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Learning objectives

After completing this topic, you should be able to:

assess the assumptions visually and via formal tests.

Achieving these goals contributes to mastery in these course learning outcomes:

10. Model assumptions.

4.1 Introduction

Almost all statistical methods make assumptions about the data collection pro-

cess and the shape of the population distribution. If you reject the null hypoth-

esis in a test, then a reasonable conclusion is that the null hypothesis is false,
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140 Ch 4: Checking Assumptions

provided all the distributional assumptions made by the test are satisfied. If the

assumptions are not satisfied then that alone might be the cause of rejecting

H0. Additionally, if you fail to reject H0, that could be caused solely by failure

to satisfy assumptions also. Hence, you should always check assumptions to

the best of your abilities.

Two assumptions that underly the tests and CI procedures that I have

discussed are that the data are a random sample, and that the population fre-

quency curve is normal. For the pooled variance two-sample test the population

variances are also required to be equal.

The random sample assumption can often be assessed from an understand-

ing of the data collection process. Unfortunately, there are few general tests for

checking this assumption. I have described exploratory (mostly visual) meth-

ods to assess the normality and equal variance assumption. I will now discuss

formal methods to assess these assumptions.

4.2 Testing Normality

An informal test of normality can be based on a normal scores plot, some-

times called a rankit plot or a normal probability plot or a normal

QQ plot (QQ = quantile-quantile). You plot the quantiles of the data against

the quantiles of the normal distribution, or expected normal order statis-

tics (in a standard normal distribution) for a sample with the given number of

observations. The normality assumption is plausible if the plot is fairly linear.

I give below several plots often seen with real data, and what they indicate

about the underlying distribution.

There are multiple ways to produce QQ plots in R. The shape can depend

upon whether you plot the normal scores on the x-axis or the y-axis. It is

conventional to plot the data on the y-axis and the normal scores on the x-axis.
Let’s start with some data from a normal distribution.

#### sample from normal distribution

x1 <- rnorm(150, mean = 100, sd = 15)
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4.2: Testing Normality 141

par(mfrow=c(3,1))

# Histogram overlaid with kernel density curve

hist(x1, freq = FALSE, breaks = 20)

points(density(x1), type = "l")

rug(x1)

# violin plot

library(vioplot)

vioplot(x1, horizontal=TRUE, col="gray")

## [1] 68.15819 132.18305

# boxplot

boxplot(x1, horizontal=TRUE)
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There are many ways to get adequate QQ plots. Consider how outliers

shows up in the QQ plot. There may be isolated points on ends of the QQ plot,

but only on the right side is there an outlier. How could you have identified

that the right tail looks longer than the left tail from the QQ plot?
#### QQ plots

# R base graphics

par(mfrow=c(1,1))

# plots the data vs their normal scores

qqnorm(x1)

# plots the reference line

qqline(x1)
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142 Ch 4: Checking Assumptions

# ggplot2 graphics

library(ggplot2)

# http://had.co.nz/ggplot2/stat_qq.html

df <- data.frame(x1)

# stat_qq() below requires "sample" to be assigned a data.frame column

p <- ggplot(df, aes(sample = x1))

# plots the data vs their normal scores

p <- p + stat_qq()

print(p)
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If you lay a straightedge along the bulk of the plot (putting in a regression

line is not the right way to do it, even if it is easy), you see that the most

extreme point on the right is a little below the line, and the last few points

on the left a little above the line. What does this mean? The point on the

right corresponds to a data value more extreme than expected from a normal

distribution (the straight line is where expected and actual coincide). Extreme

points on the right are above the line. What about the left? Extreme points

there should be above the line — since the deviations from the line are above

it on the left, those points are also more extreme than expected.

Even more useful is to add confidence intervals (point-wise, not family-wise

— you will learn the meaning of those terms in the ANOVA section). You

don’t expect a sample from a normally distributed population to have a normal

scores plot that falls exactly on the line, and the amount of deviation depends
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4.2: Testing Normality 143

upon the sample size.
The best QQ plot I could find is available in the car package called qqPlot.

Note that with the dist= option you can use this technique to see if the data
appear from lots of possible distributions, not just normal.
par(mfrow=c(1,1))

# Normality of Residuals

library(car)

# qq plot for studentized resid

# las = 1 : turns labels on y-axis to read horizontally

# id.n = n : labels n most extreme observations, and outputs to console

# id.cex = 1 : is the size of those labels

# lwd = 1 : line width

qqPlot(x1, las = 1, id = list(n = 6, cex = 1), lwd = 1, main="QQ Plot")

## [1] 65 110 86 125 31 111
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In this case the x-axis is labelled “norm quantiles”. You only see a couple

of data values outside the limits (in the tails, where it usually happens). You

expect around 5% outside the limits, so there is no indication of non-normality
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144 Ch 4: Checking Assumptions

here. I did sample from a normal population.

4.2.1 Normality tests on non-normal data

Let’s turn to examples of sampling from other, non-normal distributions to see

how the normal QQ plot identifies important features.

Light-tailed symmetric (Uniform)

#### Light-tailed symmetric (Uniform)

# sample from uniform distribution

x2 <- runif(150, min = 50, max = 150)

par(mfrow=c(3,1))

# Histogram overlaid with kernel density curve

hist(x2, freq = FALSE, breaks = 20)

points(density(x2), type = "l")

rug(x2)

# violin plot

library(vioplot)

vioplot(x2, horizontal=TRUE, col="gray")

## [1] 50.27089 149.78834

# boxplot

boxplot(x2, horizontal=TRUE)

par(mfrow=c(1,1))

qqPlot(x2, las = 1, id = list(n = 0, cex = 1), lwd = 1, main="QQ Plot")
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4.2: Testing Normality 145

Histogram of x2

x2

D
en

si
ty

60 80 100 120 140

0.
00

0
0.

01
0

60 80 100 120 140

1 ●

60 80 100 120 140

−2 −1 0 1 2

60

80

100

120

140

QQ Plot

norm quantiles
x2

● ● ●
●●●●●●●●

●●●
●●●

●●●
●●●

●●●●●
●●
●●●
●
●●
●
●●●
●●
●●
●●
●
●●
●
●●●●

●●
●●●●●●●

●●
●
●●●●
●
●●●
●●●
●●●●●

●●
●●●●●●

●●●
●●●●●

●●●
●●●
●●●
●●●
●●●●●

●●
●●
●●
●●●

●●●
●●
●●
●●
●●●

●●●
●
●●●

●●●● ● ● ●

Heavy-tailed (fairly) symmetric (Normal-squared)

#### Heavy-tailed (fairly) symmetric (Normal-squared)

# sample from normal distribution

x3.temp <- rnorm(150, mean = 0, sd = 1)

x3 <- sign(x3.temp)*x3.temp^2 * 15 + 100

par(mfrow=c(3,1))

# Histogram overlaid with kernel density curve

hist(x3, freq = FALSE, breaks = 20)

points(density(x3), type = "l")

rug(x3)

# violin plot

library(vioplot)

vioplot(x3, horizontal=TRUE, col="gray")

## [1] -3.186307 306.868041

# boxplot

boxplot(x3, horizontal=TRUE)

par(mfrow=c(1,1))

qqPlot(x3, las = 1, id = list(n = 0, cex = 1), lwd = 1, main="QQ Plot")
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146 Ch 4: Checking Assumptions

Histogram of x3
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Right-skewed (Exponential)

#### Right-skewed (Exponential)

# sample from exponential distribution

x4 <- rexp(150, rate = 1)

par(mfrow=c(3,1))

# Histogram overlaid with kernel density curve

hist(x4, freq = FALSE, breaks = 20)

points(density(x4), type = "l")

rug(x4)

# violin plot

library(vioplot)

vioplot(x4, horizontal=TRUE, col="gray")

## [1] 0.01034741 7.89396045

# boxplot

boxplot(x4, horizontal=TRUE)

par(mfrow=c(1,1))

qqPlot(x4, las = 1, id = list(n = 0, cex = 1), lwd = 1, main="QQ Plot")

Prof. Erik B. Erhardt



4.2: Testing Normality 147

Histogram of x4
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Left-skewed (Exponential, reversed)

#### Left-skewed (Exponential, reversed)

# sample from exponential distribution

x5 <- 15 - rexp(150, rate = 0.5)

par(mfrow=c(3,1))

# Histogram overlaid with kernel density curve

hist(x5, freq = FALSE, breaks = 20)

points(density(x5), type = "l")

rug(x5)

# violin plot

library(vioplot)

vioplot(x5, horizontal=TRUE, col="gray")

## [1] 7.271317 14.991594

# boxplot

boxplot(x5, horizontal=TRUE)

par(mfrow=c(1,1))

qqPlot(x5, las = 1, id = list(n = 0, cex = 1), lwd = 1, main="QQ Plot")
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148 Ch 4: Checking Assumptions

Histogram of x5
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Notice how striking is the lack of linearity in the QQ plot for all the non-

normal distributions, particularly the symmetric light-tailed distribution where

the boxplot looks fairly good. The QQ plot is a sensitive measure of normality.

Let us summarize the patterns we see regarding tails in the plots:
Tail

Tail Weight Left Right

Light Left side of plot points left Right side of plot points right

Heavy Left side of plot points down Right side of plot points up

4.3 Formal Tests of Normality

A formal test of normality is based on the correlation between the data and

the normal scores. The correlation is a measure of the strength of a linear

relationship, with the sign of the correlation indicating the direction of the

relationship (that is, + for increasing relationship, and − for decreasing). The

correlation varies from −1 to +1. In a normal scores plot, you are looking for

a correlation close to +1. Normality is rejected if the correlation is too small.

Critical values for the correlation test of normality, which is commonly called

the Shapiro-Wilk test, can be found in many texts.
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4.3: Formal Tests of Normality 149

R has several tests of normality. The Shapiro-Wilk test shapiro.test() is

a base function. The R package nortest has five others: the Anderson-Darling

test ad.test() is useful, related to the Kolmogorov-Smirnov (Lilliefors)

test lillie.test() which is commonly used in many scientific disciplines but is

essentially useless, the Cramer-von Mises test cvm.test(), and two more. Some

packages also have the Ryan-Joiner test (closely related to the Shapiro-Wilk

test).

Extreme outliers and skewness have the biggest effects on standard meth-

ods based on normality. The Shapiro-Wilk (SW) test is better at picking up

these problems than the Kolmogorov-Smirnov (KS) test. The KS test tends

to highlight deviations from normality in the center of the distribution. These

types of deviations are rarely important because they do not have a noticeable

effect on the operating characteristics of the standard methods. The AD and

RJ tests are modifications designed to handle some of these objections.

Tests for normality may have low power in small to moderate sized samples.

Visual assessment of normality is often more valuable than a formal test. The

tests for the distributions of data above are below and in Figure 4.1.
Normal distribution

#### Formal Tests of Normality

shapiro.test(x1)

##

## Shapiro-Wilk normality test

##

## data: x1

## W = 0.98584, p-value = 0.1289

library(nortest)

ad.test(x1)

##

## Anderson-Darling normality test

##

## data: x1

## A = 0.40732, p-value = 0.3446

# lillie.test(x1)

cvm.test(x1)

##

## Cramer-von Mises normality test

##

## data: x1
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150 Ch 4: Checking Assumptions

## W = 0.05669, p-value = 0.4159

Light-tailed symmetric
shapiro.test(x2)

##
## Shapiro-Wilk normality test
##
## data: x2
## W = 0.95252, p-value = 5.336e-05

library(nortest)
ad.test(x2)

##
## Anderson-Darling normality test
##
## data: x2
## A = 1.9426, p-value = 5.644e-05

# lillie.test(x2)
cvm.test(x2)

##
## Cramer-von Mises normality test
##
## data: x2
## W = 0.29567, p-value = 0.0003642

Heavy-tailed (fairly) symmetric

shapiro.test(x3)

##
## Shapiro-Wilk normality test
##
## data: x3
## W = 0.79633, p-value = 3.587e-13

library(nortest)
ad.test(x3)

##
## Anderson-Darling normality test
##
## data: x3
## A = 9.1433, p-value < 2.2e-16

# lillie.test(x3)
cvm.test(x3)

## Warning in cvm.test(x3): p-value is smaller
than 7.37e-10, cannot be computed more accurately
##
## Cramer-von Mises normality test
##
## data: x3
## W = 1.8248, p-value = 7.37e-10

Right-skewed
shapiro.test(x4)

##
## Shapiro-Wilk normality test
##
## data: x4
## W = 0.74125, p-value = 5.872e-15

library(nortest)
ad.test(x4)

##
## Anderson-Darling normality test
##
## data: x4
## A = 9.3715, p-value < 2.2e-16

# lillie.test(x4)
cvm.test(x4)

## Warning in cvm.test(x4): p-value is smaller
than 7.37e-10, cannot be computed more accurately
##
## Cramer-von Mises normality test
##
## data: x4
## W = 1.6537, p-value = 7.37e-10

Left-skewed
shapiro.test(x5)

##
## Shapiro-Wilk normality test
##
## data: x5
## W = 0.8743, p-value = 5.933e-10

library(nortest)
ad.test(x5)

##
## Anderson-Darling normality test
##
## data: x5
## A = 6.0016, p-value = 7.938e-15

# lillie.test(x5)
cvm.test(x5)

##
## Cramer-von Mises normality test
##
## data: x5
## W = 1.0553, p-value = 9.648e-10

Figure 4.1: Normality tests for non-normal distributions
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4.3: Formal Tests of Normality 151

Example: Paired Differences on Sleep Remedies The following box-

plot and normal scores plots suggest that the underlying distribution of differ-

ences (for the paired sleep data taken from the previous chapter) is reasonably

symmetric, but heavy tailed. The p-value for the SW test of normality is 0.042,

and for the AD test is 0.029, both of which call into question a normality as-

sumption. A non-parametric test comparing the sleep remedies (one that does

not assume normality) is probably more appropriate here. We will return to

these data later.
# Normality tests

shapiro.test(sleep$d)

##

## Shapiro-Wilk normality test

##

## data: sleep$d

## W = 0.83798, p-value = 0.04173

library(nortest)

ad.test(sleep$d)

##

## Anderson-Darling normality test

##

## data: sleep$d

## A = 0.77378, p-value = 0.02898

# lillie.test(sleep£d)

cvm.test(sleep$d)

##

## Cramer-von Mises normality test

##

## data: sleep$d

## W = 0.13817, p-value = 0.02769

# plot of data

par(mfrow=c(3,1))

# Histogram overlaid with kernel density curve

hist(sleep$d, freq = FALSE, breaks = 20)

points(density(sleep$d), type = "l")

rug(sleep$d)

# violin plot

library(vioplot)

vioplot(sleep$d, horizontal=TRUE, col="gray")

## [1] -0.2 4.6

# boxplot
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152 Ch 4: Checking Assumptions

boxplot(sleep$d, horizontal=TRUE)

# QQ plot

par(mfrow=c(1,1))

qqPlot(sleep$d, las = 1, id = list(n = 4, cex = 1), lwd = 1, main="QQ Plot")

## [1] 9 5 2 8

Histogram of sleep$d
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Example: Androstenedione Levels This is an independent two-sample

problem, so you must look at normal scores plots for males and females.

The AD test p-value and the SW test p-value for testing normality exceeds

0.10 in each sample. Thus, given the sample sizes (14 for men, 18 for women), we

have insufficient evidence (at α = 0.05) to reject normality in either population.

The women’s boxplot contains two mild outliers, which is highly unusual

when sampling from a normal distribution. The tests are possibly not powerful

enough to pick up this type of deviation from normality in such a small sample.

In practice, this may not be a big concern. The two mild outliers probably

have a small effect on inferences in the sense that non-parametric methods

would probably lead to similar conclusions here.
library(ggplot2)

p1 <- ggplot(andro, aes(x = sex, y = level, fill=sex))
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Men
shapiro.test(men)

##

## Shapiro-Wilk normality test

##

## data: men

## W = 0.90595, p-value = 0.1376

library(nortest)

ad.test(men)

##

## Anderson-Darling normality test

##

## data: men

## A = 0.4718, p-value = 0.2058

# lillie.test(men)

cvm.test(men)

##

## Cramer-von Mises normality test

##

## data: men

## W = 0.063063, p-value = 0.3221

Women
shapiro.test(women)

##

## Shapiro-Wilk normality test

##

## data: women

## W = 0.95975, p-value = 0.5969

library(nortest)

ad.test(women)

##

## Anderson-Darling normality test

##

## data: women

## A = 0.39468, p-value = 0.3364

# lillie.test(women)

cvm.test(women)

##

## Cramer-von Mises normality test

##

## data: women

## W = 0.065242, p-value = 0.3057

p1 <- p1 + geom_boxplot()

# add a "+" at the mean

p1 <- p1 + stat_summary(fun.y = mean, geom = "point", shape = 3, size = 2)

#p1 <- p1 + coord_flip()

p1 <- p1 + labs(title = "Androstenedione Levels in Diabetics")

#print(p1)

p2 <- ggplot(andro, aes(x = level, fill=sex))

p2 <- p2 + geom_histogram(binwidth = 20, alpha = 0.5, position="identity")

p2 <- p2 + geom_rug(aes(colour=sex))

p2 <- p2 + labs(title = "Androstenedione Levels in Diabetics")

#print(p2)

library(gridExtra)

grid.arrange(grobs = list(p1, p2), ncol=1)

# QQ plot

par(mfrow=c(2,1))

qqPlot(men, las = 1, id = list(n = 0, cex = 1), lwd = 1, main="QQ Plot, Men")

qqPlot(women, las = 1, id = list(n = 0, cex = 1), lwd = 1, main="QQ Plot, Women")

UNM, Stat 427/527 ADA1



154 Ch 4: Checking Assumptions

●

●

50

100

150

200

men women
sex

le
ve

l

sex

men

women

Androstenedione Levels in Diabetics

0.0

2.5

5.0

7.5

10.0

50 100 150 200
level

co
un

t sex

men

women

Androstenedione Levels in Diabetics

−1 0 1

100

150

200

QQ Plot, Men

norm quantiles

m
en

●
●

● ●

●

●
●

● ● ●
●

●
●

●

−2 −1 0 1 2

40

60

80

100

QQ Plot, Women

norm quantiles

w
om

en

●

● ●

● ●
●

● ●
● ●

●
● ● ● ●

●

●

●

Most statisticians use graphical methods (boxplot, normal scores plot) to

assess normality, and do not carry out formal tests.

You may be surprised at how variable 10 observations from a Normal(0,1)

distribution looks like; here are 25 samples.
n = 10

r = 5

norm.many <- data.frame(id = rep(seq(1:r^2), n)

, x = rnorm(r^2 * n)

)

library(ggplot2)

p <- ggplot(norm.many, aes(x = x))

p <- p + geom_histogram(binwidth = 0.4)

p <- p + geom_rug()

p <- p + facet_wrap(~ id, ncol = r)

p <- p + labs(title = "Twenty-five samples of size n=10 from a Normal(0,1) distribution")

print(p)
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Twenty−five samples of size n=10 from a Normal(0,1) distribution

. . . and here are samples of size n = 30.
n = 30

r = 5

norm.many <- data.frame(id = rep(seq(1:r^2), n)

, x = rnorm(r^2 * n)

)

library(ggplot2)

p <- ggplot(norm.many, aes(x = x))

p <- p + geom_histogram(binwidth = 0.4)

p <- p + geom_rug()
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p <- p + facet_wrap(~ id, ncol = r)

p <- p + labs(title = "Twenty-five samples of size n=30 from a Normal(0,1) distribution")

print(p)
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Twenty−five samples of size n=30 from a Normal(0,1) distribution

By viewing many versions of this of varying samples sizes you’ll develop

your intuition about what a normal sample looks like.
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4.4 Testing Equal Population Variances

In the independent two sample t-test, some researchers test H0 : σ21 = σ22 as a

means to decide between using the pooled-variance procedure or Satterthwaite’s

methods. They suggest the pooled t-test and CI if H0 is not rejected, and

Satterthwaite’s methods otherwise.

There are a number of well-known tests for equal population variances, of

which Bartlett’s test and Levene’s test are probably the best known. Bartlett’s

test assumes the population distributions are normal, and is the best test when

this is true. In practice, unequal variances and non-normality often go hand-in-

hand, so you should check normality prior to using Bartlett’s test. It is sensitive

to data which is not non-normally distributed, thus it is more likely to return

a “false positive” (reject H0 of equal variances) when the data is non-normal.

Levene’s test is more robust to departures from normality than Bartlett’s test;

it is in the car package. Fligner-Killeen test is a non-parametric test which is

very robust against departures from normality.

I will now define Bartlett’s test, which assumes normally distributed

data. As above, let n∗ = n1 +n2 + · · ·+nk, where the nis are the sample sizes

from the k groups, and define

v = 1 +
1

3(k − 1)

(
k∑
i=1

1

ni − 1
− 1

n∗ − k

)
.

Bartlett’s statistic for testing H0 : σ21 = · · · = σ2k is given by

Bobs =
2.303

v

{
(n− k) log(s2pooled) −

k∑
i=1

(ni − 1) log(s2i )

}
,

where s2pooled is the pooled estimator of variance and s2i is the estimated variance

based on the ith sample.

Large values of Bobs suggest that the population variances are unequal. For

a size α test, we reject H0 if Bobs ≥ χ2
k−1,crit, where χ2

k−1,crit is the upper-α

percentile for the χ2
k−1 (chi-squared) probability distribution with k−1 degrees
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of freedom. A generic plot of the χ2 distribution is given below. A p-value for

the test is given by the area under the chi-squared curve to the right of Bobs.

Example: Androstenedione Levels The sample standard deviations

and samples sizes are: s1 = 42.8 and n1 = 14 for men and s2 = 17.2 and

n2 = 18 for women. The sample standard deviations appear to be very different,

so I would not be surprised if the test of equal population variances is highly

significant. The output below confirms this: the p-values for Bartlett’s F-test,

Levene’s Test, and Fligner-Killeen test are all much smaller than 0.05. An

implication is that the standard pooled-CI and test on the population means is

inappropriate.
#### Testing Equal Population Variances

# numerical summaries

c(mean(men), mean(women), sd(men), sd(women))

## [1] 112.50000 75.83333 42.75467 17.23625

c(IQR(men), IQR(women), length(men), length(women))

## [1] 60.25 17.00 14.00 18.00

## Test equal variance

# assumes populations are normal

bartlett.test(level ~ sex, data = andro)

##

## Bartlett test of homogeneity of variances

##

## data: level by sex

## Bartlett's K-squared = 11.199, df = 1, p-value = 0.0008183

# does not assume normality, requires car package

library(car)

leveneTest(level ~ sex, data = andro)

## Levene's Test for Homogeneity of Variance (center = median)

## Df F value Pr(>F)

## group 1 7.2015 0.01174 *

## 30

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

# nonparametric test

fligner.test(level ~ sex, data = andro)

##

## Fligner-Killeen test of homogeneity of variances

##

## data: level by sex
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## Fligner-Killeen:med chi-squared = 5.8917, df = 1, p-value =

## 0.01521

4.5 Small sample sizes, a comment

In Daniel Kahneman’s “Thinking, Fast and Slow” (Ch 10), he discusses “The

Law of Small Numbers” (in contrast to the Law of Large Numbers). As an

example from statisticians Howard Wainer and Harris Zwerling, he makes this

observation about the incidence of kidney cancer in the 3,141 counties of the

United States. “The counties in which the incidence of kidney cancer is lowest

are mostly rural, sparsely populated, and located in traditionally Republican

states in the Midwest, the South, and the West. What do you make of this?”

The statistians comment: “It is both easy and tempting to infer that their low

cancer rates are directly due to the clean living of the rural lifestyle — no air

pollution, no water pollution, access to fresh food without additives.” This

makes perfect sense.

“Now consider the counties in which the incidence of kidney cancer is high-

est. These ailing counties tend to be mostly rural, sparsely populated, and

located in traditionally Republican states in the Midwest, the South, and the

West.” Tongue-in-cheek, Wainer and Zwerling comment: “It is easy to infer

that their high cancer rates might be directly due to the poverty of the rural

lifestyle — no access to good medical care, a high-fat diet, and too much al-

cohol, too much tobacco.” Something is wrong, of course. The rural lifestyle

cannot explain both very high and very low incidence of kidney cancer.

The key factor is not that the counties were rural or predominantly Re-

publican. It is that rural counties have small populations. The law of large

numbers says that as sample sizes increase that the sample statistic converges

to the population proportion, that is, large samples are more precise than small

samples. What Kahneman is calling the law of small numbers warns that small

samples yield extreme results more often than large samples do.
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