
1 23

Environmental and Ecological
Statistics
 
ISSN 1352-8505
 
Environ Ecol Stat
DOI 10.1007/s10651-012-0224-1

A Bayesian framework for stable isotope
mixing models

Erik B. Erhardt & Edward J. Bedrick



1 23

Your article is protected by copyright and all

rights are held exclusively by Springer Science

+Business Media New York. This e-offprint is

for personal use only and shall not be self-

archived in electronic repositories. If you

wish to self-archive your work, please use the

accepted author’s version for posting to your

own website or your institution’s repository.

You may further deposit the accepted author’s

version on a funder’s repository at a funder’s

request, provided it is not made publicly

available until 12 months after publication.



Environ Ecol Stat
DOI 10.1007/s10651-012-0224-1

A Bayesian framework for stable isotope mixing models

Erik B. Erhardt · Edward J. Bedrick

Received: 19 February 2011 / Revised: 28 September 2012
© Springer Science+Business Media New York 2012

Abstract Stable isotope sourcing is used to estimate proportional contributions of
sources to a mixture, such as in the analysis of animal diets and plant nutrient use.
Statistical methods for inference on the diet proportions using stable isotopes have
focused on the linear mixing model. Existing frequentist methods provide inferences
when the diet proportion vector can be uniquely solved for in terms of the isotope
ratios. Bayesian methods apply for arbitrary numbers of isotopes and diet sources but
existing models are somewhat limited as they assume that trophic fractionation or
discrimination is estimated without error or that isotope ratios are uncorrelated. We
present a Bayesian model for the estimation of mean diet that accounts for uncertainty
in source means and discrimination and allows correlated isotope ratios. This model
is easily extended to allow the diet proportion vector to depend on covariates, such
as time. Two data sets are used to illustrate the methodology. Code is available for
selected analyses.
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1 Introduction

The goal of stable isotope sourcing is to estimate the proportional contributions of
sources to a mixture. Stable isotope sourcing models are increasingly used to help
understand animal diets and foodwebs, water sources in soils, plants, or water bodies,
geological sources for soils or marine systems, decomposition and soil organic matter
dynamics, tracing animal migration patterns, and forensics (Phillips 2001; Phillips
and Gregg 2003; Martínez del Rio and Wolf 2005; Bickford et al. 2009; Hobson and
Wassenaar 2008; Ehleringer et al. 2008). Animal ecology offers a rich complexity
because of the preferential assimilation of elements from given sources into different
tissues, so we focus our attention here. Isotopically, the consumer “is what it eats”,
so we aim to answer the question: each source contributes to what proportion of the
consumer’s mean diet?

Stable isotope analyses of a consumer animal’s tissues (the mixture) and their
potential prey and diet (the sources) is a powerful and well-studied means of quan-
tifying relative contributions of isotopically distinct dietary components providing
many benefits in comparison with traditional methods for quantifying diet, such as the
analysis of stomach and fecal contents (Hobson and Wassenaar 2008, 1999). Inference
on diet using stable isotopes focuses on the simplest mass-balance model, which we
call the basic mixing model (BMM) (Phillips 2001). The basic mixing model states
that the isotope ratio in the mixture or consumer is a convex combination of the mean
isotope ratios in the source populations after correcting for discrimination. Discrim-
ination is the mean difference of the isotope ratio in the source and how it appears
in the consumer’s tissues due to the assimilation process. The weights in the convex
combination are the proportional contributions of the sources to the consumer’s diet.

Estimating the vector of diet proportions in the BMM is a challenge because the
mean isotope ratios in the source populations and the discrimination are typically
unknown. Existing frequentist methods only apply when the BMM has a unique solu-
tion for the diet vector in terms of isotope ratios (Phillips and Gregg 2001). These
methods can not be used in our examples. A Bayesian approach applies more gener-
ally and is especially useful in the typical setting where the number of diet sources
is greater than the number of isotopes plus one, leading to a BMM that is undercon-
strained. Moore and Semmens (2008), Parnell and Jackson (2008), Semmens et al.
(2009), Parnell et al. (2010) and Ward et al. (2010) consider Bayesian estimation in the
BMM. Semmens et al. (2009) model subject-specific diets using a shrinkage estima-
tor whereas other models focus on estimating mean diet. These models are somewhat
restrictive as they assume the source isotope ratio or discrimination parameters are
estimated without error and that the multivariate isotope ratio data has independent
components. A further concern is their choice to specify their model with shared
random effects.

We present a multivariate framework for Bayesian estimation of mean diet. Our
model has three submodels, one for the consumer and one each for the estimation
of source means and discrimination. The three submodels allow correlated isotope
ratio data, and unlike existing models, are linked only through the defining relation
for the means given by the BMM equation. To be consistent with our examples,
we assume that discrimination is estimated from single-source diet experiments. Our
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basic model assumes multivariate normal sampling models and conjugate priors, and
for these choices a simple importance sampling algorithm is provided for posterior
inferences on the diet proportion vector. Our framework provides a fairly transparent
way to modify the sampling models, to consider alternative experimental methods for
the estimation of discrimination, and to incorporate covariates into the analysis. We
motivate the basic model with two examples and illustrate two generalizations. Sec-
tion 3.8 provides a concrete discussion of differences between our model and existing
Bayesian models.

Two extensions of the BMM are the concentration mixing model (CMM), which
accounts for differences in the elemental concentrations in each source (Phillips and
Koch 2002), and the extended mixing model (EMM), which accounts for differences
in digestive efficiencies for different food types in the consumer (Martínez del Rio
and Wolf 2005). The modeling challenges inherent in the BMM remain even if the
additional parameters necessary in the model extensions are considered constant, as
some other methods do (e.g., Parnell et al. 2010). Therefore, while these two exten-
sions increase the realism and accuracy of the BMM, we focus on the BMM to put
this fundamental statistical model on firmer statistical ground.

2 Background

Elements can exist in both stable and unstable (radioactive) forms. Each form of an
element, or isotope, has the same number of protons but different numbers of neutrons.
Elements of biological interest such as hydrogen, carbon, nitrogen, oxygen, and sulfur
(H, C, N, O, and S) have two or more stable isotopes with the lightest of these present
in much greater abundance than the others. For example, carbon and nitrogen each
have one heavy stable isotope (13C and 15N) with a natural abundance of ∼1% or less
and one light stable isotope (12C and 14N) that makes up the remainder. Carbon also
has a radioactive isotope, 14C. The isotope ratio, δ = 1000(Rsample/Rstandard − 1)0/00,
is a normalized ratio of the number of rarer to the most common stable isotope in
a sample (Rsample) relative to an international standard (Rstandard) given in parts per
thousand (Kendall and McDonnell 1998). A mass spectrometer is typically used to
measure isotope ratios from tissue or blood samples after vaporization and ionization.

Carbon and nitrogen isotope ratios have found widespread use as biological tracers
in studies of animal diets (Rundel et al. 1989). Carbon, δ13C, varies among primary
producers (plants and algae) with different photosynthetic pathways (C3 versus C4
photosynthesis), but changes little with trophic transfer, so is useful for identifying the
source of dietary carbon (DeNiro and Epstein 1981; Inger and Bearhop 2008; Peterson
and Fry 1987; Post 2002). Nitrogen, δ15N, increases stepwise with trophic transfer so
is used to estimate position in a foodweb (Minagawa and Wada 1984; Peterson and
Fry 1987; Post 2002). Sulphur, δ34S, varies among primary producers, but changes
little with trophic transfer, so is used similarly to carbon, especially in marine systems
(Currin et al. 1995; Peterson and Howarth 1987; Jones et al. 2010). Oxygen and hydro-
gen, δ18 O and δ2H, vary across multiple spatial scales and environmental gradients
(Bowen and Revenaugh 2003; Deines et al. 2009; Finlay et al. 2010; Solomon et al.
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2011, 2009). For additional information, see Newsome et al. (2007) and Oulhote et al.
(2010).

We formulate the BMM in terms of population means. In particular, the population
mean isotope ratio among consumers β is assumed to be a convex combination of the
mean isotope ratios (δs) in the source populations after correcting for discrimination
(�s) or trophic fractionation. Assuming there are I isotopes and S sources, the BMM
is β = ∑S

s=1 πsδ
′
s , where π = (π1, . . . , πS)� is the vector of proportional contribu-

tions of the S sources to the consumer’s mean diet and δ′
s = δs +�s for s = 1, . . . , S.

The source-specific discrimination terms, �s , account for the consumer’s ingestion,
metabolization, and excretion of their diet (Minagawa and Wada 1984). Each vector
of source and discrimination parameters has I elements, one for each isotope.

2.1 Motivating example: dunlin diet

To set ideas, we use data from Evans Ogden et al. (2005) to quantify the propor-
tional use that J = 174 Calidris alpina pacifica (dunlin, a small migratory sea bird)
made of farmland and marine resources on the Fraser River Delta, British Columbia,
from January to April, 2000. The two sources (S = 2) in the dunlin diet represent
protein from invertebrates that feed on plants with distinct photosynthetic pathways
and isotope ratio ranges (Hobson 1999). The terrestrial source represents C3 plants,
so-called because the first organic carbon compound made in photosynthesis contains
three carbon atoms, while the marine source represents C4 plants.

Figure 1 provides a plot of carbon (δ13C) and nitrogen (δ15 N ) isotope ratios (i.e.,
I = 2) for the J = 174 dunlin and for samples of K2 = 20 marine and K1 = 16

8

10

12

14

16

Dunlin

Terrestrial

Marine

−25 −20 −15 −10

Carbon isotope ratio

N
itr

og
en

 is
ot

op
e 

ra
tio

Fig. 1 Dunlin consumer and terrestrial and marine discrimination-corrected source δ13C and δ15N obser-
vations with means and bivariate normal 75 % probability ellipses for reference (The ellipses are summaries
based on sampling model assumptions and are not implied by the linear mixing model.)

123

Author's personal copy



Environ Ecol Stat

Table 1 Dunlin example: J = 174 observations of dunlin blood as a mixture of S = 2 sources using I = 2
isotopes of carbon and nitrogen

Carbon Nitrogen

Mean SD Mean SD Corr

Mixture J
Dunlin 174 −16.40 3.42 11.85 1.34 0.67

Sources Ks
Terrestrial (s = 1) 16 −25.36 1.27 6.05 1.22 0.45
Marine (s = 2) 20 −13.60 2.75 11.09 1.81 −0.35

Diet experiment K
Tissue (Dunlin on C3 diet) 4 −23.28 0.28 6.50 0.09 0.45
Diet (C3) 29 −24.66 0.40 3.50 0.40 0.34
Discrimination (Tissue–Diet) 1.38 3.00

Summaries are sample sizes, means, standard deviations, and correlations for the mixture, sources, and diet
experiment discriminations (Evans Ogden et al. 2005)

terrestrial invertebrates from the sources. The data are summarized in Table 1. The plot-
ted source data are the discrimination-corrected isotope ratio pairs (δ13C, δ15 N )sk +
�̂�, where the discrimination �̂ = (�̂C , �̂N )� is assumed to be identical for the two
sources and estimated as discussed in Sects. 3.2 and 4.1. The sample mean isotope
ratios are superimposed on the plot. If the BMM held and the means were estimated
without error then the dunlin mean would lie on a line segment joining the two dis-
crimination-corrected source means, thus determining the population mean proportion
vector π = (π1, π2)

�. The goal is to estimate π accounting for uncertainty in the mean
isotope ratios and discrimination.

3 Bayesian model

Our model has three submodels to estimate source, discrimination, and consumer
parameters. Each submodel has a sampling model for the data given parameters and
a prior distribution for the parameters. Our basic sampling models assume random
samples D from multivariate N (μ,�) distributions. We use g(·) to identify a generic
probability distribution.

3.1 Source model

The source mean isotope ratios δ1, . . . , δS are estimated using samples from the S
source populations. While sources may vary with time, for example, sources may
come and go from the environment, we assume we know the possible sources and
those sources are available over the study time. The model discussed here assumes
source means are constant with respect to covariates, such as time, but the basic model
can be extended to include such covariates. Let Ds = (ds1, . . . , dsKs ) be a random
sample of size Ks from the sth source population, with dsk ∼ N (δs, �s). Each dsk
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has I elements, one for each isotope. Assuming independence across samples and
priors, the source model is LS = ∏S

s=1 g(Ds |δs, �s)g(δs, �s), where g(Ds |δs, �s) is
a product of Ks multivariate normal densities and the prior g(δs, �s) is to be specified.
Let d̄s and �̂s be the sample mean vector and covariance matrix for the sth source.
All sample covariance matrices are maximum likelihood estimates (i.e., divisor is Ks

rather than Ks − 1).

3.2 Diet experiment model for estimating discrimination

To be consistent with our examples, we assume that discrimination is estimated from
E single-source diet experiments. In a single-source diet experiment consumers are
fed for an extended period of time a controlled diet representative of a source. Dis-
crimination is the mean difference between the isotope ratios in the diet source and in
tissues of the consumer at diet equilibrium when there is no residual effect of previous
diet on the isotope ratios (Caut et al. 2009). Single-source diet experiments are costly
so sample sizes are typically small.

Discrimination is often assumed to be identical for similar sources so the number
of diet experiments E is often less than S. From the eth diet experiment, we obtain a
sample DDe of KDe isotope ratio (vector) measurements for the proxy diet source and
a sample DTe of KTe from the tissue of consumers.

The population of diet and tissue isotope ratios have N (δDe, �De) and N (δTe, �Te)

distributions, respectively. Discrimination is �e = δTe − δDe. Let d̄De and d̄Te be the
sample means and let �̂De and �̂Te be the sample covariance matrices for the diet
and tissue samples from the eth diet experiment. The estimated discrimination from
this experiment is �̂e = d̄Te − d̄De. Assuming independence within and among diet
experiments, the diet model is

LD =
E∏

e=1

g(DTe|δTe, �Te)g(δTe, �Te)g(DDe|δDe, �De)g(δDe, �De).

The combined source and diet model LSLD depends on a set of covariance matrices
�∗ and a set of population means

� = (δ1, . . . , δS, δD1, . . . , δDE , δT1, . . . , δTE ).

3.3 Consumer model

We obtain a random sample B = (b1, . . . , bJ ) of responses from consumers,
with b j |(π,�b,�) ∼ N (β,�b). The population mean response β depends on π

and � through the BMM so the normal sampling model g(B|π,�b,�) is con-
ditional on (π,�b,�) but independent of �∗. The consumer model is LC =
g(B|π,�b,�)g(π)g(�b), where the priors on π and �b are independent and
independent of �. Let b̄ and �̂b be the sample mean vector and covariance
matrix.
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3.4 Prior distributions

Each source and diet experiment sample D assumes a N (μ,�) model. Let (K , d̄, �̂)

be the sample size, mean, and covariance matrix based on D. We follow common
practice and use the conjugate prior μ|� ∼ N (μ0, �/ν0) and � ∼ IW(�0, m0) (i.e.,
Inverse-Wishart) with density

g(�) ∝ |�|−.5(m0+I+1) exp{−.5trace(�−1�0)}.

For later reference note that g(μ,�|D) = g(μ|D)g(�|μ,D), where μ|D ∼ Stu-
dent-t (d fP , μP , �P/d fP ), with degrees of freedom d fP = m0 + 1 + K − I , center
μP = (K d̄ + ν0μ0)/(K + ν0) and scale �P/d fP where

(K + ν0)�P = K �̂ + �0 + Kν0

K + ν0
(d̄ − μ0)(d̄ − μ0)

�.

Furthermore, �|(μ,D) ∼ IW((K +ν0)(�P + (μP −μ)(μP −μ)�), m0 + K +1). A
limiting form of the conjugate prior is Jeffrey’s prior g(μ,�) ∝ |�|−.5(I+1) for which
μ|D ∼ t (K −I, d̄, �̂/(K −I )) and �|(μ,D) ∼ IW(K �̂+K (d̄−μ)(d̄−μ)�, K ). We
will refer to g(μ,�|D) as an “intermediate posterior” or alternatively as an “updated
prior”.

For the consumer model, we assume π ∼ Dirichlet(α), abbreviated Dir(α), where
α = (α1, . . . , αS)� is fixed and αs = T πs0 where πs0 is a prior guess for the sth source
proportion and T is the effective sample size for the prior. With the Dirichlet distri-
bution location and precision (and covariance to some degree) of the diet proportion
vector π can be specified. We also assume �b ∼ IW(�b0, nb) or the limiting Jeffrey’s
prior g(�b) ∝ |�b|−.5I which formally corresponds to �b0 = 0 and nb = −1.

3.5 Identifiability and related issues

The linear system β = ∑S
s=1 πsδ

′
s that defines the BMM is underconstrained in the

typical setting where S > I +1, implying that π is not identifiable. A practical advan-
tage of the Bayesian approach is that inferences about π do not require identifiability
with the clear implication that the prior for π will impact certain features of the pos-
terior distribution. A related issue is that the posterior distribution of π will assign
mass to diet proportions for sources that are proposed but are not accessed. Thus the
diet sources need to be carefully considered, especially when the BMM is undercon-
strained. Although we consider Dirichlet distributions, this issue applies regardless of
the prior distribution for π.

3.6 Bayesian inference: general considerations and computing

Many of the parameters of the full posterior distribution g(parameters|data)
∝ LSLDLC are of minor interest. A more focused analysis considers the parame-
ters (π,�,�b) that index the sampling distribution of the consumer isotope ratio
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distribution. The source samples and diet experiments can then be viewed as primarily
needed to generate prior information for �, which is required to estimate π , the feature
of primary interest. In particular, each source and diet experiment sample D contrib-
utes g(D|μ,�)g(μ,�) = g(μ,�|D)g(D) to the joint distribution for some (μ,�).
As � does not appear in the consumer model, it can be integrated out of g(μ,�|D),
giving g(μ|D) which can be used as an “updated prior” (see Sect. 3.4) along with the
consumer model. That is,

g(π,�,�b|data) ∝ g(B|π,�b,�)g(�b)g(π) (1)

×
S∏

s=1

g(δs |Ds)

E∏

e=1

g(δT e|DT e)g(δDe|DDe).

Moore and Semmens (2008) and Parnell et al. (2010) use a similar updating of
priors in their models. A further reduction is obtained by integrating �b out of the
posterior for (π,�,�b), leaving

g(π,�|data) ∝ h(β)g(π)

S∏

s=1

g(δs |Ds)

E∏

e=1

g(δTe|DTe)g(δDe|DDe), (2)

where h(β) is a t (d f, b̄, (J �̂b+�b0)/Jd f )density evaluated atβ and d f = nb+J−I .
The full posterior distribution can be simulated using Markov chain Monte Carlo

(MCMC) in WinBUGS (Lunn et al. 2000) provided all priors are proper. However, the
Markov chains have a tendency to mix poorly when the source means and discrimina-
tion δs and �s are weakly informed, in part, because the consumer likelihood depends
on � only through the discrimination-corrected source means δ′

s = δs +�s . The poor
mixing is typically avoided by computing the posterior of (π,�,�b) in (1) based on
the “updated priors” for the sources and the diet experiments. This computation is
easy to implement in WinBUGS and allows improper Jeffrey’s priors in the source
and diet submodels.

Alternatively, an importance sampling algorithm can be devised to simulate the pos-
terior distribution of (π,�). The algorithm is easily programmed and only requires
summary data (sample sizes, means, variances, and correlations), allowing for second-
ary analyses of published data. Assuming Jeffrey’s priors, the steps in the algorithm
are: (1) For sources s = 1, . . . , S, generate δ∗

s ∼ t (Ks − I, d̄s, �̂s/(Ks − I )). (2) For
diet experiments e = 1, . . . , E , generate δ∗

De ∼ t (KDe − I, d̄De, �̂De/(KDe − I )) and
δ∗

Te ∼ t (KTe − I, d̄Te, �̂Te/(KTe − I )) and compute discrimination �∗
e = δ∗

Te − δ∗
De.

(3) For sources s = 1, . . . , S, compute the discrimination-corrected source means
δ

′∗
s by adding δ∗

s and the discrimination �∗
e from the appropriate diet experiment. (4)

Generate a source proportion vector from the prior distribution π∗ = (π∗
1 , . . . , π∗

S )�
∼ Dir(α). (5) Compute weight w = h(b∗), the t (J − I − 1, b̄, �̂b/(J − I − 1))

density evaluated at b∗ = ∑S
s=1 π∗

s δ
′∗
s . Steps 1–5 are repeated R times, giving a set

(π∗
r ,�∗

r , wr ) of simulated source proportion vectors, source and diet experiment mean
vectors, and weights for r = 1, . . . , R. Normalizing the weights w∗

r = wr/
∑R

l=1 wl

gives a sample (π∗
r ,�∗

r ) from the posterior of (π,�) with weights w∗
r for r =
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1, . . . , R. This algorithm is inefficient when most of the probability weight is assigned
to a small fraction of the simulated samples. This can occur when the consumer sample
size J is large and only a small fraction of the simulated consumer responses b∗ are
close to the sample mean b̄ relative to the scale of the reference t-distribution, leading
to spikes in the weights h(b∗). We have not encountered this problem in any of our
analyses.

WinBUGS and MATLAB (MATLAB 2010) code to compute posteriors for the
dunlin analysis in Sect. 4.1 is provided at

StatAcumen.com/pub/2012_ErhardtBedrick_BFSIMM_code.zip

Code for the other analyses is available from the authors upon request.

3.7 Model checking

Our basic model has multivariate normal sampling distributions with conjugate priors
and a structural component given by the BMM. Each of the modeling assumptions
should be assessed and changes made to the model as needed. A sensitivity analysis
that addresses whether the priors have a significant effect on posterior inferences is
an important part of this assessment. The prior on π deserves special scrutiny when
the BMM is underconstrained. A key feature of the modular structure of our model
is that distributional assumptions can be readily modified, as emphasized in Sect. 3.8
and in several examples.

Graphical and posterior predictive model checks are helpful for model checking.
For simplicity, we consider an omnibus measure of lack of fit that is sensitive to
heavy-tailed distributions. If D = (y1, y2, . . . , yn) is a sample from a N (μ,�) popu-
lation, then a posterior predictive p-value (PPV) can be based on the discrepancy mea-
sure Q(D|μ,�) = ∑n

i=1 c(yi|μ,�)2, where c(yi|μ,�) = (yi − μ)��−1(yi − μ).
The PPV is

1

R

R∑

r=1

1{Q(Dr |μr ,�r ) > Q(Dobs |μr ,�r )},

where Dr is a sample of size n from a N (μr , �r ) distribution and (μr , �r ) is sampled
from the posterior of (μ,�) for r = 1, . . . , R. Gelman et al. (2000) discusses a variety
of other predictive model checks.

The full posterior distribution can be used to obtain PPVs for consumer, source, and
diet experiment model predictive distributions. Small p-values may result from mis-
specification of the BMM or the corresponding sampling model. Predictive p-values
can also be based on the intermediate posteriors from the source and diet experi-
ment samples; see Sect. 3.4. These predictive p-values provide checks on the source
and diet experiment models without assuming the BMM holds. As the consumer
model informs the estimation of the source and diet experiment model parameters
through the BMM, another simple check of the BMM is to compare the posterior
means for these parameters from the full posterior to the means from the intermediate
posteriors.
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3.8 Discussion of model and comparison with existing models

As implied by Phillips and Gregg (2001), we define the BMM as a linear relationship
between the consumer population mean isotope ratios and the discrimination-corrected
source population means. We assume multivariate normal sampling distributions and
conjugate priors but any priors and any sampling distribution with finite means may
be used in the consumer, source, and discrimination models (i.e., in LC, LS, and
LD). These models and the inferential strategies outlined above can also be modified
to allow likelihood-based stratified, clustered, or spatial sampling of consumer and
source populations and alternative experimental designs to estimate discrimination,
such as using regression over a range of sources (Felicetti et al. 2003). For example,
if the source model is changed to L∗

S then step 1 in the importance sampling algo-
rithm has δ∗

s drawn from the corresponding distribution of δs |Ds for s = 1, . . . , S.
Section 5 illustrates modifications of the basic model, including the modeling of diet
as a function of covariates.

Our basic model is similar to the model of Parnell et al. (2010), which builds on ear-
lier efforts by Moore and Semmens (2008). There are, however, two important differ-
ences between our models. First, we treat isotope ratio data as multivariate, allowing
correlation among isotope ratios. Parnell et al. (2010) assume independence across
isotopes. A more fundamental distinction concerns the specification of the model.
The natural extension of Parnell et al. (2010) to our multivariate setting assumes the
consumer isotope ratio responses satisfy b j = ∑S

s=1 πs(Ss + Fs) + e j , where the
source and fractionation (or discrimination) effects are independent conditional on π

with Ss ∼ N (δs, �s) and Fs ∼ N (�s, ��s ), respectively, and e j ∼ N (0, �e). The
source and fractionation random effects are shared by all consumers. The residual
is subject specific. The likelihood function of Parnell et al. (2010) is based on the
N (

∑S
s=1 πs(δs + �s),�e + ∑S

s=1 π2
s (�s + ��s )) marginal distribution of b j given

π , which is obtained by averaging out the shared random effects. Data-based updated
priors on source and discrimination parameters are used to vary the parameters in
the likelihood, with the resulting likelihoods averaged relative to the prior for π . The
approach of Ward et al. (2010) is similar but their model does not include a subject-
specific residual and assumes discrimination is known.

Our basic model has the same structure for the consumer population mean isotope
ratios as the models of Parnell et al. (2010) and Ward et al. (2010) but our model is not
defined in terms of shared random effects. We believe that shared random effect mod-
els are useful but do not reflect the complexity that is characteristic of many methods
that are used for the estimation of discrimination, such as the diet experiments in our
examples and regression over a range of sources. Bond and Diamond (2011) note that
it is crucial to appropriately incorporate discrimination into the basic mixing model.
A related concern is it is unclear why the model for consumer responses should be
directly tied to the distribution of source and discrimination isotope ratios. Thus, for
example, there is no obvious modification of the random effects models that would
allow complex designs for sampling sources without impacting the distribution of
the consumer responses. Our consumer model depends on sources and discrimination
only through the means, allowing the distributional form for the consumer model to
be unrelated to source and discrimination models, and each model to be modified
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essentially independently of the others. As such, it is clear in our framework that
the diet experiments are unnecessary when the population mean discriminations are
known. In contrast, the random effects models include a stochastic component for
fractionation in the distribution of consumer responses even when the corresponding
population means are known.

4 Examples

4.1 Dunlin diet

Evans Ogden et al. (2004) assume discrimination is the same for both dunlin diet
sources (S = 2) and estimate discrimination by conducting a diet experiment with
foods of terrestrial C3 origin. The isotope ratio data from 29 diet samples and from 4
control dunlin used in the diet experiment are summarized in Table 1.

As S = 2, we can focus on π1, the proportion of dunlin diet attributable to terres-
trial sources. The proportion attributable to marine sources satisfies π2 = 1 −π1. Our
importance sampling algorithm was used with our basic model, assuming a uniform
prior on π1 and Jeffrey’s priors for the remaining parameters. The posterior mean and
standard deviation of π1 were (0.385, 0.046) based on 50,000 importance samples.
The posterior mean indicates that dunlin diet is approximately 40 % terrestrial and 60 %
marine invertebrates. An equal tail 95 % posterior interval for π1 is (0.293, 0.463).
Figure 2 plots a kernel-smoothed density estimate for π1 based on 10000 bootstrap
resamples from the importance distribution. The posterior distribution is unimodal
and slightly skewed to the right.

For comparison, we used WinBUGS to compute the posterior for (π,�b,�). The
posterior mean and standard deviation of π1 based on 50,000 samples after a 20,000
sample burn-in agreed with the importance sample summaries to 0.001. The standard
error of the estimated posterior mean of π1 was 0.002 with importance sampling and
0.001 using WinBUGS.
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Fig. 2 Estimated posterior density of proportion of dunlin diet attributable to terrestrial sources using basic
model prior (solid line, Sect. 4.1) and two-component mixture model (dashed, Sect. 5.2)
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Boxplots and two-dimensional scatterplots of the consumer, source, and diet experi-
ment samples show modest deviations from normality. Most notably, the dunlin carbon
isotope ratio distribution is somewhat heavy tailed and negatively skewed. The PPV
for the consumer model is 0.04. Predictive p-values based on the intermediate poste-
riors for the diet experiment and source models range from 0.09 for the tissue sample
in the diet experiment to 0.62 for the terrestrial source. Section 5 considers alternative
models for these data.

4.2 Mink diet

Table 2 and Fig. 3 summarize carbon and nitrogen stable isotope ratios (I = 2)
from a sample of five live-captured coastal mink and seven sources (S = 7) of their
diet, including tidal fish, blue mussels, crabs, shrimps, rodents, amphipods, and ducks
(Ben-David et al. 1997). Table 2 includes summaries from two diet experiments to
estimate discrimination. A beef diet was used to estimate the common discrimination
for rodent and duck sources. A fish diet was used to estimate the common discrimina-
tion for the five other sources. The diet experiment data were given to us as summary
statistics with no correlation information. We set the correlation to zero in our initial
analyses. One very extreme outlier in the original mink sample was omitted from
Table 2 and our analysis. Boxplots and two dimensional scatterplots of the consumer
and source samples do not show any strong suggestion of nonnormality.

Table 2 Mink example, five observations of mink blood as a mixture of S = 7 sources using I = 2
isotopes of carbon and nitrogen

Carbon Nitrogen

Mean SD Mean SD Corr

Mixture J
Mink 5 −15.11 0.543 13.81 0.683 0.641

Sources Ks
Tidal fish (s = 1) 14 −15.41 0.471 12.71 0.329 −0.744
Blue mussels (s = 2) 11 −19.51 0.810 7.74 0.462 0.757
Crabs (s = 3) 20 −16.27 0.968 9.20 0.664 −0.335
Shrimps (s = 4) 6 −17.90 0.873 9.96 0.461 −0.105
Rodents (s = 5) 15 −27.37 1.208 7.45 0.818 0.053
Amphipods (s = 6) 25 −19.68 0.865 12.00 0.934 0.284
Ducks (s = 7) 6 −23.38 2.374 11.29 2.182 0.510

Diet experiment K
Tissue (mink, beef diet) 7 −20.09 0.171 10.50 0.245 –
Diet (beef) 7 −24.22 0.728 6.19 0.142 –
Difference (T–D) 4.13 4.31

Tissue (mink, fish diet) 10 −18.95 0.120 13.54 0.240 –
Diet (fish) 10 −20.52 0.609 11.73 0.384 –
Difference (T–D) 1.57 1.81

Summaries are sample sizes, means, standard deviations, and correlations for mixture, source, and diet
samples (Ben-David et al. 1997)
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We considered Jeffrey’s priors and a Dir(1, 1/6, 1/6, 1/6, 1/6, 1/6, 1/6) prior
for π , with sources ordered as in Table 2. The Dirichlet prior is worth two
observations, with a prior mean of 1/2 for tidal fish and prior means of 1/12
for each of the other six sources. The estimated posterior means and standard
deviations for the proportion of diet attributable to the seven sources based
on 50,000 importance samples are (0.70, 0.05, 0.05, 0.08, 0.03, 0.06, 0.04) and
(0.16, 0.08, 0.09, 0.13, 0.05, 0.10, 0.06), respectively. With this prior, tidal fish and
shrimp contribute roughly 70 and 10 % of an average mink’s diet, respectively. The
balance is made up of roughly equal contributions from the other five sources. The
posterior standard deviations are large relative to the means, which is not surprising
given the small mink sample. Figure 4 provides bivariate scatter plots of posterior
samples for each pair of sources along with marginal histograms. The plots are based
on 10,000 bootstrap resamples from the importance sampling distribution. Except for
plots concerning tidal fish, the marginal and bivariate distributions are right skewed
and concentrated near zero. Predictive p-values for the sources based on intermediate
posteriors were between 0.34 and 0.69.

A sensitivity analysis was conducted to assess the impact of two model features
on inferences. As the correlation between carbon and nitrogen isotope ratios was not
reported with the diet experiments, we repeated the analysis assuming the sample
correlations were either −0.50 or 0.50. This had no discernable effect on the posterior
of π . We also recognized that the priors for π and �b are critical because the BMM
is underconstrained and the consumer sample has only five mink. We considered a

123

Author's personal copy



Environ Ecol Stat

Fish

0 0.25 0.5 0.75 1

Mussels

0.25

0.5

0.75

1

0 0.25 0.5 0.75 1

Crabs

0.25

0.5

0.75

1

0 0.25 0.5 0.75 1

Shrimps

0.25

0.5

0.75

1

0 0.25 0.5 0.75 1

Rodents

0.25

0.5

0.75

1

0 0.25 0.5 0.75 1

Amphipods

0.25

0.5

0.75

1

0 0.25 0.5 0.75 1

Ducks

Fish Mussels Crabs Shrimps Rodents Amphipods Ducks

0.25

0.5

0.75

1

0 0.25 0.5 0.75 1

Fig. 4 Bivariate plots of posterior samples for mink diet proportion vector with posterior marginal density
plots for individual sources along bottom row

Dir(2/7, 2/7, 2/7, 2/7, 2/7, 2/7, 2/7) prior on π which is again worth two observa-
tions but assigns equal prior means of 1/7 to each diet source. With this prior, the pos-
terior mean and standard deviation of π are (0.55, 0.06, 0.10, 0.12, 0.03, 0.08, 0.06)

and (0.23, 0.09, 0.14, 0.17, 0.05, 0.11, 0.08), respectively. If, in addition, we use �b

∼ IW(5I2, 5) instead of a Jeffrey’s prior, the posterior mean and standard deviation of
π are (0.62, 0.05, 0.08,0.09, 0.03, 0.07, 0.06) and (0.17, 0.06, 0.11, 0.13, 0.04, 0.10,

0.09). Note that the prior mode for �b is 5I2/(5 + 2 + 1) ≈ 0.6I2, which, except for
the correlation, is fairly consistent with the mink consumer sample covariance matrix.
Specifying �b ∼ IW(2I2, 2) instead has little effect on these posterior summaries.

The main differences among the analyses rests in the contribution of tidal fish to
diet, which is estimated to be between 55 and 70 %. Clearly, the priors on π on �b
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must be carefully considered. Small variations in the source and diet model priors had
little effect on the posterior of π .

For comparison, we used WinBUGS to compute the posterior for (π,�b,�) based
on the last two sets of priors considered in the sensitivity analysis. Summaries for π

based on 50,000 samples after a 20,000 sample burn-in agreed with our importance
sample output to two decimal places. The Monte Carlo error in the estimated posterior
mean of π was comparable for the two methods. Posterior predictive p-values for the
consumer model exceeded 0.80.

5 Extending the basic model

5.1 Robustness of inferences using the basic model

The BMM is defined in terms of population means without reference to a particular
distributional form. As our multivariate normal sampling distributions have function-
ally independent mean and covariance parameters, we expect that the estimated diet
proportion vector given by the posterior mean of π might be somewhat robust to
misspecification of the consumer, source, and diet experiment models. We used the
dunlin data to examine this issue. Various sample sizes and diet proportion vectors
were considered, treating the observed means and covariance matrices as population
values except that the consumer population mean β satisfied the BMM given π and the
population mean source and diet experiment isotope ratios. We estimated the posterior
mean of π1 in each of 100 samples assuming our basic model with Jeffreys’ priors
and a uniform prior on π1. The “frequentist risk” measured by the root mean squared
error (RMSE) and the frequentist bias in the estimate were obtained. The process
was repeated assuming that the sampling distributions for the consumer and sources
were linear transformations of independent exponential random variables with mean
one. The transformations were chosen to match the mean and covariance structures
used under normality. The RMSEs and biases were comparable to those obtained
under normality. For example, the bias and RMSE when π1 = 0.20 and 0.50 were
(−0.003, 0.039) and (0.002, 0.035), respectively, for normal samples of the same
size as the observed samples. The corresponding values were (−0.012, 0.034) and
(0.002, 0.042) when normality was assumed but the data were exponential. Similar
conclusions were obtained when the sampling distributions were mixtures of multi-
variate normal distributions.

This analysis suggests that our basic model provides some protection to misspecifi-
cation of the sampling distributions when estimating π . A better approach to studying
this issue is to directly compare posterior summaries from the basic model to alterna-
tive models, as illustrated below.

5.2 Mixture models for sources in dunlin diet

The source samples for the dunlin data are heterogeneous, reflecting subsamples of
different species of invertebrates (Evans Ogden et al. 2004). Although the sample sizes
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are relatively small, some suggestion of clustering is seen in the source samples plotted
in Fig. 1. To assess the robustness of our initial inferences, we considered 2-component
normal mixture models ps N (μs1, �s1)+(1− ps)N (μs2, �s2) as the sampling models
for sources s = 1 and 2. The population source means are δs = psμs1 + (1 − ps)μs2
under this model. We assumed conjugate priors μsl |�sl ∼ N (μs, 100�sl), �sl ∼
IW(5I2, 5), and ps ∼ Beta(5, 5) for s = 1, 2. We centered the priors for the means
at the observed source means: μs = d̄s so that δs |Ds is essentially centered at d̄s , as
with the Jeffrey’s prior used in the original analysis. All other model specifications
were unchanged. Updated priors for δs |Ds were computed and used with the impor-
tance sampling algorithm to evaluate the posterior of (π1,�). The primary effect of
the mixture of normals model was to inflate the variability in δ1|D1 by a factor of
2.50 with no significant effect on δ2|D2. The posterior mean and standard deviation
of π1 are 0.374 and 0.047. A 95 % posterior interval for π1 is (0.279, 0.474). Figure 2
provides a plot of a kernel-smoothed posterior density for π1. The differences between
the posterior summaries from the original model and the revised model are relatively
minor.

As an alternative modification of the basic model, we computed the posterior of
(π,�b,�) under a heavier-tailed Student-t (6, β,�b) consumer sampling distribution.
All other model specifications were unchanged. The PPV for the consumer model was
0.44, which suggests a better fit than was obtained assuming normality. However, the
posterior mean and standard deviation of 0.353 and 0.047 are similar to that obtained
from the basic model.

5.3 Temporal regression model for dunlin diet

Our previous analyses treated the dunlin diet as static but it is plausible to expect fluc-
tuations in diet with changing weather. Evans Ogden et al. (2005) predict an increase
in terrestrial habitat use by dunlin during periods of heavy rain and an increase in
field feeding during lower temperatures and higher wind speeds. Thus, variation in
mean dunlin isotope ratios might be expected over the 96 day sampling period for
our data reflecting temporal changes in diet. Figure 5b plots the dunlin carbon and
nitrogen isotope ratios by sampling day. The plots shows a quadratic time trend. More
generally, typical diet may also depend on age and sex. However, the mean source
isotope ratios should remain relatively constant over this sampling period but could
depend on covariates.

To generalize the BMM, we focus on the temporal component of diet and assume
that the mean diet proportion vector π(t |γ ) depends on time t and a parameter vector γ

but that the discrimination-corrected source means are constant. To fit this model within
our framework we only need to modify the consumer model, leaving the source and diet
experiment models as originally specified. We assume that the consumer isotope ratios
are independent given the sampling times with b j |γ,�b,�, t j ∼ N (β(t j |γ ),�b)

for e = 1, . . . , J , where β(t |γ ) = ∑S
s=1 πs(t |γ )δ′

s . The consumer model is
LC = g(B|γ,�b,�, t)g(γ )g(�b), where g(B|γ,�b,�, t) is a product of indepen-
dent N (β(t j |γ ),�b) densities and t = (t1, . . . , tJ )� is the vector of sampling times.
To complete the model we need to specify π(t |γ ). As S = 2 we focus on π1(t |γ )
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Fig. 5 a Estimated population diet proportion (solid) associated with the terrestrial source as a function of
time, with pointwise 90 % posterior intervals (dashed) based on quadratic logit model. b Observed and esti-
mated mean carbon and nitrogen isotope ratios based on quadratic fit to logit of population diet proportion
associated with terrestrial source

and assume logit(π1(t |γ )) = γ0 + .01γ1(t − 50) + .001γ2(t − 50)2. This choice
makes empirical sense because the logistic function is approximately linear over the
range 0.30−0.70 in which we expect π1(t |γ ) to fall and so a quadratic logistic model
implies that β(t |γ ) is roughly a quadratic in time, which is consistent with the data.

We computed the posterior for (γ,�b,�) in WinBUGS using the updated
Jeffrey’s priors for the consumer and diet experiment means. The prior for �b is not that
critical given the large consumer sample and we assume �b ∼ IW(2I2, 2). Follow-
ing principles outlined in Bedrick et al. (1996), we placed independent Beta(.8, 1.2)
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priors on π1 at t =25, 50 and 75 days and used the 1-to-1 mapping between γ and
(π1(25|γ ), π1(50|γ ), π1(75|γ )) to induce a prior for γ . Our prior guess for π1(t |γ )

based on two prior observations is 0.40 at t = 25, 50 and 75 days, implying that there
is no time effect on diet a priori. The induced prior for γ0 is centered at approximately
logit(0.40) = −0.41 whereas the priors for γ1 and γ2 are centered at approximately
0, consistent with no regression effect.

The regression vector γ has an estimated posterior mean of (−0.67,−0.03, 0.29).
The corresponding estimated posterior standard deviations are (0.28, 0.51, 0.16).
Summaries are based on 50,000 samples after a 20,000 sample burn-in. The
Markov chains mixed reasonably well. Although the posterior distribution of γ1 is
concentrated near zero, there is a fairly strong suggestion that π1 depends on time as
Pr(γ2 > 0 | data) = 0.96. Figure 5a plots the estimated posterior mean of π1(t |γ )

as a function of time along with pointwise 90 % posterior probability intervals for
π1(t |γ ). Figure 5b plots the estimated posterior mean of the dunlin mean isotope ratio
β(t |γ ) as a function of time along with the observed carbon and nitrogen isotope ratio
responses.

The bivariate normal dunlin consumer model is more consistent with the data than
it was in the original analysis where time was ignored. However, the marginal distri-
butions of the dunlin carbon isotope ratios are somewhat skewed and have outliers
on certain sampling days. On days 52, 54, and 66, the PPVs indicate deficiencies
with normality (all PPV = 0.01), but note that the minimum and average of the PPVs
for the other 10 sampling days are 0.13 and 0.68, respectively. Although some fine
tuning of the model is warranted, Fig. 5b shows that the estimated posterior mean
isotope ratio β(t |γ ) mimics the observed trend reasonably well. This estimated trend
also closely agrees with a non-parametric least squares fit, which suggests that minor
modifications of the model might have minimal effect on the posterior mean of the diet
proportion.

6 Concluding remarks

We presented a framework for Bayesian estimation of mean diet through the spec-
ification of three submodels, one for the consumer and one each for the estimation
of source means and discrimination. The three submodels allow correlated isotope
ratio data and, unlike existing models, are linked only through the defining relation
for the means given by the BMM equations. This framework is flexible, and can be
extended in many ways not illustrated in this paper. For example, the extended mixing
model (EMM) modifies the BMM by recognizing that elemental concentration and
digestive efficiencies of consumers for different food types can vary considerably
(Martínez del Rio and Wolf 2005). The EMM has the same linear form as the BMM,
but with additional parameters. Inference for the EMM is possible, in principle, with
appropriate modification of our basic model.
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