Sevilleta (SEV) Long Term Ecological Research (LTER) Program
Data curated and provided by Dr. Jennifer A. Rudgers, Professor of Biology and Director of the SEV LTER Research Program at The University of New Mexico.
Ground Arthropod Community Survey in Grassland, Shrubland, and Woodland at the Sevilleta National Wildlife Refuge, New Mexico (1992-2004)
Abstract: This data set contains records for the numbers of selected groups of ground-dwelling arthropod species and individuals collected from pitfall traps at 4 sites on the Sevilleta NWR, including creotostebush shrubland, both black and blue grama grasslands, and a pinyon/juniper woodland. Data collections begin in May of 1989, and are represented by subsequent sample collections every 2 months. One site (Goat Draw/Cerro Montosa) was discontinued in 2001, and a new site (Blue Grama) was initiated . Only three sites, creosotebush, black grama, and blue grama were continued between 2001-2004.
Jenn used sev029_arthropod.R
to create the datasets.
Arthropod metadata: http://sevlter.unm.edu/data/sev-29
Codebook: http://sevlter.unm.edu/data/sev-029/4833
Note that:
Jenn created 2 new arthropod variables in the R code. “With lots of attention on declines in arthropod biodiversity in the news, it would be interesting to look at diversity.”
total
= sum of all arthopods caught per trapspecies_diversity
= Shannon diversity index for arthropods caught per trapList of attached files:
sev029_arthropop02162009.csv
sev029_arthwide.csv
sev029_arth.R
sev001_met_arth.csv
Site
, Year
, each season has a separate met columnsevpittaxa.xls
ID Not all datasets have an ID, but each observation should be able to be identified uniquely. In this case a combination of the variables will identify an observation uniquely (Year
, Season
, Site
, Line
, and Trap
). (“Trap” is in the codebook but doesn’t seem to be in the dataframe – there are some differences because I got this directly from Jenn and the codebook is from the LTER website.)
Codebook for the original data: sev029_arthropop02162009.csv
Variables
ID
See note above
Year, Season, Site, Line, Trap
Year
Label: Year
Definition: The year in which the data were collected.
Type: Date/time
Date format: YYYY
Missing values: None specified
Month
Label: Month
Definition: The month in which data were collected.
Type: Nominal
Missing values: None specified
Day
Label: Day
Definition: The numeric designation for the day of the month on which the measurement was taken. The numbers range from 1 to 31.
Type: Nominal
Missing values: None specified
Site
Label: Site
Definition: The location at which data was collected.
Type: Code list
Codes:
B = Blue Grama grassland (only a few years, maybe exclude from analysis)
C = Creosote shrubland
G = Black grama grassland
P = Pinyon-Juniper woodland
Missing values: None specified
Line
Label: Line
Definition: The line of pitfall traps along which data was collected.
Type: Nominal
Missing values: None specified
Trap
Label: Trap
Definition: The individual pitfall trap which was sampled.
Type: Nominal
Missing values: None specified
Order
Label: Order
Definition: The taxonomic rank of a specimen as designated by the first two letters of the order.
Type: Nominal
Missing values: None specified
Family
Label: Family
Definition: The taxonomic rank of a specimen as designated by the first three letters of the family..
Type: Nominal
Missing values: None specified
Genus
Label: Genus
Definition: The taxonomic rank of a specimen as designated by the first three letters of the genus.
Type: Nominal
Missing values: None specified
Species
Label: Species
Definition: The taxonomic rank of a specimen as designated by the first three letters of the species.
Type: Nominal
Missing values: None specified
Count
Label: Count
Definition: The total number of individuals for each taxon per trap per date.
Type: Code list
Codes:
0 = No target taxa observed.
Missing values:
-888 = missing
comments
Label: comments
Definition: A special statement related to an observation.
Type: Code list
Codes:
na = not applicable
Missing values: None specified
Jenn writes: “I also added a reshaped dataset that summarizes by arthropod family rather than species (=taxon_code
). There are many fewer zeros that way. It would be easiest to start students on this one. In addition, the level of detail to which arthropods were identified does not seem to be consistent across years, getting less precise in later years of collection, perhaps good justification for lumping at a higher taxonomic level. Hopefully these data are clean enough to analyze - I haven’t spent time with the data to know what might surface as a downstream problem…”
Reshaped data: sev029_arthwide_family.csv
library(tidyverse)
dat_arth_wide_f <- read_csv("arth/sev029_arthwide_family.csv")
## Parsed with column specification:
## cols(
## .default = col_double(),
## Season = col_character(),
## Site = col_character(),
## Line = col_character()
## )
## See spec(...) for full column specifications.
dim(dat_arth_wide_f)
## [1] 385 67
#names(dat_arth_wide_f)
dat_arth_wide <- read_csv("arth/sev029_arthwide.csv")
## Parsed with column specification:
## cols(
## .default = col_double(),
## Season = col_character(),
## Site = col_character(),
## Line = col_character()
## )
## See spec(...) for full column specifications.
dim(dat_arth_wide)
## [1] 385 513
#names(dat_arth_wide)
#dat_arth_taxon <- read_csv("sevpit.csv")
#dim(dat_arth_taxon)
#names(dat_arth_taxon)
dat_met <- read_csv("arth/sev001_met_arth.csv")
## Parsed with column specification:
## cols(
## .default = col_double(),
## Site = col_character(),
## Station.Name = col_character()
## )
## See spec(...) for full column specifications.
dim(dat_met)
## [1] 97 31
#names(dat_met)
arth
data with met
eorological climate datadat_arth_wide_f <-
dat_arth_wide_f %>%
full_join(dat_met)
## Joining, by = c("Year", "Site")
dim(dat_arth_wide_f)
## [1] 450 96
#names(dat_arth_wide_f)
dat_arth_wide <-
dat_arth_wide %>%
full_join(dat_met)
## Joining, by = c("Year", "Site")
dim(dat_arth_wide)
## [1] 450 542
names(dat_arth_wide)
## [1] "Year" "Season" "Site"
## [4] "Line" "AR ACR AMP COL" "AR AGE 1 NYM"
## [7] "AR AGE AGE LON" "AR AGE AGE NYM" "AR AGE HOL HOL"
## [10] "AR ANY 1 NYM" "AR ANY ANY DIX" "AR ANY ANY NYM"
## [13] "AR ANY HIB INC" "AR CLU 1 1" "AR CLU 1 NYM"
## [16] "AR CLU CLU 1" "AR CLU NEO CHA" "AR COR -888 -888"
## [19] "AR COR 1 NYM" "AR COR CAS 1" "AR COR CAS 3"
## [22] "AR COR CAS OCC" "AR COR MER 1" "AR DIC -888 -888"
## [25] "AR DIC 1 NYM" "AR DIC CIC 1" "AR DIC CIC 2"
## [28] "AR DIC CIC 4" "AR DIC CIC NYM" "AR DIC CLC 1"
## [31] "AR FIL FIL 1" "AR FIL KUK 1" "AR GNA -888 -888"
## [34] "AR GNA 1 NYM" "AR GNA CAL CHI" "AR GNA CAL MUM"
## [37] "AR GNA CES BIL" "AR GNA CES SIN" "AR GNA DRA 1"
## [40] "AR GNA DRA 2" "AR GNA DRA ANT" "AR GNA DRA CER"
## [43] "AR GNA DRA CON" "AR GNA DRA DRO" "AR GNA DRA LAM"
## [46] "AR GNA DRA LEP" "AR GNA DRA MEX" "AR GNA DRA MOR"
## [49] "AR GNA DRA MUM" "AR GNA DRA NYM" "AR GNA DRA ORG"
## [52] "AR GNA DRA PRO" "AR GNA DRD 1" "AR GNA DRD GOS"
## [55] "AR GNA DRD NEG" "AR GNA DRD NYM" "AR GNA DRD SAC"
## [58] "AR GNA DRO GOS" "AR GNA GNA 1" "AR GNA GNA CLA"
## [61] "AR GNA GNA NYM" "AR GNA GNA SER" "AR GNA HAP CHA"
## [64] "AR GNA HAP NYM" "AR GNA HER 1" "AR GNA HER BUB"
## [67] "AR GNA HER EXC" "AR GNA HER HES" "AR GNA HER NYM"
## [70] "AR GNA HER PRO" "AR GNA MIC 1" "AR GNA MIC GOS"
## [73] "AR GNA MIC LON" "AR GNA MIC NYM" "AR GNA MIC PAL"
## [76] "AR GNA MIC POR" "AR GNA NOD UTU" "AR GNA ZEL 1"
## [79] "AR GNA ZEL ANG" "AR GNA ZEL LAS" "AR GNA ZEL NYM"
## [82] "AR GNA ZEL TUO" "AR LIN 1 NYM" "AR LIN 1 VSP"
## [85] "AR LIO LIO 1" "AR LYC -888 -888" "AR LYC 1 1"
## [88] "AR LYC 1 NYM" "AR LYC ALO KOC" "AR LYC ALO KOH"
## [91] "AR LYC GEO RAF" "AR LYC HOG 1" "AR LYC HOG CAR"
## [94] "AR LYC HOG FRO" "AR LYC HOG NYM" "AR LYC LYC NYM"
## [97] "AR LYC PAR 4" "AR LYC PAR DIS" "AR LYC PAR NYM"
## [100] "AR LYC PAR ORO" "AR LYC SCH 1" "AR LYC SCH CHI"
## [103] "AR LYC SCH MCC" "AR LYC SCH MIM" "AR LYC SCH NYM"
## [106] "AR LYC VAR GOS" "AR LYV -888 -888" "AR MIM MIM 1"
## [109] "AR OXY -888 -888" "AR OXY 1 NYM" "AR OXY OXY APO"
## [112] "AR OXY OXY LYN" "AR OXY OXY SAL" "AR OXY OXY TRI"
## [115] "AR PHI -888 -888" "AR PHI 1 NYM" "AR PHI APO TEX"
## [118] "AR PHI EBO PAR" "AR PHI PHI KEY" "AR PHI THA 1"
## [121] "AR PHI THA COL" "AR PHI TIB DUT" "AR PHI TIB NYM"
## [124] "AR PHO -888 -888" "AR PHO 1 NYM" "AR PHO PHY ENA"
## [127] "AR PHO PSI 1" "AR SAL -888 -888" "AR SAL 1 1"
## [130] "AR SAL 1 NYM" "AR SAL HAB CLY" "AR SAL HAB CON"
## [133] "AR SAL HAB GER" "AR SAL HAB NYM" "AR SAL PEL LIM"
## [136] "AR SAL PEL NYM" "AR SAL PHI 1" "AR SAL PLA ARI"
## [139] "AR SAL SAL 1" "AR SAL SAL NYM" "AR SAL THI 1"
## [142] "AR THE -888 -888" "AR THE EUR 2" "AR THE EUR SCR"
## [145] "AR THE LAT HES" "AR THE STE 2" "AR THE STE 3"
## [148] "AR THO -888 -888" "AR THO 1 NYM" "AR THO BAS 1"
## [151] "AR THO BAS 2" "AR THO SYN NEO" "AR THO THO NYM"
## [154] "AR THO TMA ANG" "AR THO XYS 1" "AR THO XYS 3"
## [157] "AR THO XYS APA" "AR THO XYS CUN" "AR THO XYS FAC"
## [160] "AR THO XYS GUL" "AR THO XYS LAS" "AR THO XYS LOC"
## [163] "AR THO XYS MON" "AR THO XYS NYM" "AR THO XYS ORI"
## [166] "AR THR -888 -888" "AR THR 1 NYM" "AR THR APH 1"
## [169] "AR THR EUR NYM" "AR THR LAT HES" "AR TNA DRA DRO"
## [172] "BL POL -888 -888" "BL POL ARE ERR" "BL POL ERE SUB"
## [175] "CO CAR -888 -888" "CO CAR 1 56" "CO CAR AMA 1"
## [178] "CO CAR AMA APA" "CO CAR AMA CAR" "CO CAR AMA DIS"
## [181] "CO CAR AMA ERR" "CO CAR AMA IDA" "CO CAR AMA RUB"
## [184] "CO CAR CAL OBS" "CO CAR CAL PER" "CO CAR CAT OPA"
## [187] "CO CAR CIC LEM" "CO CAR CIC PUL" "CO CAR CIC PUN"
## [190] "CO CAR CYM ARR" "CO CAR CYM PUN" "CO CAR DIC LAE"
## [193] "CO CAR EUR GRO" "CO CAR HAR 1" "CO CAR HAR AMP"
## [196] "CO CAR HAR KAT" "CO CAR HAR PEN" "CO CAR HAR TAD"
## [199] "CO CAR HEL LAT" "CO CAR LEB VIR" "CO CAR PAS 1"
## [202] "CO CAR PAS CAL" "CO CAR PAS ELO" "CO CAR PAS OBS"
## [205] "CO CAR PIO SET" "CO CAR PTE 1" "CO CAR PTE LUC"
## [208] "CO CAR RHA 3" "CO CAR RHA DIS" "CO CAR SCR SUB"
## [211] "CO CRY 1 1" "CO CUR -888 -888" "CO CUR 1 1"
## [214] "CO CUR API 1" "CO CUR CIM BUC" "CO CUR CIM CON"
## [217] "CO CUR CLE POR" "CO CUR CLE QUA" "CO CUR CRO 1"
## [220] "CO CUR CUR 1" "CO CUR GER LEC" "CO CUR GER TUR"
## [223] "CO CUR MIN LAN" "CO CUR MIN LAT" "CO CUR NOT LIM"
## [226] "CO CUR OPH DUN" "CO CUR OPH GLO" "CO CUR OPH LAT"
## [229] "CO CUR OPH SUL" "CO CUR OPH VIT" "CO CUR PAD DEN"
## [232] "CO CUR RHY BRE" "CO CUR SAP LON" "CO CUR SAP PUN"
## [235] "CO CUR SCY ACU" "CO CUR SIT CAL" "CO CUR SIT HIS"
## [238] "CO CUR YUC FRO" "CO ELA -888 -888" "CO ELA 1 1"
## [241] "CO ELA 1 20" "CO ELA AEO MEL" "CO ELA CAR 1"
## [244] "CO ELA CON ATH" "CO ELA CTE CAR" "CO ELA HET SOR"
## [247] "CO ELA HOR SIM" "CO ELA LAN SCH" "CO ELA MEL SIM"
## [250] "CO GLA GLA PHO" "CO HIS 1 4" "CO HIS ILI CAC"
## [253] "CO HIS SAP DIS" "CO HIS SAP PEN" "CO HIS XER 1"
## [256] "CO HIS XER COE" "CO LAT 1 1" "CO LAT 1 3"
## [259] "CO LEI PTO TEX" "CO MEL LYT 2" "CO MEL NEM 1"
## [262] "CO NIT CAR LUG" "CO SCA 1 30" "CO SCA 1 46"
## [265] "CO SCA 1 51" "CO SCA 1 57" "CO SCA 1 60"
## [268] "CO SCA APH 1" "CO SCA CRE PLA" "CO SCA DIP 1"
## [271] "CO SCA DIP 2" "CO SCA DIP SUB" "CO SCA EUP IND"
## [274] "CO SCA HOP LAT" "CO SCA ONT 1" "CO SCA PAR PUN"
## [277] "CO SCA PHY RUB" "CO SCA PHY VET" "CO SCA PHY WIC"
## [280] "CO STA 1 88" "CO STA OCY ATE" "CO STA OMA 1"
## [283] "CO STA QUE DES" "CO TEN -888 -888" "CO TEN AGR RUF"
## [286] "CO TEN ANE 1" "CO TEN ARA DEC" "CO TEN ARE DEC"
## [289] "CO TEN ARG RUF" "CO TEN BLA FOR" "CO TEN BLA PIM"
## [292] "CO TEN EDR 1" "CO TEN EDR LEE" "CO TEN EDR ROT"
## [295] "CO TEN ELE 1" "CO TEN ELE 2" "CO TEN ELE CAR"
## [298] "CO TEN ELE CAU" "CO TEN ELE EXT" "CO TEN ELE FUS"
## [301] "CO TEN ELE GRA" "CO TEN ELE HIS" "CO TEN ELE LON"
## [304] "CO TEN ELE OBS" "CO TEN ELE SPO" "CO TEN ELE SUT"
## [307] "CO TEN ELE TEN" "CO TEN ELE TRI" "CO TEN EMB CON"
## [310] "CO TEN EMB PLA" "CO TEN EUS RET" "CO TEN GLY SOR"
## [313] "CO TEN GON ELA" "CO TEN GON INF" "CO TEN HEL CAL"
## [316] "CO TEN LOB FUS" "CO TEN MEG 1" "CO TEN MEG OBL"
## [319] "CO TEN MEG TEN" "CO TEN MEL 1" "CO TEN MEL COA"
## [322] "CO TEN MET CRI" "CO TEN MET PRU" "CO TEN NEO PLA"
## [325] "CO TEN STE 1" "CO TEN STE CON" "CO TEN STE COV"
## [328] "CO TEN STE OBO" "CO TEN STE SEV" "CO TEN STR COS"
## [331] "CO TEN TEL HIS" "CO TEN TRI PRU" "CO TEN TRO COS"
## [334] "EM EM EM EM" "HE ALY -888 -888" "HE ALY ALY 1"
## [337] "HE ALY STA API" "HE CYD -888 -888" "HE CYD 1 1"
## [340] "HE CYD 1 2" "HE CYD 1 NYM" "HE CYD PAN BIL"
## [343] "HE LYG -888 -888" "HE LYG 1 28" "HE LYG 1 NYM"
## [346] "HE LYG ANT PIL" "HE LYG EMB VIC" "HE LYG EXP 1"
## [349] "HE LYG GEO 2" "HE LYG GEO 3" "HE LYG LYG KAL"
## [352] "HE LYG LYG NYM" "HE LYG NYS 1" "HE LYG NYS RAP"
## [355] "HE LYG ORT 1" "HE LYG OZO 1" "HE LYG PLI 1"
## [358] "HE LYG SPH 1" "HE MIR EUS 1" "HE THY 1 2"
## [361] "HE THY GAL 1" "HY MUT DAS KLU" "IS ARM ARM VUL"
## [364] "LI LIT -888 -888" "LI LIT 1 1" "LI LIT TAI HAR"
## [367] "MA MAN -888 -888" "MA MAN LIT MIN" "MA MAN YEP SOL"
## [370] "MA MAN YER SOL" "MI -888 -888 -888" "MI 1 -888 -888"
## [373] "MI 1 1 1" "MI MAC -888 -888" "MI MAC MES 1"
## [376] "MI MAC MES NEA" "MI MEI -888 -888" "MI MEI MAC AUR"
## [379] "MI MES MAC AUR" "OP -888 TRA MAR" "OP GAG 1 1"
## [382] "OP GAG 1 2" "OP SCL 1 1" "OR ACR -888 -888"
## [385] "OR ACR 1 1" "OR ACR 1 NYM" "OR ACR AC NYM"
## [388] "OR ACR ACA PIP" "OR ACR ACR 1" "OR ACR ACR NYM"
## [391] "OR ACR AGE 1" "OR ACR AGE DEO" "OR ACR AGG DEO"
## [394] "OR ACR AMP COL" "OR ACR ARP CON" "OR ACR ARP NYM"
## [397] "OR ACR ARP PSE" "OR ACR AUL 1" "OR ACR AUL ELL"
## [400] "OR ACR BAR HUM" "OR ACR BOO ARG" "OR ACR CIB 1"
## [403] "OR ACR CIB PAR" "OR ACR COR 1" "OR ACR COR CRE"
## [406] "OR ACR COR OCC" "OR ACR DAC BIC" "OR ACR DAC NYM"
## [409] "OR ACR ERI SIM" "OR ACR HAD TRI" "OR ACR HEL RUF"
## [412] "OR ACR HES VIR" "OR ACR HIP CAP" "OR ACR LEP INT"
## [415] "OR ACR LEP WHE" "OR ACR MEL 1" "OR ACR MEL ARZ"
## [418] "OR ACR MEL BIV" "OR ACR MEL BOW" "OR ACR MEL GLA"
## [421] "OR ACR MEL LAK" "OR ACR MEL PAC" "OR ACR MEL SPL"
## [424] "OR ACR MES TER" "OR ACR MES VIR" "OR ACR OPE OBS"
## [427] "OR ACR PAR PAL" "OR ACR PHL QUA" "OR ACR PHO NEB"
## [430] "OR ACR PSO 1" "OR ACR PSO DEL" "OR ACR PSO TEX"
## [433] "OR ACR SPH EQU" "OR ACR SYR ADM" "OR ACR SYR MON"
## [436] "OR ACR TRA 1" "OR ACR TRA KIO" "OR ACR TRI 1"
## [439] "OR ACR TRI CAL" "OR ACR TRI CIN" "OR ACR TRI PAL"
## [442] "OR ACR TRI PIS" "OR ACR TRO FOR" "OR ACR XAN COR"
## [445] "OR ACR XAN MON" "OR ACR XAN NYM" "OR GRY -888 -888"
## [448] "OR GRY 1 NYM" "OR GRY CYC COM" "OR GRY GRY 1"
## [451] "OR GRY GRY NYM" "OR GRY GRY PEN" "OR GRY GRY PER"
## [454] "OR GRY HOP BOR" "OR GRY OEC CAL" "OR MOG -888 -888"
## [457] "OR MOG CYC COM" "OR MOG HOP BOR" "OR MOG MOG 1"
## [460] "OR MOG MOG NYM" "OR RHA -888 -888" "OR RHA 1 NYM"
## [463] "OR RHA CEU 1" "OR RHA CEU LAM" "OR RHA CEU NYM"
## [466] "OR RHA CEU PAL" "OR RHA CEU UTA" "OR RHA DAI HAS"
## [469] "OR RHA DAI NYM" "OR ROM PHR ROB" "OR STE STE 1"
## [472] "OR STE STE FUS" "OR STE STE NYM" "OR TET 1 NYM"
## [475] "OR TET ARE 1" "OR TET CAP NYM" "OR TET ERE BIL"
## [478] "OR TET ERE EPH" "OR TET ERE NYM" "OR TET ERE SCU"
## [481] "OR TET INS ELE" "OR THE MAS GIG" "PA PAR 1 1"
## [484] "SC SCO SCO POL" "SC SCO SCO VIR" "SC VAE -888 -888"
## [487] "SC VAE VAE COA" "SL SCO -888 -888" "SL SCO SCO POL"
## [490] "SO ERE -888 -888" "SO ERE 1 1" "SO ERE 1 NYM"
## [493] "SO ERE ARE MUM" "SO ERE ARE PUE" "SO ERE ERC BIL"
## [496] "SO ERE ERE 1" "SO ERE ERE BAJ" "SO ERE ERE NOD"
## [499] "SO ERE ERE NYM" "SO ERE ERE PAL" "SO ERE ERE SIL"
## [502] "SO ERE ERE SIM" "SO ERE HEM BRA" "SO ERE HEM FRU"
## [505] "SP SPI -888 -888" "SP SPI 1 1" "SP SPI ORT ORN"
## [508] "SR VAE 1 NYM" "SR VAE VAE COA" "SR VAE VAE RUS"
## [511] "UR THE MAS GIG" "species_diversity" "total"
## [514] "precip.annual" "precip.monsoon" "precip.spring"
## [517] "precip.winter" "precip.intra_CV" "events"
## [520] "ev_size" "extreme_size" "CDD"
## [523] "GDD.monsoon" "GDD.spring" "soil_T"
## [526] "soil_Tso" "soil_Tjja" "VPDaso"
## [529] "VPDmjj" "GDDW.monsoon" "avgsuT"
## [532] "maxsuT" "minsuT" "extreme_CDD"
## [535] "Station.Name" "lat" "long"
## [538] "elevation" "spring12SPEI.comp" "spring6SPEI.comp"
## [541] "monsoon12SPEI.comp" "monsoon6SPEI.comp"
library(ggplot2)
p <- ggplot(dat_arth_wide_f, aes(x = Year, y = total, colour = Site))
p <- p + geom_point()
p <- p + stat_smooth(se = FALSE)
p <- p + labs(title = "total arthropods")
print(p)
## `geom_smooth()` using method = 'loess' and formula 'y ~ x'
## Warning: Removed 65 rows containing non-finite values (stat_smooth).
## Warning in simpleLoess(y, x, w, span, degree = degree, parametric =
## parametric, : pseudoinverse used at 2002
## Warning in simpleLoess(y, x, w, span, degree = degree, parametric =
## parametric, : neighborhood radius 2.01
## Warning in simpleLoess(y, x, w, span, degree = degree, parametric =
## parametric, : reciprocal condition number 5.2085e-017
## Warning in simpleLoess(y, x, w, span, degree = degree, parametric =
## parametric, : There are other near singularities as well. 4.0401
## Warning: Removed 65 rows containing missing values (geom_point).
library(ggplot2)
p <- ggplot(dat_arth_wide_f, aes(x = Year, y = precip.annual, colour = Site))
p <- p + geom_point()
p <- p + stat_smooth(se = FALSE)
p <- p + labs(title = "Annual Precip")
print(p)
## `geom_smooth()` using method = 'loess' and formula 'y ~ x'
## Warning: Removed 70 rows containing non-finite values (stat_smooth).
## Warning: Removed 70 rows containing missing values (geom_point).
library(ggplot2)
p <- ggplot(dat_arth_wide_f, aes(x = Year, y = avgsuT, colour = Site))
p <- p + geom_point()
p <- p + stat_smooth(se = FALSE)
p <- p + labs(title = "Average summer temperature")
print(p)
## `geom_smooth()` using method = 'loess' and formula 'y ~ x'
## Warning: Removed 74 rows containing non-finite values (stat_smooth).
## Warning: Removed 74 rows containing missing values (geom_point).
library(ggplot2)
p <- ggplot(dat_arth_wide_f, aes(x = Year, y = spring12SPEI.comp, colour = Site))
p <- p + geom_hline(aes(yintercept = 0), alpha = 1/2)
p <- p + geom_point()
p <- p + stat_smooth(se = FALSE)
p <- p + labs(title = "CROSS-SITE SPEI drought index over the water year ending in May - spring (12 month integration)")
print(p)
## `geom_smooth()` using method = 'loess' and formula 'y ~ x'
## Warning: Removed 241 rows containing non-finite values (stat_smooth).
## Warning: Removed 241 rows containing missing values (geom_point).
Small Mammal Mark-Recapture Population Dynamics at Core Research Sites at the Sevilleta National Wildlife Refuge, New Mexico (1989 - present)
Abstract: This file contains mark/recapture trapping data collected from 1989-2012 on permanently established web trapping arrays at 8 sites on the Sevilleta NWR. At each site 3 trapping webs are sampled for 3 consecutive nights in spring and fall. Not all sites have been trapped for the entire period. Each trapping web consists of 145 rebar stakes numbered from 1-145. There are 148 traps deployed on each web: 12 along each of 12 spokes radiating out from a central point (stake #145) plus 4 traps at the center point. The trapping sites are representative of Chihuahuan Desert Grassland, Chihuahuan Desert Shrubland, Pinyon-Juniper Woodland, Juniper Savanna, Plains-Mesa Sand Scrub and Blue Grama Grassland.
Small Mammal metadata: http://sevlter.unm.edu/data/sev-8
Codebook: http://sevlter.unm.edu/data/sev-008/4786
As of 8/25/19: The dataset has not been updated on our website yet. I filtered the newest dataset (thru 2018) and it is attached as SEV008_mammals_Erhardt.csv
Jenn created 2 new arthropod variables:
species_diversity
= Shannon Diversity Indextotal
= sum of all mammal individualsThe sample unit is the trapping web (web_id
), which is nested in location. If you wanted to simplify, you could take the mean across the 3 webs per location, to get just one observation for each (location
, season
, year
) combination. This would eliminate the need for a random effect of web_id
.
Values in each small mammal species cell are counts of individuals per trap per night (we use 148 traps per web, usually 3 nights of trapping per (season
, year
) combination). That is, count of animals trapped / (148 traps * 3 nights of trap deployment) = count / 444.
Jenn removed the following taxa (AMIN, AMLE, EUDO, EUQU, SPSP) because they are “by-catch” — chipmunks and squirrels occassionally get into our rodent traps and these aren’t interesting for us.
The locations were sampled for different time periods.
If you wanted to simplify, just subset to 5pgrass
and 5plarrea
locations. Or, one could look at 5 of the locations from 1989-1998.
Here is a summary of years sampled by location; I filtered out some locations that are in the metadata (savanna, blue grama) because the time series was so short.
Location | Years collected |
---|---|
5pgrass | 1989-2018 |
5plarrea | 1989-2018 |
goatdraw | 1992-2006 |
rsgrass | 1989-1998 |
rslarrea | 1989-2008 |
two22 | 1989-1998 |
List of attached files:
SEV008_mammals_Erhardt.csv
SEV_mammal_species_codes.xlsx
SEV001met_mammals.csv
Year
ID Not all datasets have an ID, but each observation should be able to be identified uniquely. In this case a combination of the variables will identify an observation uniquely (year
, location
, season
, night
, web
, and trap
).
Codebook for the original data: sev029_arthropop02162009.csv
Variables
ID
See note above
year, location, season, night, web, trap
year
Label: year
Definition: The year in which data was collected.
Type: Date/time
Date format: YYYY
Missing values: None specified
location
Label: location
Definition: site name at which trapping occurs
Type: Code list
Codes:
two22 = two22
5pgrass = five points grass
5plarrea = five points larrea
rsgrass = rio salado grass
goatdraw = goat draw
bluegram = blue grama
savanna = savanna
Missing values: None specified
season
Label: season
Definition: Season in which trapping occurs
Type: Code list
Codes:
1 = Spring
2 = Summer
3 = Fall
Missing values: None specified
night
Label: night
Definition: The night that the trapping was done
Type: Nominal
Missing values: None specified
web
Label: web
Definition: The number of the web being sampled, which can range from 1-5 depending on site and project.
Type: Nominal
Missing values: None specified
trap
Label: trap
Definition: The numbered tag on rebar adjacent to the trap
Type: Nominal
Missing values: None specified
recap
Label: recap
Definition: An indication if the animal was a recapture or not
Type: Code list
Codes:
y = a recapture from that week only
n = not a recapture
Missing values: None specified
species
Label: species
Definition: Four letter code for small mammal species.
Type: Code list
Codes:
amin = Ammospermophilus interpres
amle = Ammospermophilus leucurus
eudo = Eutamias dorsalis
euqu = Eutamias quadrivittatus
spsp = Spermophilus spilosoma
spva = Spermophilus variegatus
chin = Chetodipus intermedius
pgfl = Perognathus flavescens
pgfv = Perognathus flavus
pgsp = Perognathus sp.
dime = Dipodomys merriami
dior = Dipodomys ordii
disp = Dipodomys spectabilis
dipo = Dipodomys sp.
neal = Neotoma albigula
nemi = Neotoma micropus
nesp = Neotoma sp.
onar = Onychomys arenicola
onle = Onychomys leucogaster
onsp = Onychomys sp.
pebo = Peromyscus boylii
pedi = Peromyscus difficilis
peer = Peromyscus eremicus
pele = Peromyscus leucopus
pema = Peromyscus maniculatus
petr = Peromyscus truei
pesp = Peromyscus sp.
remg = Reithrodontomys megalotis
remn = Reithrodontomys montanus
resp = Reithrodontomys sp.
sihi = Sigmodon hispidus
syau = Sylvilagus auduboni
na = unknown genus and species
Missing values: None specified
sex
Label: sex
Definition: Gender of animal (M or F)
Type: Nominal
Missing values: None specified
age
Label: age
Definition: Estimated from animal's weight.
Type: Code list
Codes:
a = adult
j = juvenile
Missing values:
na = missing
reprod
Label: reprod
Definition: Reproductive condition of capture
Type: Code list
Codes:
l = lactating
v = vaginal
p = pregnant
st = scrotal
na = none of the former or not taken
Missing values: None specified
mass
Label: mass
Definition: mass of captured rodent in grams
Type: Physical quantity
Unit: gram
Maximum: Not specified
Minimum: Not specified
Precision: 0.5
Missing values:
. = missing
library(tidyverse)
dat_smam <- read_csv("smam/SEV008_mammals_Erhardt.csv")
## Warning: Missing column names filled in: 'X1' [1]
## Parsed with column specification:
## cols(
## .default = col_double(),
## web_id = col_character(),
## ecosystem = col_character(),
## habitat = col_character(),
## location = col_character(),
## season.fs = col_character(),
## Station.Name = col_character()
## )
## See spec(...) for full column specifications.
dim(dat_smam)
## [1] 683 34
#names(dat_smam)
dat_met <- read_csv("smam/SEV001met_mammals.csv")
## Parsed with column specification:
## cols(
## .default = col_double(),
## Station.Name = col_character()
## )
## See spec(...) for full column specifications.
dim(dat_met)
## [1] 110 35
#names(dat_met)
smam
data with met
eorological climate datadat_smam <-
dat_smam %>%
full_join(dat_met)
## Joining, by = c("year", "Station.Name")
dim(dat_smam)
## [1] 727 67
names(dat_smam)
## [1] "X1" "year" "web_id"
## [4] "ecosystem" "habitat" "location"
## [7] "season.fs" "CHIN" "DIME"
## [10] "DIOR" "DISP" "DIXX"
## [13] "MUMU" "NEAL" "NEMI"
## [16] "NEXX" "ONAR" "ONLE"
## [19] "ONXX" "PEBO" "PEDI"
## [22] "PEER" "PELE" "PEMA"
## [25] "PETR" "PEXX" "PGFL"
## [28] "PGFV" "REME" "REMO"
## [31] "REXX" "Station.Name" "species_diversity"
## [34] "total" "Sta" "precip.annual"
## [37] "precip.monsoon" "precip.spring" "precip.winter"
## [40] "precip.intra_CV" "events" "ev_size"
## [43] "extreme_size" "CDD" "GDD.monsoon"
## [46] "GDD.spring" "soil_T" "soil_Tso"
## [49] "soil_Tjja" "VPDaso" "VPDmjj"
## [52] "GDDW.monsoon" "avgsuT" "maxsuT"
## [55] "minsuT" "extreme_CDD" "lat"
## [58] "long" "elevation" "spring12SPEI"
## [61] "spring6SPEI" "monsoon12SPEI" "monsoon6SPEI"
## [64] "spring12SPEI.comp" "spring6SPEI.comp" "monsoon12SPEI.comp"
## [67] "monsoon6SPEI.comp"
library(ggplot2)
p <- ggplot(dat_smam, aes(x = year, y = total, colour = ecosystem))
p <- p + geom_point()
p <- p + stat_smooth(se = FALSE)
p <- p + labs(title = "total mammals")
print(p)
## `geom_smooth()` using method = 'loess' and formula 'y ~ x'
## Warning: Removed 44 rows containing non-finite values (stat_smooth).
## Warning: Removed 44 rows containing missing values (geom_point).
library(ggplot2)
p <- ggplot(dat_smam, aes(x = year, y = precip.annual, colour = ecosystem))
p <- p + geom_point()
p <- p + stat_smooth(se = FALSE)
p <- p + labs(title = "Annual Precip")
print(p)
## `geom_smooth()` using method = 'loess' and formula 'y ~ x'
## Warning: Removed 240 rows containing non-finite values (stat_smooth).
## Warning: Removed 240 rows containing missing values (geom_point).
library(ggplot2)
p <- ggplot(dat_smam, aes(x = year, y = avgsuT, colour = ecosystem))
p <- p + geom_point()
p <- p + stat_smooth(se = FALSE)
p <- p + labs(title = "Average summer temperature")
print(p)
## `geom_smooth()` using method = 'loess' and formula 'y ~ x'
## Warning: Removed 278 rows containing non-finite values (stat_smooth).
## Warning: Removed 278 rows containing missing values (geom_point).
library(ggplot2)
p <- ggplot(dat_smam, aes(x = year, y = spring12SPEI.comp, colour = ecosystem))
p <- p + geom_hline(aes(yintercept = 0), alpha = 1/2)
p <- p + geom_point()
p <- p + stat_smooth(se = FALSE)
p <- p + labs(title = "CROSS-SITE SPEI drought index over the water year ending in May - spring (12 month integration)")
print(p)
## `geom_smooth()` using method = 'loess' and formula 'y ~ x'
## Warning: Removed 563 rows containing non-finite values (stat_smooth).
## Warning: Removed 563 rows containing missing values (geom_point).