × 9 = 36 (check yourself).

The expected value of W is 0.5 × 0.5 × 8 × 9 = 18. Is the observed value of

W = 32 far from the expected value of 18? To formally answer this question,

we need to use the Wilcoxon procedures, which are implemented in R with

wilcox.test().

Example: Made-up Data The boxplot indicates that the distribution is

fairly symmetric, so the Wilcoxon method is reasonable (so is a t-CI and test).
#### Example: Made-up Data

dat <- c(20, 18, 23, 5, 14, 8, 18, 22)

# sort in decreasing order

dat <- sort(dat, decreasing = TRUE)

dat

## [1] 23 22 20 18 18 14 8 5

summary(dat)
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6.3: Wilcoxon Signed-Rank Procedures 205

## Min. 1st Qu. Median Mean 3rd Qu. Max.

## 5.0 12.5 18.0 16.0 20.5 23.0

sd(dat)

## [1] 6.524678

The dat data is unimodal, skewed left, no extreme outliers.
par(mfrow=c(3,1))

# Histogram overlaid with kernel density curve

hist(dat, freq = FALSE, breaks = 10)

points(density(dat), type = "l")

rug(dat)

# violin plot

library(vioplot)

vioplot(dat, horizontal=TRUE, col="gray")

## [1] 5 23

# boxplot

boxplot(dat, horizontal=TRUE)
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The normal QQ-plot of the sample data indicates insufficient evidence of
deviation from normality though both the QQ-plot and the bootstrap sampling
distribution of the mean indicates weak left-skewness. Either the Wilcoxon or
t-test are appropriate.
par(mfrow=c(1,1))

library(car)

qqPlot(dat, las = 1, id = list(n = 0, cex = 1), lwd = 1, main="QQ Plot, Income")

bs.one.samp.dist(dat)
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The Wilcoxon p-value with continuity correction for testing H0 : µ = 10

against a two-sided alternative is 0.058. This would not lead to rejecting H0 at

the 5% level.
t.test(dat, mu=10)

##

## One Sample t-test

##

## data: dat

## t = 2.601, df = 7, p-value = 0.03537

## alternative hypothesis: true mean is not equal to 10

## 95 percent confidence interval:

## 10.54523 21.45477

## sample estimates:

## mean of x

## 16

# with continuity correction in the normal approximation for the p-value

wilcox.test(dat, mu=10, conf.int=TRUE)

## Warning in wilcox.test.default(dat, mu = 10, conf.int = TRUE): cannot compute exact p-value

with ties

## Warning in wilcox.test.default(dat, mu = 10, conf.int = TRUE): cannot compute exact confidence

interval with ties

##

## Wilcoxon signed rank test with continuity correction

##

## data: dat

## V = 32, p-value = 0.0584

## alternative hypothesis: true location is not equal to 10
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## 95 percent confidence interval:

## 9.500002 21.499942

## sample estimates:

## (pseudo)median

## 16.0056

# without continuity correction

wilcox.test(dat, mu=10, conf.int=TRUE, correct=FALSE)

## Warning in wilcox.test.default(dat, mu = 10, conf.int = TRUE, correct = FALSE): cannot

compute exact p-value with ties

## Warning in wilcox.test.default(dat, mu = 10, conf.int = TRUE, correct = FALSE): cannot

compute exact confidence interval with ties

##

## Wilcoxon signed rank test

##

## data: dat

## V = 32, p-value = 0.04967

## alternative hypothesis: true location is not equal to 10

## 95 percent confidence interval:

## 10.99996 21.00005

## sample estimates:

## (pseudo)median

## 16.0056

6.3.1 Nonparametric Analyses of Paired Data

Nonparametric methods for single samples can be used to analyze paired data

because the difference between responses within pairs is the unit of analysis.

Example: Sleep Remedies I will illustrate Wilcoxon methods on the

paired comparison of two remedies A and B for insomnia. The number of hours

of sleep gained on each method was recorded.
#### Example: Sleep Remedies

# Data and numerical summaries

a <- c( 0.7, -1.6, -0.2, -1.2, 0.1, 3.4, 3.7, 0.8, 0.0, 2.0)

b <- c( 1.9, 0.8, 1.1, 0.1, -0.1, 4.4, 5.5, 1.6, 4.6, 3.0)

d <- b - a;

sleep <- data.frame(a, b, d)

summary(sleep$d)

## Min. 1st Qu. Median Mean 3rd Qu. Max.

## -0.200 1.000 1.250 1.520 1.675 4.600

shapiro.test(sleep$d)
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##

## Shapiro-Wilk normality test

##

## data: sleep$d

## W = 0.83798, p-value = 0.04173

# boxplot

library(ggplot2)

p3 <- ggplot(sleep, aes(x = "d", y = d))

p3 <- p3 + geom_hline(yintercept=0, colour="#BB0000", linetype="dashed")

p3 <- p3 + geom_boxplot()

p3 <- p3 + geom_point()

p3 <- p3 + stat_summary(fun.y = mean, geom = "point", shape = 18,

size = 4, alpha = 0.3)

p3 <- p3 + coord_flip()

print(p3)

● ●● ●●●● ● ●● ●●d
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d
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The boxplot shows that distribution of differences is reasonably symmetric

but not normal. Recall that the Shapiro-Wilk test of normality was significant

at the 5% level (p-value=0.042). It is sensible to use the Wilcoxon procedure

on the differences. Let µB be the population mean sleep gain on remedy B,

and µA be the population mean sleep gain on remedy A. You are 95% confident

that µB − µA is between 0.8 and 2.8 hours. Putting this another way, you are

95% confident that µB exceeds µA by between 0.8 and 2.8 hours. The p-value

for testing H0 : µB − µA = 0 against a two-sided alternative is 0.008, which

strongly suggests that µB 6= µA. This agrees with the CI. Note that the t-CI

and test give qualitatively similar conclusions as the Wilcoxon methods, but

the t-test p-value is about half as large.

If you are uncomfortable with the symmetry assumption, you could use the

sign CI for the population median difference between B and A. I will note that

a 95% CI for the median difference goes from 0.86 to 2.2 hours.
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t.test(sleep$d, mu=0)

##

## One Sample t-test

##

## data: sleep$d

## t = 3.7796, df = 9, p-value = 0.004352

## alternative hypothesis: true mean is not equal to 0

## 95 percent confidence interval:

## 0.610249 2.429751

## sample estimates:

## mean of x

## 1.52

# with continuity correction in the normal approximation for the p-value

wilcox.test(sleep$d, mu=0, conf.int=TRUE)

## Warning in wilcox.test.default(sleep$d, mu = 0, conf.int = TRUE): cannot compute exact

p-value with ties

## Warning in wilcox.test.default(sleep$d, mu = 0, conf.int = TRUE): cannot compute exact

confidence interval with ties

##

## Wilcoxon signed rank test with continuity correction

##

## data: sleep$d

## V = 54, p-value = 0.008004

## alternative hypothesis: true location is not equal to 0

## 95 percent confidence interval:

## 0.7999339 2.7999620

## sample estimates:

## (pseudo)median

## 1.299983

# can use the paired= option

#wilcox.test(sleep£b, sleep£a, paired=TRUE, mu=0, conf.int=TRUE)

# if don't assume symmetry, can use sign test

#SIGN.test(sleep£d)

6.3.2 Comments on One-Sample Nonparametric Meth-
ods

For this discussion, I will assume that the underlying population distribution

is (approximately) symmetric, which implies that population means and me-

dians are equal (approximately). For symmetric distributions the t, sign, and

Wilcoxon procedures are all appropriate.

If the underlying population distribution is extremely skewed, you can use
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the sign procedure to get a CI for the population median. Alternatively, as

illustrated on HW 2, you can transform the data to a scale where the underlying

distribution is nearly normal, and then use the classical t-methods. Moderate

degrees of skewness will not likely have a big impact on the standard t-test and

CI.

The one-sample t-test and CI are optimal when the underlying population

frequency curve is normal. Essentially this means that the t-CI is, on average,

narrowest among all CI procedures with given level, or that the t-test has the

highest power among all tests with a given size. The width of a CI provides a

measure of the sensitivity of the estimation method. For a given level CI, the

narrower CI better pinpoints the unknown population mean.

With heavy-tailed symmetric distributions, the t-test and CI tend to be

conservative. Thus, for example, a nominal 95% t-CI has actual coverage rates

higher than 95%, and the nominal 5% t-test has an actual size smaller than 5%.

The t-test and CI possess a property that is commonly called robustness of

validity. However, data from heavy-tailed distributions can have a profound

effect on the sensitivity of the t-test and CI. Outliers can dramatically inflate

the standard error of the mean, causing the CI to be needlessly wide, and

tests to have diminished power (outliers typically inflate p-values for the t-

test). The sign and Wilcoxon procedures downweight the influence of outliers

by looking at sign or signed-ranks instead of the actual data values. These

two nonparametric methods are somewhat less efficient than the t-methods

when the population is normal (efficiency is about 0.64 and 0.96 for the sign

and Wilcoxon methods relative to the normal t-methods, where efficiency is the

ratio of sample sizes needed for equal power), but can be infinitely more efficient

with heavier than normal tailed distributions. In essence, the t-methods do not

have a robustness of sensitivity.

Nonparametric methods have gained widespread acceptance in many sci-

entific disciplines, but not all. Scientists in some disciplines continue to use

classical t-methods because they believe that the methods are robust to non-

normality. As noted above, this is a robustness of validity, not sensitivity. This
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misconception is unfortunate, and results in the routine use of methods that

are less powerful than the non-parametric techniques. Scientists need to

be flexible and adapt their tools to the problem at hand, rather

than use the same tool indiscriminately! I have run into suspicion

that use of nonparametric methods was an attempt to “cheat” in some way —

properly applied, they are excellent tools that should be used.

A minor weakness of nonparametric methods is that they do not easily

generalize to complex modelling problems. A great deal of progress has been

made in this area, but most software packages have not included the more

advanced techniques (R is among the forerunners).

Nonparametric statistics used to refer almost exclusively to the set of meth-

ods such as we have been discussing that provided analogs like tests and CIs

to the normal theory methods without requiring the assumption of sampling

from normal distributions. There is now a large area of statistics also called

nonparametric methods not focused on these goals at all. In our department

we (used to) have a course titled “Nonparametric Curve Estimation & Image

Reconstruction”, where the focus is much more general than relaxing an as-

sumption of normality. In that sense, what we are covering in this course could

be considered “classical” nonparametrics.

6.4 (Wilcoxon-)Mann-Whitney Two-Sample
Procedure

The WMW procedure assumes you have independent random samples from the

two populations, and assumes that the populations have the same shapes

and spreads (the frequency curves for the two populations are “shifted” ver-

sions of each other — see below). The frequency curves are not required to be

symmetric. The WMW procedures give a CI and tests on the difference η1−η2

between the two population medians. If the populations are symmetric, then

the methods apply to µ1 − µ2.
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The R help on ?wilcox.test gives references to how the exact WMW proce-

dure is actually calculated; here is a good approximation to the exact method

that is easier to understand. The WMW procedure is based on ranks. The

two samples are combined, ranked from smallest to largest (1=smallest) and

separated back into the original samples. If the two populations have equal me-

dians, you expect the average rank in the two samples to be roughly equal. The

WMW test computes a classical two sample t-test using the pooled variance on

the ranks to assess whether the sample mean ranks are significantly different.

Example: Comparison of Cooling Rates of Uwet and Walker

Co. Meteorites The Uwet1 (Cross River, Nigeria) and Walker2 County

(Alabama, US) meteorite cooling rate data are below. A primary interest is

comparing the population “typical” cooling rate measurements.

1http://www.lpi.usra.edu/meteor/metbull.php?code=24138
2http://www.lpi.usra.edu/meteor/metbull.php?code=24204
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#### Example: Comparison of Cooling Rates of Uwet and Walker Co. Meteorites

Uwet <- c(0.21, 0.25, 0.16, 0.23, 0.47, 1.20, 0.29, 1.10, 0.16)

Walker <- c(0.69, 0.23, 0.10, 0.03, 0.56, 0.10, 0.01, 0.02, 0.04, 0.22)

The boxplots and normal QQ-plots show that the distributions are rather
skewed to the right. The AD test of normality indicate that a normality as-
sumption is unreasonable for each population.
met <- data.frame(Uwet=c(Uwet,NA), Walker)

library(reshape2)

met.long <- melt(met, variable.name = "site", value.name = "cool", na.rm=TRUE)

## No id variables; using all as measure variables

# naming variables manually, the variable.name and value.name not working 11/2012

names(met.long) <- c("site", "cool")

library(ggplot2)

p <- ggplot(met.long, aes(x = site, y = cool, fill=site))

p <- p + geom_boxplot()

p <- p + geom_point(position = position_jitter(w = 0.05, h = 0), alpha = 0.5)

p <- p + stat_summary(fun.y = mean, geom = "point", shape = 3, size = 2)

p <- p + coord_flip()

p <- p + labs(title = "Cooling rates for samples of meteorites at two locations")

p <- p + theme(legend.position="none")

print(p)

par(mfrow=c(1,2))

library(car)

qqPlot(Walker, las = 1, id = list(n = 0, cex = 1), lwd = 1, main="QQ Plot, Walker")

qqPlot(Uwet, las = 1, id = list(n = 0, cex = 1), lwd = 1, main="QQ Plot, Uwet")
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I carried out the standard two-sample procedures to see what happens. The
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pooled-variance and Satterthwaithe results are comparable, which is expected

because the sample standard deviations and sample sizes are roughly equal.

Both tests indicate that the mean cooling rates for Uwet and Walker Co. me-

teorites are not significantly different at the 10% level. You are 95% confident

that the mean cooling rate for Uwet is at most 0.1 less, and no more than 0.6

greater than that for Walker Co. (in degrees per million years).
# numerical summaries

summary(Uwet)

## Min. 1st Qu. Median Mean 3rd Qu. Max.

## 0.1600 0.2100 0.2500 0.4522 0.4700 1.2000

c(sd(Uwet), IQR(Uwet), length(Uwet))

## [1] 0.4069944 0.2600000 9.0000000

summary(Walker)

## Min. 1st Qu. Median Mean 3rd Qu. Max.

## 0.0100 0.0325 0.1000 0.2000 0.2275 0.6900

c(sd(Walker), IQR(Walker), length(Walker))

## [1] 0.2389793 0.1950000 10.0000000

t.test(Uwet, Walker, var.equal = TRUE)

##

## Two Sample t-test

##

## data: Uwet and Walker

## t = 1.6689, df = 17, p-value = 0.1134

## alternative hypothesis: true difference in means is not equal to 0

## 95 percent confidence interval:

## -0.0666266 0.5710710

## sample estimates:

## mean of x mean of y

## 0.4522222 0.2000000

t.test(Uwet, Walker)

##

## Welch Two Sample t-test

##

## data: Uwet and Walker

## t = 1.6242, df = 12.652, p-value = 0.129

## alternative hypothesis: true difference in means is not equal to 0

## 95 percent confidence interval:

## -0.08420858 0.58865302

## sample estimates:

## mean of x mean of y

## 0.4522222 0.2000000
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Given the marked skewness, a nonparametric procedure is more appropriate.

The Wilcoxon-Mann-Whitney comparison of population medians is reasonable.

Why? The WMW test of equal population medians is significant (barely) at

the 5% level. You are 95% confident that median cooling rate for Uwet exceeds

that for Walker by between 0+ and 0.45 degrees per million years.
wilcox.test(Uwet, Walker, conf.int = TRUE)

## Warning in wilcox.test.default(Uwet, Walker, conf.int = TRUE): cannot compute exact p-value

with ties

## Warning in wilcox.test.default(Uwet, Walker, conf.int = TRUE): cannot compute exact confidence

intervals with ties

##

## Wilcoxon rank sum test with continuity correction

##

## data: Uwet and Walker

## W = 69.5, p-value = 0.04974

## alternative hypothesis: true location shift is not equal to 0

## 95 percent confidence interval:

## 0.0000449737 0.4499654518

## sample estimates:

## difference in location

## 0.1702657

The difference between the WMW and t-test p-values and CI lengths (i.e.

the WMW CI is narrower and the p-value smaller) reflects the effect of the

outliers on the sensitivity of the standard tests and CI.

I conducted a pooled-variance two-sample t-test on ranks to show you that

the p-value is close to the WMW p-value, as expected.
rank(met.long$cool)

## [1] 9.0 13.0 7.5 11.5 15.0 19.0 14.0 18.0 7.5 17.0 11.5 5.5 3.0

## [14] 16.0 5.5 1.0 2.0 4.0 10.0

by(rank(met.long$cool), met.long$site, summary)

## met.long$site: Uwet

## Min. 1st Qu. Median Mean 3rd Qu. Max.

## 7.50 9.00 13.00 12.72 15.00 19.00

## ----------------------------------------------------

## met.long$site: Walker

## Min. 1st Qu. Median Mean 3rd Qu. Max.

## 1.00 3.25 5.50 7.55 11.12 17.00

# note: the CI for ranks is not interpretable

t.test(rank(met.long$cool) ~ met.long$site, var.equal = TRUE)

##

## Two Sample t-test
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##

## data: rank(met.long$cool) by met.long$site

## t = 2.2082, df = 17, p-value = 0.04125

## alternative hypothesis: true difference in means is not equal to 0

## 95 percent confidence interval:

## 0.2304938 10.1139507

## sample estimates:

## mean in group Uwet mean in group Walker

## 12.72222 7.55000

Example: Newcombe’s Data Experiments of historical importance were

performed beginning in the eighteenth century to determine physical constants,

such as the mean density of the earth, the distance from the earth to the sun,

and the velocity of light. An interesting series of experiments to determine

the velocity of light was begun in 1875. The first method used, and reused

with refinements several times thereafter, was the rotating mirror method3. In

this method a beam of light is reflected off a rapidly rotating mirror to a fixed

mirror at a carefully measured distance from the source. The returning light

is re-reflected from the rotating mirror at a different angle, because the mir-

ror has turned slightly during the passage of the corresponding light pulses.

From the speed of rotation of the mirror and from careful measurements of

the angular difference between the outward-bound and returning light beams,

the passage time of light can be calculated for the given distance. After av-

eraging several calculations and applying various corrections, the experimenter

can combine mean passage time and distance for a determination of the veloc-

ity of light. Simon Newcombe, a distinguished American scientist, used this

method during the year 1882 to generate the passage time measurements given

below, in microseconds. The travel path for this experiment was 3721 meters

in length, extending from Ft. Meyer, on the west bank of the Potomac River in

Washington, D.C., to a fixed mirror at the base of the Washington Monument.

3http://en.wikipedia.org/wiki/File:Speed_of_light_(foucault).PNG
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The problem is to determine a 95% CI for the “true” passage time, which

is taken to be the typical time (mean or median) of the population of measure-

ments that were or could have been taken by this experiment.
#### Example: Newcombe's Data

time <- c(24.828, 24.833, 24.834, 24.826, 24.824, 24.756

, 24.827, 24.840, 24.829, 24.816, 24.798, 24.822

, 24.824, 24.825, 24.823, 24.821, 24.830, 24.829

, 24.831, 24.824, 24.836, 24.819, 24.820, 24.832

, 24.836, 24.825, 24.828, 24.828, 24.821, 24.829

, 24.837, 24.828, 24.830, 24.825, 24.826, 24.832

, 24.836, 24.830, 24.836, 24.826, 24.822, 24.823

, 24.827, 24.828, 24.831, 24.827, 24.827, 24.827

, 24.826, 24.826, 24.832, 24.833, 24.832, 24.824

, 24.839, 24.824, 24.832, 24.828, 24.825, 24.825

, 24.829, 24.828, 24.816, 24.827, 24.829, 24.823)

library(nortest)

ad.test(time)

##

## Anderson-Darling normality test

##

## data: time

## A = 5.8843, p-value = 1.217e-14

# Histogram overlaid with kernel density curve

Passage_df <- data.frame(time)

p1 <- ggplot(Passage_df, aes(x = time))

# Histogram with density instead of count on y-axis
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p1 <- p1 + geom_histogram(aes(y=..density..), binwidth=0.001)

p1 <- p1 + geom_density(alpha=0.1, fill="white")

p1 <- p1 + geom_rug()

# violin plot

p2 <- ggplot(Passage_df, aes(x = "t", y = time))

p2 <- p2 + geom_violin(fill = "gray50")

p2 <- p2 + geom_boxplot(width = 0.2, alpha = 3/4)

p2 <- p2 + coord_flip()

# boxplot

p3 <- ggplot(Passage_df, aes(x = "t", y = time))

p3 <- p3 + geom_boxplot()

p3 <- p3 + coord_flip()

library(gridExtra)

grid.arrange(grobs = list(p1, p2, p3), ncol=1)
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par(mfrow=c(1,1))

library(car)

qqPlot(time, las = 1, id = list(n = 0, cex = 1), lwd = 1, main="QQ Plot, Time")

bs.one.samp.dist(time)
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The data set is skewed to the left, due to the presence of two extreme

outliers that could potentially be misrecorded observations. Without additional

information I would be hesitant to apply normal theory methods (the t-test),

even though the sample size is “large” (bootstrap sampling distribution is still

left-skewed). Furthermore, the t-test still suffers from a lack of robustness of

sensitivity, even in large samples. A formal QQ-plot and normal test rejects, at

the 0.01 level, the normality assumption needed for the standard methods.
The table below gives 95% t, sign, and Wilcoxon CIs. I am more comfortable

with the sign CI for the population median than the Wilcoxon method, which
assumes symmetry.
t.sum <- t.test(time)

t.sum$conf.int

## [1] 24.82357 24.82885

## attr(,"conf.level")

## [1] 0.95

diff(t.test(time)$conf.int)

## [1] 0.005283061

s.sum <- SIGN.test(time)

s.sum$conf.int

## [1] 24.82600 24.82849

## attr(,"conf.level")

## [1] 0.95

diff(s.sum$conf.int)
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## [1] 0.00249297

w.sum <- wilcox.test(time, conf.int=TRUE)

w.sum$conf.int

## [1] 24.82604 24.82853

## attr(,"conf.level")

## [1] 0.95

diff(w.sum$conf.int)

## [1] 0.002487969

parameter Method CI Limits Width

mean t (24.8236, 24.8289) 0.0053

median sign (24.8260, 24.8285) 0.0025

median Wilcoxon (24.8260, 24.8285) 0.0025

Note the big difference between the nonparametric and the t-CI. The nonpara-

metric CIs are about 1/2 as wide as the t-CI. This reflects the impact that

outliers have on the standard deviation, which directly influences the CI width.

6.5 Alternatives for ANOVA and Planned
Comparisons

The classical ANOVA assumes that the populations have normal frequency

curves and the populations have equal variances (or spreads). You learned

formal tests for these assumptions in Chapter 5. When the assumptions do

not hold, you can try one of the following two approaches. Before describing

alternative methods, I will note that deviations from normality in one or more

samples might be expected in a comparison involving many samples. You

should downplay small deviations from normality in problems involving many

samples.

6.5.1 Kruskal-Wallis ANOVA

The Kruskal-Wallis (KW) test is a non-parametric method for testing the

hypothesis of equal population medians against the alternative that not all pop-
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ulation medians are equal. The procedure assumes you have independent ran-

dom samples from populations with frequency curves having identical shapes

and spreads. The KW ANOVA is essentially the standard ANOVA based

on ranked data. That is, we combine the samples, rank the observations from

smallest to largest, and then return the ranks to the original samples and do

the standard ANOVA using the ranks. The KW ANOVA is a multiple sample

analog of the Wilcoxon-Mann-Whitney two sample procedure. Hence, multiple

comparisons for a KW analysis, be they FSD or Bonferroni comparisons, are

based on the two sample WMW procedure.

6.5.2 Transforming Data

The distributions in many data sets are skewed to the right with outliers. If the

sample spreads, say s and IQR, increase with an increasing mean or median, you

can often transform data to a scale where the normality and the constant

spread assumption are more nearly satisfied. The transformed data are analyzed

using the standard ANOVA. The two most commonly used transforms for this

problem are the square root and natural logarithm, provided the data are non-

negative4.

If the original distributions are nearly symmetric, but heavy-tailed, non-

linear transformations will tend to destroy the symmetry. Many statisticians

recommend methods based on trimmed means for such data. These methods

are not commonly used by other researchers.

4The aim behind the choice of a variance-stabilizing transformation is to find a simple function f
to apply to values y in a data set to create new values y′ = f(y) such that the variability of the values y′

is not related to their mean value. For example, suppose that the values y are realizations from a Poisson
distribution. Because for the Poisson distribution the variance is identical to the mean, the variance varies
with the mean. However, if the simple variance-stabilizing transformation y′ =

√
y is applied, the sampling

variance will be independent of the mean. A few distributional examples are provided in the table below.
Distribution Variance=g(mean) Transformation y′ = f(y)
Poisson σ2 = µ y′ =

√
y

binomial σ2 = µ(1− µ) y′ = arcsin(
√

(y))
lognormal σ2 = µ2 y′ = log(y)
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Example: Hydrocarbon (HC) Emissions Data These data are the

HC emissions at idling speed, in ppm, for automobiles of different years of

manufacture. The data are a random sample of all automobiles tested at an

Albuquerque shopping center. (It looks like we need to find some newer cars!)
#### Example: Hydrocarbon (HC) Emissions Data

emis <- read.table(text="

Pre-y63 y63-7 y68-9 y70-1 y72-4

2351 620 1088 141 140

1293 940 388 359 160

541 350 111 247 20

1058 700 558 940 20

411 1150 294 882 223

570 2000 211 494 60

800 823 460 306 20

630 1058 470 200 95

905 423 353 100 360

347 900 71 300 70

NA 405 241 223 220

NA 780 2999 190 400

NA 270 199 140 217

NA NA 188 880 58

NA NA 353 200 235

NA NA 117 223 1880

NA NA NA 188 200

NA NA NA 435 175

NA NA NA 940 85

NA NA NA 241 NA

", header=TRUE)

#emis

# convert to long format

emis.long <- melt(emis,

variable.name = "year",

value.name = "hc",

na.rm = TRUE

)

## No id variables; using all as measure variables

# naming variables manually, the variable.name and value.name not working 11/2012

names(emis.long) <- c("year", "hc")

# summary of each year

by(emis.long$hc, emis.long$year, summary)

## emis.long$year: Pre.y63

## Min. 1st Qu. Median Mean 3rd Qu. Max.

## 347.0 548.2 715.0 890.6 1019.8 2351.0

## ----------------------------------------------------

## emis.long$year: y63.7
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## Min. 1st Qu. Median Mean 3rd Qu. Max.

## 270.0 423.0 780.0 801.5 940.0 2000.0

## ----------------------------------------------------

## emis.long$year: y68.9

## Min. 1st Qu. Median Mean 3rd Qu. Max.

## 71.0 196.2 323.5 506.3 462.5 2999.0

## ----------------------------------------------------

## emis.long$year: y70.1

## Min. 1st Qu. Median Mean 3rd Qu. Max.

## 100.0 197.5 244.0 381.4 449.8 940.0

## ----------------------------------------------------

## emis.long$year: y72.4

## Min. 1st Qu. Median Mean 3rd Qu. Max.

## 20.0 65.0 160.0 244.1 221.5 1880.0

# IQR and sd of each year

by(emis.long$hc, emis.long$year, function(X) { c(IQR(X), sd(X), length(X)) })
## emis.long$year: Pre.y63

## [1] 471.5000 591.5673 10.0000

## ----------------------------------------------------

## emis.long$year: y63.7

## [1] 517.0000 454.9285 13.0000

## ----------------------------------------------------

## emis.long$year: y68.9

## [1] 266.2500 707.8026 16.0000

## ----------------------------------------------------

## emis.long$year: y70.1

## [1] 252.2500 287.8864 20.0000

## ----------------------------------------------------

## emis.long$year: y72.4

## [1] 156.5000 410.7866 19.0000

# Plot the data using ggplot

library(ggplot2)

p <- ggplot(emis.long, aes(x = year, y = hc))

# plot a reference line for the global mean (assuming no groups)

p <- p + geom_hline(yintercept = mean(emis.long$hc),

colour = "black", linetype = "dashed", size = 0.3, alpha = 0.5)

# boxplot, size=.75 to stand out behind CI

p <- p + geom_boxplot(size = 0.75, alpha = 0.5)

# points for observed data

p <- p + geom_point(position = position_jitter(w = 0.05, h = 0), alpha = 0.5)

# diamond at mean for each group

p <- p + stat_summary(fun.y = mean, geom = "point", shape = 18, size = 6,

colour = "red", alpha = 0.8)

# confidence limits based on normal distribution

p <- p + stat_summary(fun.data = "mean_cl_normal", geom = "errorbar",

width = .2, colour = "red", alpha = 0.8)

p <- p + labs(title = "Albuquerque automobile hydrocarbon emissions data") + ylab("hc (ppm)")
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# to reverse order that years print, so oldest is first on top

p <- p + scale_x_discrete(limits = rev(levels(emis.long$year)) )

p <- p + coord_flip()

p <- p + theme(legend.position="none")

print(p)
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The standard ANOVA shows significant differences among the mean HC

emissions. However, the standard ANOVA is inappropriate because the distri-

butions are extremely skewed to the right due to presence of outliers in each

sample.
fit.e <- aov(hc ~ year, data = emis.long)

summary(fit.e)

## Df Sum Sq Mean Sq F value Pr(>F)

## year 4 4226834 1056709 4.343 0.00331 **

## Residuals 73 17759968 243287

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

fit.e

## Call:

## aov(formula = hc ~ year, data = emis.long)

##

## Terms:

## year Residuals

## Sum of Squares 4226834 17759968
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## Deg. of Freedom 4 73

##

## Residual standard error: 493.2416

## Estimated effects may be unbalanced

The boxplots show that the typical HC emissions appear to decrease as

the age of car increases (the simplest description). Although the spread in the

samples, as measured by the IQR, also decreases as age increases, I am more

comfortable with the KW ANOVA, in part because the KW analysis is not too

sensitive to differences in spreads among samples. This point is elaborated upon

later. As described earlier, the KW ANOVA is essentially an ANOVA based

on the ranks. I give below the ANOVA based on ranks and the output from

the KW procedure. They give similar p-values, and lead to the conclusion that

there are significant differences among the population median HC emissions.

A simple description is that the population median emission tends to decrease

with the age of the car. You should follow up this analysis with Mann-Whitney

multiple comparisons.
# ANOVA of rank, for illustration that this is similar to what KW is doing

fit.er <- aov(rank(hc) ~ year, data = emis.long)

summary(fit.er)

## Df Sum Sq Mean Sq F value Pr(>F)

## year 4 16329 4082 12.85 5.74e-08 ***

## Residuals 73 23200 318

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

fit.er

## Call:

## aov(formula = rank(hc) ~ year, data = emis.long)

##

## Terms:

## year Residuals

## Sum of Squares 16329.32 23199.68

## Deg. of Freedom 4 73

##

## Residual standard error: 17.82705

## Estimated effects may be unbalanced

# KW ANOVA

fit.ek <- kruskal.test(hc ~ year, data = emis.long)

fit.ek

##
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## Kruskal-Wallis rank sum test

##

## data: hc by year

## Kruskal-Wallis chi-squared = 31.808, df = 4, p-value =

## 2.093e-06

It is common to transform the data to a log scale when the spread increases
as the median or mean increases.
# log scale

emis.long$loghc <- log(emis.long$hc)

# summary of each year

by(emis.long$loghc, emis.long$year, summary)

## emis.long$year: Pre.y63

## Min. 1st Qu. Median Mean 3rd Qu. Max.

## 5.849 6.306 6.565 6.634 6.925 7.763

## ----------------------------------------------------

## emis.long$year: y63.7

## Min. 1st Qu. Median Mean 3rd Qu. Max.

## 5.598 6.047 6.659 6.548 6.846 7.601

## ----------------------------------------------------

## emis.long$year: y68.9

## Min. 1st Qu. Median Mean 3rd Qu. Max.

## 4.263 5.279 5.775 5.755 6.137 8.006

## ----------------------------------------------------

## emis.long$year: y70.1

## Min. 1st Qu. Median Mean 3rd Qu. Max.

## 4.605 5.285 5.497 5.711 6.107 6.846

## ----------------------------------------------------

## emis.long$year: y72.4

## Min. 1st Qu. Median Mean 3rd Qu. Max.

## 2.996 4.171 5.075 4.838 5.400 7.539

# IQR and sd of each year

by(emis.long$loghc, emis.long$year, function(X) { c(IQR(X), sd(X), length(X)) })
## emis.long$year: Pre.y63

## [1] 0.6186119 0.5702081 10.0000000

## ----------------------------------------------------

## emis.long$year: y63.7

## [1] 0.7985077 0.5524878 13.0000000

## ----------------------------------------------------

## emis.long$year: y68.9

## [1] 0.8575139 0.9061709 16.0000000

## ----------------------------------------------------

## emis.long$year: y70.1

## [1] 0.8216494 0.6775933 20.0000000

## ----------------------------------------------------

## emis.long$year: y72.4

## [1] 1.228980 1.138882 19.000000
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# Plot the data using ggplot

library(ggplot2)

p <- ggplot(emis.long, aes(x = year, y = loghc))

# plot a reference line for the global mean (assuming no groups)

p <- p + geom_hline(yintercept = mean(emis.long$loghc),

colour = "black", linetype = "dashed", size = 0.3, alpha = 0.5)

# boxplot, size=.75 to stand out behind CI

p <- p + geom_boxplot(size = 0.75, alpha = 0.5)

# points for observed data

p <- p + geom_point(position = position_jitter(w = 0.05, h = 0), alpha = 0.5)

# diamond at mean for each group

p <- p + stat_summary(fun.y = mean, geom = "point", shape = 18, size = 6,

colour = "red", alpha = 0.8)

# confidence limits based on normal distribution

p <- p + stat_summary(fun.data = "mean_cl_normal", geom = "errorbar",

width = .2, colour = "red", alpha = 0.8)

p <- p + labs(title = "Albuquerque automobile hydrocarbon emissions data (log scale)")

p <- p + ylab("log(hc) (log(ppm))")

# to reverse order that years print, so oldest is first on top

p <- p + scale_x_discrete(limits = rev(levels(emis.long$year)) )

p <- p + coord_flip()

p <- p + theme(legend.position="none")

print(p)
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y72.4

y70.1

y68.9
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Albuquerque automobile hydrocarbon emissions data (log scale)

After transformation, the samples have roughly the same spread (IQR and

s) and shape. The transformation does not completely eliminate the outliers.

However, I am more comfortable with a standard ANOVA on this scale than

with the original data. A difficulty here is that the ANOVA is comparing

population mean log HC emission (so interpretations are on the log ppm scale,

instead of the natural ppm scale). Summaries for the ANOVA on the log

hydrocarbon emissions levels are given below.
# ANOVA of rank, for illustration that this is similar to what KW is doing

fit.le <- aov(loghc ~ year, data = emis.long)

summary(fit.le)

## Df Sum Sq Mean Sq F value Pr(>F)

## year 4 31.90 7.974 11.42 2.98e-07 ***

## Residuals 73 50.98 0.698

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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fit.le

## Call:

## aov(formula = loghc ~ year, data = emis.long)

##

## Terms:

## year Residuals

## Sum of Squares 31.89510 50.97679

## Deg. of Freedom 4 73

##

## Residual standard error: 0.8356508

## Estimated effects may be unbalanced

# KW ANOVA -- same conclusions as original scale, since based on ranks

fit.lek <- kruskal.test(loghc ~ year, data = emis.long)

fit.lek

##

## Kruskal-Wallis rank sum test

##

## data: loghc by year

## Kruskal-Wallis chi-squared = 31.808, df = 4, p-value =

## 2.093e-06

The boxplot of the log-transformed data reinforces the reasonableness of the

original KW analysis. Why? The log-transformed distributions have fairly sim-

ilar shapes and spreads, so a KW analysis on these data is sensible. The ranks

for the original and log-transformed data are identical, so the KW analyses on

the log-transformed data and the original data must lead to the same conclu-

sions. This suggests that the KW ANOVA is not overly sensitive to differences

in spreads among the samples.

There are two reasonable analyses here: the standard ANOVA using log HC

emissions, and the KW analysis of the original data. The first analysis gives a

comparison of mean log HC emissions. The second involves a comparison of me-

dian HC emissions. A statistician would present both analyses to the scientist

who collected the data to make a decision on which was more meaningful (inde-

pendently of the results5!). Multiple comparisons would be performed relative

to the selected analysis (t-tests for ANOVA or WMW-tests for KW ANOVA).

5It is unethical to choose a method based on the results it gives.
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Example: Hodgkin’s Disease Study Plasma bradykininogen levels

were measured in normal subjects, in patients with active Hodgkin’s disease,

and in patients with inactive Hodgkin’s disease. The globulin bradykininogen

is the precursor substance for bradykinin, which is thought to be a chemical

mediator of inflammation. The data (in micrograms of bradykininogen per

milliliter of plasma) are displayed below. The three samples are denoted by

nc for normal controls, ahd for active Hodgkin’s disease patients, and ihd for

inactive Hodgkin’s disease patients.

The medical investigators wanted to know if the three samples differed in

their bradykininogen levels. Carry out the statistical analysis you consider to

be most appropriate, and state your conclusions to this question.

Read in the data, look at summaries on the original scale, and create a plot.
Also, look at summaries on the log scale and create a plot.
#### Example: Hodgkin's Disease Study

hd <- read.table(text="

nc ahd ihd

5.37 3.96 5.37

5.80 3.04 10.60

4.70 5.28 5.02

5.70 3.40 14.30

3.40 4.10 9.90

8.60 3.61 4.27

7.48 6.16 5.75

5.77 3.22 5.03

7.15 7.48 5.74

6.49 3.87 7.85

4.09 4.27 6.82

5.94 4.05 7.90

6.38 2.40 8.36

9.24 5.81 5.72

5.66 4.29 6.00

4.53 2.77 4.75

6.51 4.40 5.83

7.00 NA 7.30

6.20 NA 7.52

7.04 NA 5.32

4.82 NA 6.05

6.73 NA 5.68

5.26 NA 7.57

NA NA 5.68

NA NA 8.91

NA NA 5.39
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NA NA 4.40

NA NA 7.13

", header=TRUE)

#hd

# convert to long format

hd.long <- melt(hd,

variable.name = "patient",

value.name = "level",

na.rm = TRUE

)

## No id variables; using all as measure variables

# naming variables manually, the variable.name and value.name not working 11/2012

names(hd.long) <- c("patient", "level")

# summary of each patient

by(hd.long$level, hd.long$patient, summary)

## hd.long$patient: nc

## Min. 1st Qu. Median Mean 3rd Qu. Max.

## 3.400 5.315 5.940 6.081 6.865 9.240

## ----------------------------------------------------

## hd.long$patient: ahd

## Min. 1st Qu. Median Mean 3rd Qu. Max.

## 2.400 3.400 4.050 4.242 4.400 7.480

## ----------------------------------------------------

## hd.long$patient: ihd

## Min. 1st Qu. Median Mean 3rd Qu. Max.

## 4.270 5.385 5.915 6.791 7.640 14.300

# IQR and sd of each patient

by(hd.long$level, hd.long$patient, function(X) { c(IQR(X), sd(X), length(X)) })
## hd.long$patient: nc

## [1] 1.550000 1.362104 23.000000

## ----------------------------------------------------

## hd.long$patient: ahd

## [1] 1.000000 1.302878 17.000000

## ----------------------------------------------------

## hd.long$patient: ihd

## [1] 2.25500 2.17647 28.00000

# log scale
hd.long$loglevel <- log(hd.long$level)
# summary of each patient
by(hd.long$loglevel, hd.long$patient, summary)

## hd.long$patient: nc
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 1.224 1.670 1.782 1.780 1.926 2.224
## ----------------------------------------------------
## hd.long$patient: ahd
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.8755 1.2238 1.3987 1.4039 1.4816 2.0122
## ----------------------------------------------------
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## hd.long$patient: ihd
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 1.452 1.684 1.777 1.875 2.033 2.660

# IQR and sd of each patient
by(hd.long$loglevel, hd.long$patient, function(X) { c(IQR(X), sd(X), length(X)) })
## hd.long$patient: nc
## [1] 0.2557632 0.2303249 23.0000000
## ----------------------------------------------------
## hd.long$patient: ahd
## [1] 0.2578291 0.2920705 17.0000000
## ----------------------------------------------------
## hd.long$patient: ihd
## [1] 0.3496572 0.2802656 28.0000000

# Plot the data using ggplot

library(ggplot2)

p <- ggplot(hd.long, aes(x = patient, y = level))

# plot a reference line for the global mean (assuming no groups)

p <- p + geom_hline(yintercept = mean(hd.long$level),

colour = "black", linetype = "dashed", size = 0.3, alpha = 0.5)

# boxplot, size=.75 to stand out behind CI

p <- p + geom_boxplot(size = 0.75, alpha = 0.5)

# points for observed data

p <- p + geom_point(position = position_jitter(w = 0.05, h = 0), alpha = 0.5)

# diamond at mean for each group

p <- p + stat_summary(fun.y = mean, geom = "point", shape = 18, size = 6,

colour = "red", alpha = 0.8)

# confidence limits based on normal distribution

p <- p + stat_summary(fun.data = "mean_cl_normal", geom = "errorbar",

width = .2, colour = "red", alpha = 0.8)

p <- p + labs(title = "Plasma bradykininogen levels for three patient groups")

p <- p + ylab("level (mg/ml)")

# to reverse order that years print, so oldest is first on top

p <- p + scale_x_discrete(limits = rev(levels(hd.long$patient)) )

p <- p + ylim(c(0,max(hd.long$level)))

p <- p + coord_flip()

p <- p + theme(legend.position="none")

print(p)

## log scale

# Plot the data using ggplot

library(ggplot2)

p <- ggplot(hd.long, aes(x = patient, y = loglevel))

# plot a reference line for the global mean (assuming no groups)

p <- p + geom_hline(yintercept = mean(hd.long$loglevel),

colour = "black", linetype = "dashed", size = 0.3, alpha = 0.5)

# boxplot, size=.75 to stand out behind CI

p <- p + geom_boxplot(size = 0.75, alpha = 0.5)

# points for observed data

p <- p + geom_point(position = position_jitter(w = 0.05, h = 0), alpha = 0.5)

# diamond at mean for each group
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p <- p + stat_summary(fun.y = mean, geom = "point", shape = 18, size = 6,

colour = "red", alpha = 0.8)

# confidence limits based on normal distribution

p <- p + stat_summary(fun.data = "mean_cl_normal", geom = "errorbar",

width = .2, colour = "red", alpha = 0.8)

p <- p + labs(title = "Plasma bradykininogen levels for three patient groups (log scale)")

p <- p + ylab("log(level) (log(mg/ml))")

# to reverse order that years print, so oldest is first on top

p <- p + scale_x_discrete(limits = rev(levels(hd.long$patient)) )

p <- p + ylim(c(0,max(hd.long$loglevel)))

p <- p + coord_flip()

p <- p + theme(legend.position="none")

print(p)
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Plasma bradykininogen levels for three patient groups
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Plasma bradykininogen levels for three patient groups (log scale)

Although the spread (IQR, s) in the ihd sample is somewhat greater than

the spread in the other samples, the presence of skewness and outliers in the

boxplots is a greater concern regarding the use of the classical ANOVA. The

shapes and spreads in the three samples are roughly identical, so a Kruskal-

Wallis nonparametric ANOVA appears ideal. As a sidelight, I transformed

plasma levels to a log scale to reduce the skewness and eliminate the outliers.

The boxplots of the transformed data show reasonable symmetry across groups,

but outliers are still present. I will stick with the Kruskal-Wallis ANOVA

(although it would not be much of a problem to use the classical ANOVA on

transformed data).
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Let ηnc = population median plasma level for normal controls, ηahd = pop-

ulation median plasma level for active Hodgkin’s disease patients, and ηihd =

population median plasma level for inactive Hodgkin’s disease patients. The

KW test of H0 : ηnc = ηahd = ηihd versus HA : not H0 is highly significant (p-

value= 0.00003), suggesting differences among the population median plasma

levels. The Kruskal-Wallis ANOVA summary is given below.
# KW ANOVA

fit.h <- kruskal.test(level ~ patient, data = hd.long)

fit.h

##

## Kruskal-Wallis rank sum test

##

## data: level by patient

## Kruskal-Wallis chi-squared = 20.566, df = 2, p-value =

## 3.421e-05

I followed up the KW ANOVA with Bonferroni comparisons of the samples,

using the Mann-Whitney two sample procedure. There are three comparisons,

so an overall FER of 0.05 is achieved by doing the individual tests at the

0.05/3=0.0167 level. Alternatively, you can use 98.33% CI for differences in

population medians.
# with continuity correction in the normal approximation for the p-value

wilcox.test(hd$nc , hd$ahd, conf.int=TRUE, conf.level = 0.9833)

## Warning in wilcox.test.default(hd$nc, hd$ahd, conf.int = TRUE, conf.level = 0.9833): cannot

compute exact p-value with ties

## Warning in wilcox.test.default(hd$nc, hd$ahd, conf.int = TRUE, conf.level = 0.9833): cannot

compute exact confidence intervals with ties

##

## Wilcoxon rank sum test with continuity correction

##

## data: hd$nc and hd$ahd

## W = 329, p-value = 0.0002735

## alternative hypothesis: true location shift is not equal to 0

## 98.33 percent confidence interval:

## 0.8599458 2.9000789

## sample estimates:

## difference in location

## 1.910067

wilcox.test(hd$nc , hd$ihd, conf.int=TRUE, conf.level = 0.9833)

## Warning in wilcox.test.default(hd$nc, hd$ihd, conf.int = TRUE, conf.level = 0.9833): cannot

compute exact p-value with ties
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## Warning in wilcox.test.default(hd$nc, hd$ihd, conf.int = TRUE, conf.level = 0.9833): cannot

compute exact confidence intervals with ties

##

## Wilcoxon rank sum test with continuity correction

##

## data: hd$nc and hd$ihd

## W = 276.5, p-value = 0.3943

## alternative hypothesis: true location shift is not equal to 0

## 98.33 percent confidence interval:

## -1.5600478 0.6800262

## sample estimates:

## difference in location

## -0.3413932

wilcox.test(hd$ahd, hd$ihd, conf.int=TRUE, conf.level = 0.9833)

## Warning in wilcox.test.default(hd$ahd, hd$ihd, conf.int = TRUE, conf.level = 0.9833):

cannot compute exact p-value with ties

## Warning in wilcox.test.default(hd$ahd, hd$ihd, conf.int = TRUE, conf.level = 0.9833):

cannot compute exact confidence intervals with ties

##

## Wilcoxon rank sum test with continuity correction

##

## data: hd$ahd and hd$ihd

## W = 56, p-value = 2.143e-05

## alternative hypothesis: true location shift is not equal to 0

## 98.33 percent confidence interval:

## -3.500059 -1.319957

## sample estimates:

## difference in location

## -2.146666

The only comparison with a p-value greater than 0.0167 involved the nc
and ihd samples. The comparison leads to two groups, and is consistent with
what we see in the boxplots.

ahd nc ihd
--- --------

You have sufficient evidence to conclude that the plasma bradykininogen levels

for active Hodgkin’s disease patients (ahd) is lower than the population median

levels for normal controls (nc) and for patients with inactive Hodgkin’s disease

(ihd). You do not have sufficient evidence to conclude that the population

median levels for normal controls (nc) and for patients with inactive Hodgkin’s

disease (ihd) are different. The CIs give an indication of size of differences in

the population medians.
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6.5.3 Planned Comparisons

Bonferroni multiple comparisons are generally preferred to Fisher’s least sig-

nificant difference approach. Fisher’s method does not control the familywise

error rate and produces too many spurious significant differences (claims of sig-

nificant differences that are due solely to chance variation and not to actual

differences in population means). However, Bonferroni’s method is usually very

conservative when a large number of comparisons is performed — large differ-

ences in sample means are needed to claim significance. A way to reduce this

conservatism is to avoid doing all possible comparisons. Instead, one should,

when possible, decide a priori (before looking at the data) which comparisons

are of primary interest, and then perform only those comparisons.

For example, suppose a medical study compares five new treatments with a

control (a six group problem). The medical investigator may not be interested

in all 15 possible comparisons, but only in which of the five treatments differ

on average from the control. Rather than performing the 15 comparisons, each

at the say 0.05/15 = 0.0033 level, she could examine the five comparisons of

interest at the 0.05/5 = 0.01 level. By deciding beforehand which comparisons

are of interest, she can justify using a 0.01 level for the comparisons, instead of

the more conservative 0.0033 level needed when doing all possible comparisons.

To illustrate this idea, consider the KW analysis of HC emissions. We

saw that there are significant differences among the population median HC

emissions. Given that the samples have a natural ordering
Sample Year of manufacture

1 Pre-1963

2 63 – 67

3 68 – 69

4 70 – 71

5 72 – 74

you may primarily be interested in whether the population medians for cars

manufactured in consecutive samples are identical. That is, you may be pri-

marily interested in the following 4 comparisons:
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Pre-1963 vs 63 – 67

63 – 67 vs 68 – 69

68 – 69 vs 70 – 71

70 – 71 vs 72 – 74

A Bonferroni analysis would carry out each comparison at the 0.05/4 = 0.0125

level versus the 0.05/10 = 0.005 level when all comparisons are done.

The following output was obtained for doing these four comparisons, based

on Wilcoxon-Mann-Whitney two-sample tests (why?6). Two-year groups are

claimed to be different if the p-value is 0.0125 or below, or equivalently, if a

98.75% CI for the difference in population medians does not contain zero.
#### Planned Comparisons

# with continuity correction in the normal approximation for the p-value

wilcox.test(emis$y63.7, emis$Pre.y63, conf.int=TRUE, conf.level = 0.9875)

## Warning in wilcox.test.default(emis$y63.7, emis$Pre.y63, conf.int = TRUE, : cannot compute

exact p-value with ties

## Warning in wilcox.test.default(emis$y63.7, emis$Pre.y63, conf.int = TRUE, : cannot compute

exact confidence intervals with ties

##

## Wilcoxon rank sum test with continuity correction

##

## data: emis$y63.7 and emis$Pre.y63

## W = 61.5, p-value = 0.8524

## alternative hypothesis: true location shift is not equal to 0

## 98.75 percent confidence interval:

## -530.0001 428.0000

## sample estimates:

## difference in location

## -15.4763

wilcox.test(emis$y68.9, emis$y63.7 , conf.int=TRUE, conf.level = 0.9875)

## Warning in wilcox.test.default(emis$y68.9, emis$y63.7, conf.int = TRUE, : cannot compute

exact p-value with ties

## Warning in wilcox.test.default(emis$y68.9, emis$y63.7, conf.int = TRUE, : cannot compute

exact confidence intervals with ties

##

## Wilcoxon rank sum test with continuity correction

##

## data: emis$y68.9 and emis$y63.7

## W = 43, p-value = 0.007968

6The ANOVA is the multi-sample analog to the two-sample t-test for the mean, and the KW ANOVA is
the multi-sample analog to the WMW two-sample test for the median. Thus, we follow up a KW ANOVA
with WMW two-sample tests at the chosen multiple comparison adjusted error rate.
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## alternative hypothesis: true location shift is not equal to 0

## 98.75 percent confidence interval:

## -708.99999 -51.99998

## sample estimates:

## difference in location

## -397.4227

wilcox.test(emis$y70.1, emis$y68.9 , conf.int=TRUE, conf.level = 0.9875)

## Warning in wilcox.test.default(emis$y70.1, emis$y68.9, conf.int = TRUE, : cannot compute

exact p-value with ties

## Warning in wilcox.test.default(emis$y70.1, emis$y68.9, conf.int = TRUE, : cannot compute

exact confidence intervals with ties

##

## Wilcoxon rank sum test with continuity correction

##

## data: emis$y70.1 and emis$y68.9

## W = 156, p-value = 0.9112

## alternative hypothesis: true location shift is not equal to 0

## 98.75 percent confidence interval:

## -206.0001 171.0000

## sample estimates:

## difference in location

## -10.99997

wilcox.test(emis$y72.4, emis$y70.1 , conf.int=TRUE, conf.level = 0.9875)

## Warning in wilcox.test.default(emis$y72.4, emis$y70.1, conf.int = TRUE, : cannot compute

exact p-value with ties

## Warning in wilcox.test.default(emis$y72.4, emis$y70.1, conf.int = TRUE, : cannot compute

exact confidence intervals with ties

##

## Wilcoxon rank sum test with continuity correction

##

## data: emis$y72.4 and emis$y70.1

## W = 92.5, p-value = 0.006384

## alternative hypothesis: true location shift is not equal to 0

## 98.75 percent confidence interval:

## -285.999962 -6.000058

## sample estimates:

## difference in location

## -130

There are significant differences between the 1963-67 and 1968-69 samples,

and between the 1970-71 and 1972-74 samples. You are 98.75% confident that

the population median HC emissions for 1963-67 year cars is between 52 and

708.8 ppm greater than the population median for 1968-69 cars. Similarly, you

are 98.75% confident that the population median HC emissions for 1970-71 year

cars is between 6.1 and 285.9 ppm greater than the population median for 1972-
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74 cars. Overall, you are 95% confident among the four pairwise comparisons

that you have not declared a difference significant when it isn’t.

6.5.4 Two final ANOVA comments

It is not uncommon for researchers to combine data from groups not found to

be significantly different. This is not, in general, a good practice. Just because

you do not have sufficient evidence to show differences does not imply that you

should treat the groups as if they are the same!

If the data distributions do not substantially deviate from normality, but the

spreads are different across samples, you might consider the standard ANOVA

followed with multiple comparisons using two-sample tests based on Satterth-

waite’s approximation.

6.6 Permutation tests

Permutation tests7 are a subset of non-parametric statistics. The basic premise

is to use only the assumption that it is possible that all of the treatment groups

are equivalent, and that every member of them is the same before sampling

began (i.e., the position in the group to which they belong is not differentiable

from other position before the positions are filled). From this, one can calculate

a statistic and then see to what extent this statistic is special by seeing how

likely it would be if the group assignments had been jumbled.

A permutation test (also called a randomization test, re-randomization test,

or an exact test) is a type of statistical significance test in which the distribution

of the test statistic under the null hypothesis is obtained by calculating all

possible values of the test statistic under rearrangements of the labels on

the observed data points. In other words, the method by which treatments are

allocated to subjects in an experimental design is mirrored in the analysis of

that design. If the labels are exchangeable under the null hypothesis, then the

7http://en.wikipedia.org/wiki/Resampling_(statistics)
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resulting tests yield exact significance levels. Confidence intervals can then be

derived from the tests. The theory has evolved from the works of R.A. Fisher

and E.J.G. Pitman in the 1930s.

Let’s illustrate the basic idea of a permutation test using the Meteorites

example. Suppose we have two groups Uwet and Walker whose sample means

are ȲU and ȲW, and that we want to test, at 5% significance level, whether they

come from the same distribution. Let nU = 9 and nW = 10 be the sample size

corresponding to each group. The permutation test is designed to determine

whether the observed difference between the sample means is large enough to

reject the null hypothesis H0 : µU = µW, that the two groups have identical

means.
The test proceeds as follows. First, the difference in means between the

two samples is calculated: this is the observed value of the test statistic, T(obs).
Then the observations of groups Uwet and Walker are pooled.
#### Permutation tests

# Calculated the observed difference in means

# met.long includes both Uwet and Walker groups

Tobs <- mean(met.long[(met.long$site == "Uwet" ), 2]) -

mean(met.long[(met.long$site == "Walker"), 2])

Tobs

## [1] 0.2522222

Next, the difference in sample means is calculated and recorded for every
possible way of dividing these pooled values into two groups of size nU =
9 and nW = 10 (i.e., for every permutation of the group labels Uwet and
Walker). The set of these calculated differences is the exact distribution of
possible differences under the null hypothesis that group label does not matter.
This exact distribution can be approximated by drawing a large number of
random permutations.
# Plan:

# Initialize a vector in which to store the R number of difference of means.

# Calculate R differences in means for R permutations, storing the results.

# Note that there are prod(1:19) = 10^17 total permutations,

# but the R repetitions will serve as a good approximation.

# Plot the permutation null distribution with an indication of the Tobs.

# R = a large number of repetitions

R <- 1e4

# initialize the vector of difference of means from the permutations

Tperm <- rep(NA, R)

# For each of R repetitions, permute the Uwet and Walker labels,
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# calculate the difference of means with the permuted labels,

# and store the result in the i.R'th position of Tperm.

for (i.R in 1:R) {
# permutation of 19 = 9+10 integers 1, 2, ..., 19

ind.perm <- sample.int(nrow(met.long))

# identify as "TRUE" numbers 1, ..., 9 (the number of Uwet labels)

lab.U <- (ind.perm <= sum(met.long$site == "Uwet")) #£

# identify as "TRUE" numbers 10, ..., 19 (the number of Walker labels)

# that is, all the non-Uwet labels

lab.W <- !lab.U

# calculate the difference in means and store in Tperm at index i.R

Tperm[i.R] <- mean(met.long[lab.U, 2]) - mean(met.long[lab.W, 2])

}

# Plot the permutation null distribution with an indication of the Tobs.

dat <- data.frame(Tperm)

library(ggplot2)

p <- ggplot(dat, aes(x = Tperm))

#p <- p + scale_x_continuous(limits=c(-20,+20))

p <- p + geom_histogram(aes(y=..density..), binwidth=0.01)

p <- p + geom_density(alpha=0.1, fill="white")

p <- p + geom_rug()

# vertical line at Tobs

p <- p + geom_vline(aes(xintercept=Tobs), colour="#BB0000", linetype="dashed")

p <- p + labs(title = "Permutation distribution of difference in means, Uwet and Walker Meteorites")

p <- p + xlab("difference in means (red line = observed difference in means)")

print(p)
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Notice the contrast in this permutation distribution of the difference in

means from a normal distribution.

The one-sided p-value of the test is calculated as the proportion of sampled

permutations where the difference in means was at least as extreme as T(obs).

The two-sided p-value of the test is calculated as the proportion of sampled

permutations where the absolute difference was at least as extreme as |T(obs)|.
# Calculate a two-sided p-value.

p.upper <- sum((Tperm >= abs(Tobs))) / R

p.upper

## [1] 0.0592

p.lower <- sum((Tperm <= -abs(Tobs))) / R

p.lower

## [1] 0.0599

p.twosided <- p.lower + p.upper

p.twosided
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## [1] 0.1191

Note that the two-sided p-value of 0.1191 is consistent, in this case, with

the two-sample t-test p-values of 0.1134 (pooled) and 0.1290 (Satterthwaite),

but different from 0.0497 (WMW). The permutation is a comparison of means

without the normality assumption, though requires that the observations are

exchangable between populations under H0.

If the only purpose of the test is reject or not reject the null hypothesis, we

can as an alternative sort the recorded differences, and then observe if T(obs) is

contained within the middle 95% of them. If it is not, we reject the hypothesis

of equal means at the 5% significance level.

6.6.1 Linear model permutation tests in R

The coin package provides an implementation of a general framework for condi-

tional inference procedures commonly known as permutation tests. In the help

on ?"coin-package" search for location to find tests for the means or medians

of populations (such as oneway_test()). Other packages of note include perm

and exactRankTests (lmPerm is defunct).
Below I calculate the standard t-test for the Meteorite data using t.test()

and lm(), then compare that with oneway_test() and what we calculated using
our calculation of the permutation test.
# standard two-sample t-test with equal variances

t.summary <- t.test(cool ~ site, data = met.long, var.equal = TRUE)

t.summary

##

## Two Sample t-test

##

## data: cool by site

## t = 1.6689, df = 17, p-value = 0.1134

## alternative hypothesis: true difference in means is not equal to 0

## 95 percent confidence interval:

## -0.0666266 0.5710710

## sample estimates:

## mean in group Uwet mean in group Walker

## 0.4522222 0.2000000

# linear model form of t-test, "siteWalker" has estimate, se, t-stat, and p-value

lm.summary <- lm(cool ~ site, data = met.long)
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summary(lm.summary)

##

## Call:

## lm(formula = cool ~ site, data = met.long)

##

## Residuals:

## Min 1Q Median 3Q Max

## -0.2922 -0.1961 -0.1600 0.0250 0.7478

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 0.4522 0.1096 4.125 0.000708 ***

## siteWalker -0.2522 0.1511 -1.669 0.113438

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Residual standard error: 0.3289 on 17 degrees of freedom

## Multiple R-squared: 0.1408,Adjusted R-squared: 0.09024

## F-statistic: 2.785 on 1 and 17 DF, p-value: 0.1134

# permutation test version

library(coin)

# Fisher-Pitman permutation test

oneway.summary <- oneway_test(cool ~ site, data = met.long, conf.int = TRUE)

oneway.summary

##

## Asymptotic Two-Sample Fisher-Pitman Permutation Test

##

## data: cool by site (Uwet, Walker)

## Z = 1.5919, p-value = 0.1114

## alternative hypothesis: true mu is not equal to 0

# examples of extracting values from coins S4 class objects

coin::expectation(oneway.summary)

## Uwet

## 2.875263

coin::covariance(oneway.summary)

## Uwet

## Uwet 0.5632881

coin::pvalue(oneway.summary)

## [1] 0.1114144

#coin::confint(oneway.summary)

The permutation test gives a p-value of 0.1114 which is close to our manually

calculated permuatation p-value of 0.1191.

For the emisions data, below we compare the ANOVA results (assuming

Prof. Erik B. Erhardt



6.6: Permutation tests 245

normality) with a permutation test without distributional assumptions.
fit.e <- aov(hc ~ year, data = emis.long)

summary(fit.e)

## Df Sum Sq Mean Sq F value Pr(>F)

## year 4 4226834 1056709 4.343 0.00331 **

## Residuals 73 17759968 243287

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

library(coin)

# Fisher-Pitman permutation test

oneway.summary <- oneway_test(hc ~ year, data = emis.long)

oneway.summary

##

## Asymptotic K-Sample Fisher-Pitman Permutation Test

##

## data: hc by

## year (Pre.y63, y63.7, y68.9, y70.1, y72.4)

## chi-squared = 14.803, df = 4, p-value = 0.005128

Thus the permutation test of the ANOVA hypothesis on means rejects the

null hypothesis of all equal means. A followup set of pairwise tests can be done

by looping over pairs of factors.
First we list the factor levels ordered by their medians, the ordering by

medians is helpful at the end when the results of the pairwise comparisons are
given.
# these are the levels of the factor, ordered by their medians

fac.lev <- levels(reorder(levels(emis.long$year)

, -as.numeric(by(emis.long$loghc, emis.long$year, median)))

)

fac.lev

## [1] "y63.7" "Pre.y63" "y68.9" "y70.1" "y72.4"

Create a matrix to store pairwise comparison p-values, then loop over all

pairs of groups and perform a two-sample permutation test. Store the p-value

for each test in the matrix.
# create a matrix to store pairwise comparison p-values

mc.pval <- matrix(NA

, nrow = length(fac.lev)

, ncol = length(fac.lev)

, dimnames = list(fac.lev, fac.lev))

# diag is always 1, no group differs from itself

diag(mc.pval) <- 1

mc.pval
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## y63.7 Pre.y63 y68.9 y70.1 y72.4

## y63.7 1 NA NA NA NA

## Pre.y63 NA 1 NA NA NA

## y68.9 NA NA 1 NA NA

## y70.1 NA NA NA 1 NA

## y72.4 NA NA NA NA 1

# loop over all pairs of factor levels, perform two-sample test,

# and store p-value in matrix

for (i1 in 1:(length(fac.lev) - 1)) {
for (i2 in (i1 + 1):length(fac.lev)) {
## DEBUG - to make sure the indexing is working, you can print them:

# print(cat(i1, i2))

library(coin)

# Fisher-Pitman permutation test

oneway.summary <- oneway_test(hc ~ year, data = subset(emis.long, (year == fac.lev[i1] | year == fac.lev[i2])))

# put p-value in matrix

mc.pval[i1, i2] <- coin::pvalue(oneway.summary)

mc.pval[i2, i1] <- mc.pval[i1, i2]

}
}

# p-values

mc.pval

## y63.7 Pre.y63 y68.9 y70.1 y72.4

## y63.7 1.000000000 0.676572596 0.1993877 0.004273746 0.002185513

## Pre.y63 0.676572596 1.000000000 0.1611790 0.005319987 0.003379156

## y68.9 0.199387725 0.161179041 1.0000000 0.468455149 0.177187250

## y70.1 0.004273746 0.005319987 0.4684551 1.000000000 0.227517382

## y72.4 0.002185513 0.003379156 0.1771873 0.227517382 1.000000000

Summarize the results of the pairwise comparisons. Groups with a common
letter are not statistically different.
# summary of pairwise comparisons

# threshold is Bonferroni-corrected alpha=0.05 / 10

library(multcompView)

multcompLetters( mc.pval

, compare = "<"

, threshold = 0.05 / choose(length(fac.lev), 2)

, Letters = letters

, reversed = FALSE)

## y63.7 Pre.y63 y68.9 y70.1 y72.4

## "a" "ab" "abc" "bc" "c"
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6.7 Density estimation

Density estimation is like a histogram: It is a method for visualizing the shape

of a univariate distribution (there are methods for doing multivariate density

estimation as well, but we will ignore those for the time being). In fact, I snuck

in density estimation in the first chapter and have been using it all along! Let’s

experiment with Newcombe’s speed-of-light data (excluding the two outliers).

Consider the shape of the histogram for different numbers of bins.
#### Density estimation

# include time ranks 3 and above, that is, remove the lowest two values

time2 <- time[(rank(time) >= 3)]

old.par <- par(no.readonly = TRUE)

# make smaller margins

par(mfrow=c(5,1), mar=c(3,2,2,1), oma=c(1,1,1,1))

hist(time2, breaks=1 , main="1 break" , xlim=c(24.80,24.84), xlab=""); rug(time2)

hist(time2, main="default" , xlim=c(24.80,24.84), xlab=""); rug(time2)

hist(time2, breaks=10 , main="10 breaks" , xlim=c(24.80,24.84), xlab=""); rug(time2)

hist(time2, breaks=20 , main="20 breaks" , xlim=c(24.80,24.84), xlab=""); rug(time2)

hist(time2, breaks=100 , main="100 breaks", xlim=c(24.80,24.84), xlab=""); rug(time2)

# restore par() settings

par(old.par)
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Notice that we are starting to see more and more bins that include only a

single observation (or multiple observations at the precision of measurement).

Taken to its extreme, this type of exercise gives in some sense a “perfect” fit to

the data but is useless as an estimator of shape.

On the other hand, it is obvious that a single bin would also be completely

useless. So we try in some sense to find a middle ground between these two

extremes: “Oversmoothing” by using only one bin and “undersmooting” by

using too many. This same paradigm occurs for density estimation, in which

the amount of smoothing is determined by a quantity called the bandwidth.

By default, R uses an optimal (in some sense) choice of bandwidth.
We’ve already used the density() function to provide a smooth curve to

our histograms. So far, we’ve taken the default “bandwidth”. Let’s see what
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happens when we use different bandwidths.
par(mfrow=c(3,1))

# prob=TRUE scales the y-axis like a density function, total area = 1

hist(time2, prob=TRUE, main="")

# apply a density function, store the result

den = density(time2)

# plot density line over histogram

lines(den, col=2, lty=2, lwd=2)

# extract the bandwidth (bw) from the density line

b = round(den$bw, 4)

title(main=paste("Default =", b), col.main=2)

# undersmooth

hist(time2, prob=TRUE, main="")

lines(density(time2, bw=0.0004), col=3, lwd=2)

text(17.5, .35, "", col=3, cex=1.4)

title(main=paste("Undersmooth, BW = 0.0004"), col.main=3)

# oversmooth

hist(time2, prob=TRUE, main="")

lines(density(time2, bw=0.008), col=4, lwd=2)

title(main=paste("Oversmooth, BW = 0.008"), col.main=4)
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The other determining factor is the kernel, which is the shape each individual
point takes before all the shapes are added up for a final density line. While
the choice of bandwidth is very important, the choice of kernel is not. Choosing
a kernel with hard edges (such as ”rect”) will result in jagged artifacts, so
smoother kernels are often preferred.
par(mfrow=c(1,1))

hist(time2, prob=TRUE, main="")

# default kernel is Gaussian ("Normal")

lines(density(time2) , col=2, lty=1, lwd=2)

lines(density(time2, ker="epan"), col=3, lty=1, lwd=2)

lines(density(time2, ker="rect"), col=4, lty=1, lwd=2)

title(main="Gaussian, Epanechnikov, Rectangular")

# other kernels include: "triangular", "biweight", "cosine", "optcosine"
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